Field descriptors for Historic Carpathian Land Use

This document describes the dataset that contains historic land use for the Carpathians. The data file contains a total of 91935 data points, arranged in a regular 2x2 km grid. The point grid matched that of the 2007 INSPIRE directive (Infrastructure for Spatial Information in the European Community) and LUCAS (Land Use and Cover Area frame Survey. The data uses the European Terrestrial Reference System 1989 (ETRS89) Lambert Azimuthal Equal Area (LAEA) projection.

For each point, information on land cover/ land use was digitized based on military survey maps, topographic maps and Landsat image composites. The land use/land cover information is assigned to the point based on the exact cover information at the point location, not the dominant land cover within a larger area surrounding the point. For points located in Slovakia and Poland and Czech Republic, a back-dating approach in which the location of the digitized point was verified in for subsequent dates relative to nearby landmarks was used to ensure consistency in point location across map data sets. Historic data is available for three points in time: 1860s, 1930s and 1960s. In addition, data on contemporary land covers, geo-politics, environment, accessibility and population is provided at each point location from external data sources (see field descriptors).

Field name	Description
POINT_X	X Coordinate of point, in ETRS LAEA projection system
POINT_Y	Y Coordinate of point, in ETRS LAEA projection system
id_nasa	Individual code for each point, based on XY coordinate information
NUTS0	Country code, according to Nomenclature of Territorial Units for
	Statistics in Europe.Level 0.
NUTS1	Macroregion code, according to Nomenclature of Territorial Units for
	Statistics in Europe.Level 1.
NUTS2	Region code, according to Nomenclature of Territorial Units for
	Statistics in Europe.Level 2.
NUTS3	County code, according to Nomenclature of Territorial Units for
	Statistics in Europe.Level 3.
NUTS0_name	Country name, according to Nomenclature of Territorial Units for
	Statistics in Europe.Level 0.
NUTS3_name	County name, according to Nomenclature of Territorial Units for

The following description refers to the attribute table of the file carp_historic_land_use.shp.

	Statistics in Europe.Level 1.			
NUTS2_name	Region name, according to Nomenclature of Territorial Units for			
	Statistics in Europe.Level 2.			
NUTS1_name	Country name, according to Nomenclature of Territorial Units for			
	Statistics in Europe.Level 3.			
2MM	Level 4 land use code (See land use classes legend in table below) for			
	the period around 1860s. The digitization of this time layer is based on			
	Second Austrian Military Survey (1819-1873) in scale 1:28.800 and on			
	the Szathmari' Map of Romania (1864) in scale 57.600.			
LC2MM	Level 1 land use code (See land use classes legend in table below) for			
	the period around 1860s. The digitization of this time layer is based on			
	Second Austrian Military Survey (1819-1873) in scale 1:28.800 and on			
	the Szathmari' Map of Romania (1864) in scale 57.600.			
aprox1930	Level 4 land use code (See land use classes legend in table below) for			
	the period around 1930s. The digitization of this time layer is based on			
	four distinct map sets: Maps of Wojskowy Instytut Geograficzny			
	(WIG), 1:100.000 covering the years 1919-1939, Preliminary Beneš			
	maps and definitive Křovák maps, 1:20.000 covering years 1923-1938,			
	the Revised Third Military Survey, German topographic maps,			
	1:25.000 covering the years 1923-1945 and the Topographic maps of			
	Hungary, 1:50:000 covering the years 1940-1944.			
LC1930	Level 1 land use code (See land use classes legend in table below) for			
	the period around 1930s. The digitization of this time layer is based on			
	four distinct map sets: Maps of Wojskowy Instytut Geograficzny			
	(WIG), 1:100.000 covering the years 1919-1939, Preliminary Beneš			
	maps and definitive Křovák maps, 1:20.000 covering years 1923-1938,			
	the Revised Third Military Survey, German topographic maps,			
	1:25.000 covering the years 1923-1945 and the Topographic maps of			
	Hungary, 1:50:000 covering the years 1940-1944.			
aprox1960	Level 4 land use code (See land use classes legend in table below) for			
	the period around 1960s. The digitization of this time layer is based on			
	Soviet and National Military Maps from the Cold War period at scales			
	1:25.000 and 1:50.000 and covering the years 1949-1983.			
LC1960	Level 1 land use code (See land use classes legend in table below) for			
	the period around 1960s. The digitization of this time layer is based on			
	Soviet and National Military Maps from the Cold War period at scales			

