Patterns and drivers of post-socialist farmland abandonment in Western Ukraine

Matthias Baumann1,*, Tobias Kuemmerle1,6, Marine Elbakidze4,5, Mutlu Oztugan1, Volker C. Radeloff1, Nicholas S. Keuler2, Alexander V. Prishchepov5, Ivan Kruhlov5, Patrick Hostert6

1 Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706-1598, USA
2 Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
3 Statistics Department, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
4 Geography Department, Ivan-Franko University, Str. Doroshenka, 41, 79000 Lviv, Ukraine
5 Faculty of Forest Sciences, Swedish University of Agricultural Sciences, PO Box 43, SE-739 21 Skinnskattem, Sweden
6 Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), PO Box 60 12 03, Telegraphenberg A62, D-14412 Potsdam, Germany

A R T I C L E I N F O
Article history:
Received 13 August 2010
Received in revised form 4 November 2010
Accepted 8 November 2010

Keywords:
Land-use transitions
Fallow fields
Carpathians
Remote sensing
Support Vector Machines
Regression analysis

A B S T R A C T
Farmland abandonment restructures rural landscapes in many regions worldwide in response to gradual industrialization and urbanization. In contrast, the political breakdown in Eastern Europe and the former Soviet Union triggered rapid and widespread farmland abandonment, but the spatial patterns of abandonment and its drivers are not well understood. Our goal was to map post-socialist farmland abandonment in Western Ukraine using Landsat images from 1986 to 2008, and to identify spatial determinants of abandonment using a combination of best-subsets linear regression models and hierarchical partitioning. Our results suggest that farmland abandonment was widespread in the study region, with abandonment rates of up to 56%. In total, 6600 km² (30%) of the farmland used during socialism was abandoned after 1991. Topography, soil type, and population variables were the most important predictors to explain substantial spatial variation in abandonment rates. However, many of our a priori hypotheses about the direction of variable influence were rejected. Most importantly, abandonment rates were higher in the plains and lower in marginal areas. The growing importance of subsistence farming in the transition period, as well as off-farm income and remittances likely explain these patterns. The breakdown of socialism appears to have resulted in fundamentally different abandonment patterns in the Western Ukraine, where abandonment was a result of the institutional and economic shock, compared to those in Europe’s West, where abandonment resulted from long-term socio-economic transformation such as urbanization and industrialization.

Introduction

Land-use change strongly affects ecosystems, their services and biodiversity, and ultimately human well-being (Foley et al., 2005). A better understanding of the patterns of land-use change and what drive these spatial patterns is therefore a key challenge for landscape ecology and land-use science (Global Land Project, 2005; Turner et al., 2007). Trajectories of intensifying land use, particularly agricultural expansion in the tropics, are fairly well understood (Geist and Lambin, 2002; Hansen et al., 2008). However, land use can also become less intense as societies industrialize and urbanize, resulting in landscapes characterized by farmland abandonment and reforestation (Lambin and Meyfroidt, 2010; Rudel et al., 2009, 2010). Such shifts of socio-ecological systems characterized by deforestation to systems with forest increase have occurred in Western Europe (Gellrich et al., 2007; Mather et al., 1999) and North America (Kauppi et al., 2006; Rahmuthula et al., 2009) during the 19th and 20th centuries, and more recently in parts of Central America (Marin-Spiotta et al., 2009), and southeast Asia (Fox et al., 2009). Overall, farmland abandonment rates and patterns remain unclear in many regions worldwide.

This is worrisome, because land abandonment affects ecosystems profoundly (Rey Benayas et al., 2007; DLG, 2005). For example, abandonment decreases soil erosion (Tesser et al., 2003), increases carbon sequestration (Marin-Spiotta et al., 2009; Vuichard et al., 2008), improves water quality (Kramer et al., 1997), and may allow biodiversity to recover (Chazdon, 2008). Conversely, abandonment decreases agricultural production often permanently, because recultivation is expensive once forests have established (Larsson and Nilsson, 2005). In places with long land-use histories, farmland abandonment also threatens cultural identity and bio-

© 2010 Elsevier Ltd. All rights reserved.
determined by influences such as topography, population density, ownership regime, and land reform strategies also (Kruhlov et al., 2008; NESDIS, 2009).

