Potential adaptability of marine turtles to climate change may be hindered by coastal development in the USA

Marine turtles may respond to projected climatic changes by shifting their nesting range to climatically suitable areas, which may
result in either increased exposure to threats or fewer threats. Therefore, there is the need to identify whether habitat predicted to
be climatically suitable for marine turtle nesting in the future will be affected by future threats and hinder marine turtles’ ability to
adapt. We modelled the geographic distribution of climatically suitable nesting habitat for marine turtles in the USA under future
climate scenarios, identified potential range shifts by 2050, determined impacts from sea-level rise, and explored changes in
exposure to coastal development as a result of range shifts. Overall nesting ranges of marine turtle species were not predicted to
change between the current and future time periods, except for the northern nesting boundaries for loggerhead turtles. However,
declines in climatically suitable nesting grounds were predicted; loggerhead turtles will experience the highest decreases (10%) in
climatically suitable habitat followed by green (7%) and leatherback (1%) turtles. However, sea-level rise is projected to inundate
78–81% of current habitat predicted to be climatically suitable in the future, depending on species and scenario. Nevertheless,
new beaches will also form, and suitable nesting habitat could be gained, with leatherback turtles potentially experiencing the
biggest percentage gain in suitable habitat.

File: 2020_Fuentes_et_al-2020-Regional_Environmental_Change.pdf

Short-term vegetation loss versus decadal degradation of grasslands in the Caucasus based on Cumulative Endmember Fractions

Land degradation affects over one-third of the global land area and is projected to become even more widespread
due to climate change and land use pressures. Despite being a critical issue for climate change mitigation,
biodiversity conservation, and food security, the detection of the onset, duration, and magnitude of land de-
gradation remains challenging, as is early identification of short-term vegetation loss preceding land degrada-
tion. Here, we present a new approach for monitoring both short-term vegetation loss and decadal degradation
in grasslands using satellite data. Our approach integrates Spectral Mixture Analysis and temporal segmentation,
and analyzes dense time-series of satellite observations in three steps. First, we unmix all available satellite
observations and aggregate them into monthly composites. Second, we calculate the annual Cumulative
Endmember Fractions and examine their piecewise trends among years to determine the onset, duration, and
magnitude of short-term vegetation loss and decadal degradation. Third, we attribute a decrease in the green
vegetation fraction with a concomitant increase in either open soil, or non-photosynthetic vegetation. We tested
our method mapping short-term vegetation loss and decadal degradation in grasslands in the Caucasus Ecoregion
using the 2001–2018 time series of MODIS 8-day reflectance data. We found strong patterns of short-term
vegetation loss and decadal degradation, mostly in the eastern part of the Caucasus Ecoregion in areas of desert-
and semi-desert natural vegetation. Short-term vegetation loss episodes (3–9 years) were more common and had
greater magnitude than decadal degradation (≥10 years), especially in steppe regions. On average, 9.3% of
grassland area was subjected annually to either decadal, or short-term vegetation loss. Desiccation, i.e., the shift
from green vegetation to dry vegetation, was the most prevalent type of change pathway, with green vegetation
loss to open soil coming second. Decadal degradation and short-term vegetation loss rates were the highest in dry
areas where the potential natural vegetation is sub-shrub deserts, or halophytic, alluvial, and wet lowland
forests. Our findings support known general degradation patterns in the Caucasus Ecoregion, but provide better
understanding of ongoing processes, by detecting exact location, timing, and magnitude of changes. More
broadly, our method advances the monitoring of grasslands by detecting both decadal degradation and short-
term vegetation loss. This flexibility supports adaptive degradation monitoring, aids sustainable land manage-
ment, and provides new information for carbon stock analyses and biodiversity conservation.