	1:25.000 and 1:50.000 and covering the years 1949-1983.
year_2MM	Exact year for the 1860s time layer, based on the date inscribed on the
	map sheet containing the point. Range 1819-1873
year_1930s	Exact year for the 1930s time layer, based on the date inscribed on the
	map sheet containing the point. Range 1919-1944.
year_1960s	Exact year for the 1960s time layer, based on the date inscribed on the
	map sheet containing the point. Range 1949-1983.
uncert_2MM	Uncertainty for the land use data in the 1860s time layer. Points are
	labeled as certain (signature = 0) or uncertain (signature = 1). The
	default is that all points are certain.
uncert1930	Uncertainty for the land use data in the 1930s time layer. Points are
	labeled as certain (signature = 0) or uncertain (signature = 1). The
	default is that all points are certain
uncert1960	Uncertainty for the land use data in the 1960s time layer. Points are
	labeled as certain (signature = 0) or uncertain (signature = 1). The
	default is that all points are certain
srtm_elev	Elevation of point, based on SRTM elevation model at 90m resolution.
	extracted from (Farr et al. 2007). Unit of measurement: m
srtm_slope	Slope of point, based on SRTM elevation model at 90m resolution.
	extracted from (Farr et al. 2007). Unit of measurement: degrees
temp	Annual mean temperature in C*10 at point location, based on
	WORLDCLIM database (Hijmans et al. 2005). Spatial resolution is
	aprox. 1km
precip	Annual precipitation at point location in mm, based on WORLDCLIM
	database (Hijmans et al. 2005). Spatial resolution is aprox. 1km
crop_si	Crop suitability index at point location based on FAO Global Agro-
	Ecological Zones, expressed in % at aprox 8km spatial
	resolution.("Global Agro-Ecological Zones (GAEZ v. 3.0)" 2014)
grow_ss	Length of growing season at point location, based on FAO Global
	Agro-Ecological Zones, expressed in days, at aprox. 8km spatial
	resolution. ("Global Agro-Ecological Zones (GAEZ v. 3.0)" 2014)
acc_50k	Accessibility to nearest 50k inhabitants town. Travel time is given in
	minutes for each point location at about 1km spatial resolution (Nelson
	2008).
NEAR_mcity	Euclidean distance to nearest major city, given in km.

NEAR_settl	Euclidean distance to nearest settlement, given in km.
NEAR_road	Euclidean distance to nearest road, given in km.
NEAR_borde	Euclidean distance to nearest contemporary border, given in km.
NEAR_rail	Euclidean distance to nearest major railroad, given in km.
NEAR_river	Euclidean distance to nearest river, given in km.
pop90	Population count at point location for year 1990 based on gridded
	population of the world data at 5km resolution. (CIESIN (Center for
	International Earth Science Information Network) et al. 2005)
FT1985	Forest type at point location for year 1985 based on Landsat image
	composites at 30m resolution (Griffiths et al. 2014). 0=no forest,
	1=coniferous forest, 2=mixed forest, 3=deciduous forest, 4=unknown
	forest type, 256=no data.
FT2010	Forest type at point location for year 2010 based on Landsat image
	composites at 30m resolution (Griffiths et al. 2014). 0=no forest,
	1=coniferous forest, 2=mixed forest, 3=deciduous forest, 4=unknown
	forest type, 256=no data.
LC1985_4cl	Major land cover type at point location for year 1985 based on Landsat
	image composites at 30m resolution, reconstructed from (Griffiths et
	al. 2013, 2014). 0=no data, 2=agriculture, 3=grassland, 4=forest,
	9=other.
LC2000_4cl	Major land cover type at point location for year 2000 based on Landsat
	image composites at 30m resolution, reconstructed from (Griffiths et
	al. 2013, 2014). 0=no data, 2=agriculture, 3=grassland, 4=forest,
	9=other.
LC2010_4cl	Major land cover type at point location for year 2010 based on Landsat
	image composites at 30m resolution, reconstructed from (Griffiths et
	al. 2013, 2014). 0=no data, 2=agriculture, 3=grassland, 4=forest,
	9=other.