The culture is the main land use in the plains and foothills, and forestry in the mountains. The region is characterized by varying soils and long growing period and marginal farming (e.g., mountain regions). Likewise, the region is characterized by varying socioeconomic conditions and different cultural traditions in use of natural resources. Field evidence also suggests that farmland abandonment in Western Ukraine was widespread after 1991, when Ukraine became an independent state.

The overarching goal of our study was to (a) map post-socialist farmland abandonment in Western Ukraine and (b) relate abandonment patterns to environmental, accessibility, population, and land use intensity variables. Specifically, we tested four hypotheses: post-socialist farmland abandonment rates are higher:

1. in areas of higher elevation, steeper slopes, and poorer soils;
2. in remote areas afar from market centers;
3. in areas with decreasing (rural) population density;
4. where the intensity of farming decreased most.

Methods

Study area

Our study region in Western Ukraine covers about 48,000 km² and consists of three oblasti (i.e., Ivano-Frankivska, Lvivska, and Zakarpatska) with 47 rayons. Rayons are district-level administrative units in Ukraine (equivalent to the NUTS-3-level in the European Union, or the county-level in the United States). Elevations in the study region vary from 75 to 2061 m and the region contains almost the entire Ukrainian Carpathians as well as adjacent plains (Fig. 1). Main rivers in the regions are Dniester, Prut, and Tysmenytsia. Soils vary throughout the study region with Cambisols and Podsols dominating in the mountains, and albeluvisols, phaeozems, and fluvisols in the lowlands. Climate is temperate continental with slightly warmer conditions in the southwest (e.g., mean temperature of 9.6 °C in Uzgorod) compared to the northeast (7.2 °C in Lviv), while annual precipitation is around 740 mm (Kruhlov et al., 2008; NESDIS, 2009).

Approximately 5.2 million people live in the study region, one-third in cities (State Statistics Committee of Ukraine, 2001). The plains and Carpathian foothills are relatively densely settled. Agriculture is the main land use in the plains and foothills, and forestry
During Soviet times, all agricultural lands were collectivized and managed in large-scale enterprises. Mechanization and inputs (e.g., fertilizer) increased markedly, and some forests were converted to croplands and pastures (Kozak et al., 2007). The breakdown of socialism in 1991 resulted in a substantial restructuring of Ukraine’s agricultural sector. Many state farms went bankrupt (Lerman, 1999) and the farmland was distributed among former collective farm workers. Yet, most farmland is still managed by large-scale agricultural enterprises, because of slow land reforms and a missing land market (Lerman, 1999; Lerman et al., 2004).

Satellite images

To map abandonment, we used Landsat TM images (Fig. 1C). For each of the five footprints, we acquired two images from 1986 to 1989, characterizing land use during socialism, and two images from 2006 to 2008, representing current land use (i.e., four images per footprint). This resulted in a total set of 20 Landsat images (Table 1). For each time period, we used one summer and one spring or fall image from different years to capture phenology differences between permanent farmland and abandoned farmland (Kuemmerle et al., 2008; Prishchev et al., submitted for publication). Seventeen ortho-corrected images were acquired from the United States Geological Survey (USGS) and the other images were co-registered to these. Average positional error was <0.25 pixels. Clouds and cloud shadows were masked.

Mapping post-socialist farmland abandonment

To map post-socialist farmland abandonment, we used a two-stage approach: first, we mapped farmland in use in 1986–1989; and second, we used a multi-temporal classification approach to assess whether farmland was abandoned or still in use in 2006–2008. We used a Support Vector Machines (SVM) approach for both classifications. SVM are well-suited for mapping farmland abandonment because they handle complex spectral classes well (Foody and Mathur, 2004) and have recently been applied to quantify post-socialist farmland abandonment (Kuemmerle et al., 2008). We used an SVM approach based on Gaussian kernel functions that requires estimating the kernel width γ and the regularization parameter C; and we chose an optimal parameter combination based on cross-validation (Janz et al., 2007).