File: Lewinska_etal_RSE_2020_CaucasusVegLoss.pdf

Modeling a cross-ecosystem subsidy: forest songbird response to emergent aquatic insects

Context: Resource movements across ecosystem
boundaries are important determinants of the diversity
and abundance of organisms in the donor and recipient
ecosystem. However the effects of cross-ecosystem
movements of materials at broader spatial extents than
a typical field study are not well understood.
Objectives: We tested the hypotheses that (1) variation
in abundance of 57 forest songbird species within
four foraging guilds is explained by modeled emergent
aquatic insect biomass inputs from adjacent lakes and
streams and (2) the degree of association varies across
foraging guilds and species within guilds. We also
sought to determine the importance of emergent
aquatic insects while accounting for variation in local
forest cover and edge.
Methods: We spatially modeled the degree to which
distribution and abundance of songbirds in different
foraging guilds was explained by modeled emergent
aquatic insect biomass. We used multilevel models to
simultaneously estimate the responses of species in
four different insectivorous guilds. Bird abundance
was summarized from point counts conducted over
24 years at 317 points.
Results: Aerial insectivores were more abundant in
areas with high estimated emergent insect biomass
inputs to land (regression coefficient 0.30, P\0.05)
but the overall abundance of gleaners, bark-probers,
and ground-foragers was not explained by estimated
emergent insect abundance. The coursing aerial
insectivores had the strongest association with emergent
insects followed by willow flycatcher, olive-sided
flycatcher, and alder flycatcher.
Conclusions: Modeling cross-ecosystem movements
of materials at broad spatial extents can effectively
characterize the importance of this ecological process
for aerial insectivorous songbirds.

File: Schilke-et-al_2020_Landscape-Ecology_Modeling-a-cross-system-subsidy.pdf

Habitat resilience for songbirds: The role of topographic position in a mixed deciduous forest

Climate change is altering patterns of resource availability and this may have negative effects on insectivorous forest birds in the US upper Midwest. As invertebrate life cycle phenology shifts due to earlier spring leaf-out, nesting birds are vulnerable to phenological mismatches between food supply and demand. Areas with complex topography, and thus a variety of thermal and humidity conditions, may support a greater variety of plant and invertebrate phenological rates and stages within close proximity than are found in areas with simple topography. However, the extent and magnitude of this phenomenon is unclear, as is the degree to which topographic position may influence the ability of species to persist during extreme conditions. We examined the effects of topographic position on the
phenology of a tri-trophic forest system over two years from spring through mid-summer. We hypothesized that in cool microsites the likelihood of trophic mismatches and late season food shortages is lower than in warm microsites. At 70 sites in the Baraboo Hills, part of the Driftless Area of the US Midwest, we recorded leaf-out timing of over 700 deciduous trees, measured weekly changes in invertebrate biomass on understory foliage, and conducted bird point counts to assess avian species richness and density. In stream gorges, cooler temperatures were associated with slight but significant delays in leaf-out timing of canopy and understory deciduous trees relative to upland sites. At all sites, invertebrate biomass was distributed relatively evenly across the study period, in contrast to other temperate zone sites where phenological mismatches have been reported between birds and their invertebrate prey. Invertebrate
biomass was similar in stream gorges and uplands in both study years. Insectivorous bird species richness was greater in stream gorges than in the surrounding upland forest during both seasons and was positively related to Lepidoptera larvae biomass in the understory. Among eight abundant insectivorous bird species, density was similar in uplands and stream gorges, among four species density was higher in uplands, and density of two species was higher in stream gorges. These results suggest that insectivorous birds within this study area are unlikely to experience trophic mismatches, and that despite having cooler microclimates and higher avian species richness, stream gorges did not provide more invertebrate food resources than uplands under the climate conditions of the years in which we
sampled this tri-trophic system.

File: Persche-and-Pidgeon-2020.pdf

The richness–heterogeneity relationship differs between heterogeneity measures within and among habitats

The positive monotonic relationship between habitat heterogeneity and species richness is a cornerstone of ecology. Recently, it was suggested that this relationship should be unimodal rather than monotonic due to a tradeoff between environmental heterogeneity and population sizes, which increases local species extinctions at high heterogeneity levels. Here, we studied the richness–heterogeneity relationship for an avian community using two different environmental variables, foliage-height diversity and cover type diversity. We analyzed the richness–heterogeneity within different habitat types (grasslands, savannas, or woodlands) and at the landscape scale. We found strong evidence that both positive and unimodal relationships exist at the landscape scale. Within habitats we found positive relationships between richness and heterogeneity in grasslands and woodlands, and unimodal relationships in savannas. We suggest that the length of the environmental heterogeneity gradient (which is affected by both spatial scale and the environmental variable being analyzed) affects the type of the richness–heterogeneity relationship. We conclude that the type of the relationship between species richness and environmental heterogeneity is non-ubiquitous, and varies both within and among habitats and environmental variables.