Land use classes legend and nomenclature for historic land uses (1860, 1930, 1960): The legend is hierarchical and classes are mutually exclusive. When possible to do so accurately, classes were assigned at the highest level of detail possible. Subclasses/ more detailed levels were be used only where information was certain.

Level 1	Level 2	Level 3	Level 4	Observation
1 Urban/				Continuous urban,

	Built-up							discontinuous
								urban, industrial
								sites, airports
								Does not include
								linear features such
								as roads or
								railroads.
2	Agricultur	21	Seasonal					Including irrigated
	e		agriculture					crops
		22	Perennial	221	Orchards			
			agriculture					
				222	Vineyards			
3	Grassland	31	Meadows and	311	Meadows	3111	Wet	
	and		pastures				Meadow	
	shrubs							
						3112	Dry	
							Meadows	
				312	Pastures	3121	Wet	
							Pastures	
						3122	Dry	
							Pastures	
		32	Wooded					Wooded pastures,
			pastures and					transitional areas
			shrubs					and shrubs
		33	Dwarf pine					Shrub vegetation in
								mountainous areas
		4.1	D 11					above timber line
4	Forest	41	Deciduous					
		10	forest					
		42	Mixed forest					
		43	Evergreen					
-	W/ - 411	51	Deed					
Э	wettands	51	Reeu Doot hogo &					
		32	real bogs &					
6	Wator	61	Standing					Lipoor footures are
U	vv attl	01	waters					given the class
		62	Water					around them only
		02						water courses
			courses					water courses

rface are as such.
as such.
n on the
nissing
o map)
points, no
ould be
ther they
for ag or

Please use following citations for additional information on data processing:

- Kaim, D., J. Kozak, N. Kolecka, E. Ziółkowska, K. Ostafin, K. Ostapowicz, U. Gimmi, C. Munteanu, and V. C. Radeloff. 2016. Broad scale forest cover reconstruction from historical topographic maps. Applied Geography 67:39–48.
- Munteanu, C. et al. 2015. Legacies of 19th century land use shape contemporary forest cover. Global Environmental Change **34**:83–94.
- Munteanu C, Kuemmerle T, Boltiziar M, Halada L, Kaim D, Király G, Konkoly-Gyuró E, Kozak J, Lieskovsky J, Mojses M, Müller D, Ostafin K, Ostapowicz K, Radeloff VC (in review): 19th century land-use legacies affect contemporary land abandonment in the Carpathians. Regional Environmental Change, in review

Other references, used to extract data to the point grid:

- CIESIN (Center for International Earth Science Information Network), FAO (United Nations Food and Agriculture Programme), and CIAT (Centro Internacional de Agricultura Tropical). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Count Grid. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY.
- Farr, T. G. et al. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics **45**:RG2004.

- Global Agro-Ecological Zones (GAEZ v. 3.0). 2014. Available from http://gaez.fao.org/Main.html (accessed January 1, 2014).
- Griffiths, P., T. Kuemmerle, M. Baumann, V. C. Radeloff, I. V. Abrudan, J. Lieskovský, C. Munteanu, K. Ostapowicz, and P. Hostert. 2014. Forest disturbances, forest recover, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sensing of Environment 151:72–88.
- Griffiths, P., D. Müller, T. Kuemmerle, and P. Hostert. 2013. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environmental Research Letters **8**:045024. IOP Publishing.
- Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965–1978.
- Nelson, A. 2008. Estimated travel time to the nearest city of 50,000 or more people in year 2000. Ispra, Italy.