Classification training data of pre-1990 farmland was based on a random sample of 1000 points per footprint with a minimum distance of 2 km between points to avoid spatial autocorrelation (Table 2). Each point was labeled as ‘farmland’ or ‘other’ based on visual interpretation of the Landsat images. Farmland was defined as areas used for crop production or as meadows and pastures...
in one of the images. This was carried out for three footprints (p184r026, p186r025, and p186r026). For the remaining two footprints (p185r025 and p185r026), we sampled 1000 random points per class (i.e., ‘farmland’ and ‘other’) from the overlap areas to adjacent footprints (Kornn et al., 2009). We then parameterized the SVM, derived farmland maps for each footprint, applied a 3 × 3 majority filter, and mosaicked all classifications into an area-wide map.

To map farmland abandonment, we selected 1000 random points within the farmland areas of each footprint and labeled these points as ‘permanent farmland’ or ‘abandoned farmland’ based on visual interpretation of multitemporal Landsat images as well as high-resolution Quickbird imagery from GoogleEarth (Fig. 1C) (Kuemmerle et al., 2008). Using spectrally rich Landsat imagery and high-resolution imagery in concert can provide reliable ground truth for land cover conversions (Cohen et al., 2010; Kuemmerle et al., 2009c). The Landsat images provide spectral information in the visible, near-, and mid-infrared domains, which is important for agricultural applications. Spectral signatures for farmland in use and fallow fields are known for the study region from extensive field visits (Kuemmerle et al., 2006, 2008, in press), allowing us to assess whether fields are fallow or in use for both time periods (1986–1989 and 2006–2008). We additionally checked ground truth points in recent, high-resolution Quickbird images available in GoogleEarth that provide additional insight into successional stages (e.g., presence of shrubs encroachment). To derive a representative sample of training points, we stratified our sample based on an existing land-cover map for three Landsat footprints (p184r026, p185r026, and p186r026; Kuemmerle et al., 2010, 2006). For the remaining footprints, we clustered the 2006–2008 images into broad land-cover classes using unsupervised classification for stratification. We defined abandoned farmland here as areas that we classified as ‘farmland’ in our first classification (i.e., farmland mask from 1986 to 1989) and that were categorized as ‘fallow’ in both of the 2006–2008 images. We derived abandonment maps for each footprint separately, applied a 3 × 3 majority filter, and mosaicked the resulting maps.

Classification accuracy was assessed using a 10-fold nested cross-validation. We divided our dataset randomly into training points (90%) and validation points (10%), classified a land cover map based on the training data, and calculated mean overall accuracy, Kappa, user’s, and producer’s accuracies based on the remaining validation points (Foody, 2002). This was repeated ten 10 times and we averaged all accuracy measures (Kuemmerle et al., 2009c, in press). Finally, we area-corrected these measures for a possible bias due to our stratified random sampling scheme (Card, 1982). The final map was classified using all ground truth points, meaning that our error estimates represent conservative estimates (Kuemmerle et al., 2009c). Abandonment rates were summarized by rayon (Fig. 1D), elevational zones (100-m bins), and slope zones (5% bins). We also assessed whether abandonment rates differed among the northern and the southern part of the study region (these regions are characterized by slightly different agriculture suitabilities as well as different socio-economic conditions), and we chose the border of the Zakarpatska oblast, which represents the highest ridge of the Carpathians and the main watershed divide, as a boundary.

Table 1
Landsat images and acquisition dates.

<table>
<thead>
<tr>
<th>Path/row</th>
<th>184/026</th>
<th>185/025</th>
<th>185/026</th>
<th>186/025</th>
<th>186/026</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1987-04-30<sup>a</sup></td>
<td>1986-10-11<sup>a</sup></td>
<td>1988-08-21<sup>b</sup></td>
<td>1987-10-05<sup>a</sup></td>
<td>1986-10-02<sup>a</sup></td>
</tr>
<tr>
<td>II</td>
<td>1989-07-08<sup>a</sup></td>
<td>1989-07-07<sup>b</sup></td>
<td>1988-10-16<sup>b</sup></td>
<td>1988-07-27<sup>a</sup></td>
<td>1988-07-27<sup>b</sup></td>
</tr>
<tr>
<td>III</td>
<td>2006-09-25<sup>a</sup></td>
<td>2006-10-18<sup>b</sup></td>
<td>2006-09-23<sup>a</sup></td>
<td>2006-09-07<sup>a</sup></td>
<td>2006-09-07<sup>b</sup></td>
</tr>
<tr>
<td>IV</td>
<td>2008-08-13<sup>b</sup></td>
<td>2007-07-17<sup>b</sup></td>
<td>2007-05-14<sup>a</sup></td>
<td>2007-07-24<sup>a</sup></td>
<td>2007-07-24<sup>b</sup></td>
</tr>
</tbody>
</table>

^a Landsat TM5.
^b Landsat TM4.