File: Bar-Massada-Wood-2014.pdf

Tropical bird species richness is strongly associated with patterns of primary productivity captured by the Dynamic Habitat Indices

Biodiversity science and conservation alike require environmental indicators to understand species richness and predict species distribution patterns. The Dynamic Habitat Indices (DHIs) are a set of three indices that summarize annual productivity measures from satellite data for biodiversity applications, and include: a) cumulative annual productivity; b) minimum annual productivity; and c) variation in annual productivity. At global scales and in temperate regions the DHIs predict species diversity patterns well, but the DHIs have not been tested in the tropics, where higher levels of productivity lead to the saturation of many remotely sensed vegetation indices. Our goal was to explain bird species richness patterns based on the DHIs in tropical areas. We related the DHIs to species richness of resident landbirds for five guilds (forest, scrub, grassland, generalist, and all resident birds) based on a) species distribution model (SDM) maps for 217 species, and b) range map for 564 species across Thailand. We also quantified the relative importance of the DHIs in multiple regression models that included two measures of topography, and two climate metrics using multiple regression, best-subsets, and hierarchical partitioning analyses. We found that the three DHIs alone explained forest bird richness best (R2adj 0.61 for both SDM- and rangemap based richness; 0.15–0.54 for the other guilds). When combining the DHIs with topography and climate, the richness of both forest birds and all resident bird species was equally well explained (R2adj 0.85 and 0.67 versus 0.81 and 0.68). Among the three DHIs, cumulative annual productivity had the greatest explanatory power for all guilds based on SDM richness maps (R2adj 0.54–0.61). The strong relationship between the DHIs and bird species richness in Thailand suggests that the DHIs capture energy availability well and are useful in biodiversity assessments and potentially bird conservation in tropical areas.

File: Suttidate_etal_RSE_TropicalBirds_DHI_2019.pdf

Biodiversity science and conservation alike require environmental indicators to understand species richness and predict species distribution patterns. The Dynamic Habitat Indices (DHIs) are a set of three indices that summarize annual productivity measures from satellite data for biodiversity applications, and include: a) cumulative annual productivity; b) minimum annual productivity; and c) variation in annual productivity. At global scales and in temperate regions the DHIs predict species diversity patterns well, but the DHIs have not been tested in the tropics, where higher levels of productivity lead to the saturation of many remotely sensed vegetation indices. Our goal was to explain bird species richness patterns based on the DHIs in tropical areas. We related the DHIs to species richness of resident landbirds for five guilds (forest, scrub, grassland, generalist, and all resident birds) based on a) species distribution model (SDM) maps for 217 species, and b) range map for 564 species across Thailand. We also quantified the relative importance of the DHIs in multiple regression models that included two measures of topography, and two climate metrics using multiple regression, best-subsets, and hierarchical partitioning analyses. We found that the three DHIs alone explained forest bird richness best (R2adj 0.61 for both SDM- and rangemap based richness; 0.15–0.54 for the other guilds). When combining the DHIs with topography and climate, the richness of both forest birds and all resident bird species was equally well explained (R2adj 0.85 and 0.67 versus 0.81 and 0.68). Among the three DHIs, cumulative annual productivity had the greatest explanatory power for all guilds based on SDM richness maps (R2adj 0.54–0.61). The strong relationship between the DHIs and bird species richness in Thailand suggests that the DHIs capture energy availability well and are useful in biodiversity assessments and potentially bird conservation in tropical areas.

Vegetation productivity summarized by the Dynamic Habitat Indices explains broad-scale patterns of moose abundance across Russia

Identifying the factors that determine habitat suitability and hence patterns of wildlife abundances
over broad spatial scales is important for conservation. Ecosystem productivity is a key aspect of habitat
suitability, especially for large mammals. Our goals were to a) explain patterns of moose (Alces alces)
abundance across Russia based on remotely sensed measures of vegetation productivity using Dynamic
Habitat Indices (DHIs), and b) examine if patterns of moose abundance and productivity difered before
and after the collapse of the Soviet Union. We evaluated the utility of the DHIs using multiple regression
models predicting moose abundance by administrative regions. Univariate models of the individual
DHIs had lower predictive power than all three combined. The three DHIs together with environmental
variables, explained 79% of variation in moose abundance. Interestingly, the predictive power of the
models was highest for the 1980s, and decreased for the two subsequent decades. We speculate that
the lower predictive power of our environmental variables in the later decades may be due to increasing
human infuence on moose densities. Overall, we were able to explain patterns in moose abundance in
Russia well, which can inform wildlife managers on the long-term patterns of habitat use of the species.