Table 2
Training samples and classification accuracies for the 1980s farmland classification (top) and the abandonment classification (bottom).

<table>
<thead>
<tr>
<th>Landsat scene</th>
<th>Contrib. to covered area</th>
<th>Nr. "Farmland points"</th>
<th>User’s accuracy (%)</th>
<th>Prod.’s accuracy (%)</th>
<th>Nr. "Non-farmland" points</th>
<th>User’s accuracy (%)</th>
<th>Prod.’s accuracy (%)</th>
<th>Overall accuracy (%)</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>184026</td>
<td>0.164</td>
<td>702</td>
<td>95.52</td>
<td>97.00</td>
<td>298</td>
<td>92.68</td>
<td>89.26</td>
<td>94.70</td>
<td>0.87</td>
</tr>
<tr>
<td>185025</td>
<td>0.275</td>
<td>998</td>
<td>94.96</td>
<td>96.29</td>
<td>1002</td>
<td>96.25</td>
<td>94.91</td>
<td>95.60</td>
<td>0.91</td>
</tr>
<tr>
<td>185026</td>
<td>0.232</td>
<td>992</td>
<td>93.22</td>
<td>95.56</td>
<td>1008</td>
<td>95.52</td>
<td>93.15</td>
<td>94.35</td>
<td>0.89</td>
</tr>
<tr>
<td>186025</td>
<td>0.174</td>
<td>623</td>
<td>92.92</td>
<td>96.95</td>
<td>369</td>
<td>94.44</td>
<td>87.53</td>
<td>93.45</td>
<td>0.86</td>
</tr>
<tr>
<td>186026</td>
<td>0.154</td>
<td>389</td>
<td>91.09</td>
<td>92.03</td>
<td>526</td>
<td>94.06</td>
<td>93.35</td>
<td>92.79</td>
<td>0.85</td>
</tr>
<tr>
<td>Total/Average</td>
<td>3704</td>
<td>93.54</td>
<td>95.57</td>
<td>3203</td>
<td>94.59</td>
<td>91.64</td>
<td>94.18</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Area weighted</td>
<td></td>
<td>93.69</td>
<td>95.69</td>
<td>94.84</td>
<td>92.05</td>
<td>94.35</td>
<td></td>
<td>0.88</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Landsat scene</th>
<th>Contrib. to covered area</th>
<th>Nr. "Abandonm. points"</th>
<th>User’s accuracy (%)</th>
<th>Prod.’s accuracy (%)</th>
<th>Nr. "Permanent abandonment" points</th>
<th>User’s accuracy (%)</th>
<th>Prod.’s accuracy (%)</th>
<th>Overall accuracy (%)</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>184026</td>
<td>0.164</td>
<td>446</td>
<td>87.18</td>
<td>91.48</td>
<td>552</td>
<td>92.83</td>
<td>89.13</td>
<td>90.18</td>
<td>0.80</td>
</tr>
<tr>
<td>185025</td>
<td>0.275</td>
<td>332</td>
<td>89.55</td>
<td>90.36</td>
<td>668</td>
<td>95.19</td>
<td>94.76</td>
<td>93.30</td>
<td>0.85</td>
</tr>
<tr>
<td>185026</td>
<td>0.232</td>
<td>280</td>
<td>90.29</td>
<td>94.74</td>
<td>711</td>
<td>94.74</td>
<td>96.20</td>
<td>93.50</td>
<td>0.84</td>
</tr>
<tr>
<td>186025</td>
<td>0.174</td>
<td>159</td>
<td>87.94</td>
<td>95.93</td>
<td>841</td>
<td>95.93</td>
<td>97.98</td>
<td>94.80</td>
<td>0.80</td>
</tr>
<tr>
<td>186026</td>
<td>0.154</td>
<td>201</td>
<td>93.48</td>
<td>85.57</td>
<td>798</td>
<td>96.44</td>
<td>98.49</td>
<td>95.89</td>
<td>0.87</td>
</tr>
<tr>
<td>Total/Average</td>
<td>1427</td>
<td>89.69</td>
<td>91.62</td>
<td>3570</td>
<td>95.03</td>
<td>95.31</td>
<td>93.50</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Area weighted</td>
<td></td>
<td>89.66</td>
<td>91.79</td>
<td></td>
<td>95.02</td>
<td>95.31</td>
<td></td>
<td>0.83</td>
<td></td>
</tr>
</tbody>
</table>
Explanatory variables and their hypothesized influence