File: Razenkova_etal_SciReports_Moose_2020.pdf

Identifying the factors that determine habitat suitability and hence patterns of wildlife abundances
over broad spatial scales is important for conservation. Ecosystem productivity is a key aspect of habitat
suitability, especially for large mammals. Our goals were to a) explain patterns of moose (Alces alces)
abundance across Russia based on remotely sensed measures of vegetation productivity using Dynamic
Habitat Indices (DHIs), and b) examine if patterns of moose abundance and productivity difered before
and after the collapse of the Soviet Union. We evaluated the utility of the DHIs using multiple regression
models predicting moose abundance by administrative regions. Univariate models of the individual
DHIs had lower predictive power than all three combined. The three DHIs together with environmental
variables, explained 79% of variation in moose abundance. Interestingly, the predictive power of the
models was highest for the 1980s, and decreased for the two subsequent decades. We speculate that
the lower predictive power of our environmental variables in the later decades may be due to increasing
human infuence on moose densities. Overall, we were able to explain patterns in moose abundance in
Russia well, which can inform wildlife managers on the long-term patterns of habitat use of the species.

Effects of ecotourism on forest loss in the Himalayan biodiversity hotspot based on counterfactual analyses

Ecotourism is developing rapidly in biodiversity hotspots worldwide, but there is limited and mixed
empirical evidence that ecotourism achieves positive biodiversity outcomes. We assessed whether ecotourism
influenced forest loss rates and trajectories from 2000 to 2017 in Himalayan temperate forests. We compared forest
loss in 15 ecotourism hubs with nonecotourism areas in 4 Himalayan countries. We used matching statistics to
control for local-level determinants of forest loss, for example, population density, market access, and topography.
None of the ecotourism hubs was free of forest loss, and we found limited evidence that forest-loss trajectories in
ecotourism hubs were different from those in nonecotourism areas. In Nepal and Bhutan, differences in forest loss
rates between ecotourism hubs and matched nonecotourism areas did not differ significantly, and the magnitude
of the estimated effect was small. In India, where overall forest loss rates were the lowest of any country in
our analysis, forest loss rates were higher in ecotourism hubs than in matched nonecotourism areas. In contrast,
in China, where overall forest loss rates were highest, forest loss rates were lower in ecotourism hubs than
where there was no ecotourism. Our results suggest that the success of ecotourism as a forest conservation
strategy, as it is currently practiced in the Himalaya, is context dependent. In a region with high deforestation
pressures, ecotourism may be a relatively environmentally friendly form of economic development relative to
other development strategies. However, ecotourism may stimulate forest loss in regions where deforestation rates
are low.

File: Brandt_etal_-ConsBio_2019.pdf

Ecotourism is developing rapidly in biodiversity hotspots worldwide, but there is limited and mixed
empirical evidence that ecotourism achieves positive biodiversity outcomes. We assessed whether ecotourism
influenced forest loss rates and trajectories from 2000 to 2017 in Himalayan temperate forests. We compared forest
loss in 15 ecotourism hubs with nonecotourism areas in 4 Himalayan countries. We used matching statistics to
control for local-level determinants of forest loss, for example, population density, market access, and topography.
None of the ecotourism hubs was free of forest loss, and we found limited evidence that forest-loss trajectories in
ecotourism hubs were different from those in nonecotourism areas. In Nepal and Bhutan, differences in forest loss
rates between ecotourism hubs and matched nonecotourism areas did not differ significantly, and the magnitude
of the estimated effect was small. In India, where overall forest loss rates were the lowest of any country in
our analysis, forest loss rates were higher in ecotourism hubs than in matched nonecotourism areas. In contrast,
in China, where overall forest loss rates were highest, forest loss rates were lower in ecotourism hubs than
where there was no ecotourism. Our results suggest that the success of ecotourism as a forest conservation
strategy, as it is currently practiced in the Himalaya, is context dependent. In a region with high deforestation
pressures, ecotourism may be a relatively environmentally friendly form of economic development relative to
other development strategies. However, ecotourism may stimulate forest loss in regions where deforestation rates
are low.