Marginal farmland plots are often expected to be abandoned first (Baldock et al., 1996). To proxy marginality, we calculated median elevation and slope for each rayon, based on the Shuttle Radar Topography Mission (SRTM) digital elevation model. Soil quality was incorporated based on (1) the relative coverage of the five main soil types according to the FAO soil map (Fischer et al., 2007), and (2) the median agricultural suitability index, which ranges from 1 (very suitable) to 7 (unsuitable). This index combines five main soil types according to the FAO soil map (FAO-UNESCO, 2001). We also incorporated the number of cities (>5000 people), and villages for each rayon based on the digital topographic maps (Geodezkartinformatyka, 1997). We hypothesized a priori that abandonment rates were higher in regions of higher slopes, higher elevation, and poor soils (Ioffe et al., 2004; Müller et al., 2009).

Our second group of variables captured the accessibility of farmland. We proxied accessibility by calculating (1) km total length of 1st and 2nd order roads per rayon, (2) total length of railways per rayon, and (3) mean distance to major market centers (i.e., cities with a population between 100,000 and 500,000), based on roads, railways, and settlement layers from digital topographic maps (Geodezkartinformatyka, 1997). We hypothesized a priori that abandonment rates were higher in remote areas.

The third group of variables captured population change (Elbakidze and Angelstam, 2006) and off-farm income opportunities in cities (Dannenberg and Kuemmerle, 2010; Strijker, 2005). We acquired total population and relative rural/urban population for each rayon for the years 1989 and 2008, plus the change during this period from official census data (State Statistics Committee of Ukraine, 2001). We also incorporated the number of cities (>5000 people), and villages for each rayon based on the digital topographic maps. We hypothesized higher abandonment in areas with higher population declines, and more off-farm income opportunities.

Finally, we acquired variables proxying agricultural input intensity. First, we derived the number of tractors per rayon (for 2008). Higher numbers of tractors potentially reflect a higher market orientation, labor saving, and higher agricultural production. On the other hand, marginal plots, especially pastures, may not be suitable for mechanization. Thus, the effect of tractor numbers was a priori unclear (Müller et al., 2009). Second, we derived changes in farm employment between 1995 and 2008 that we hypothesized to be related to abandonment rates. Again, we considered the statistics for each year as well as changes therein. Third, we derived unemployment rates in 2000 and 2007, and changes in between. Higher unemployment could lead to increasing subsistence farming and thus limit abandonment rates or could result in migration of younger population segments, triggering labor scarcity and thus increased abandonment (Müller et al., 2009). The effect of this variable was therefore also unclear a priori.

For our statistical analysis, we selected rayons (districts) as our units of observation, because this represented the most detailed level for which most of our socio-economic and demographic predictors were available. Predictors on a finer scale, such as distance to market center or villages were aggregated at the rayon level using median values (distance) or total numbers (villages). We assessed collinearity by calculating Pearson correlation coefficients (r) for each variable pair. When r exceeded 0.7, we retained the variable that was more correlated with abandonment. This resulted in a final set of 18 predictors (Table 3).

Best-subsets regression and hierarchical partitioning

To analyze the relative importance of predictors, we used best subsets regression and hierarchical partitioning. Best-subsets regression performs an exhaustive search for the best linear models ranking all possible models based on goodness-of-fit measures (Miller, 2002). We used the adjusted R² as our measure of fit and limited the number of explanatory variables for different models to three, four, and five variables, respectively, to avoid over-fitting due to the moderate sample size (47 rayons). As a measure of variable importance, we summarized how often a variable was included in the 20 best models for each model group (Kuemmerle et al., 2009a; St-Louis et al., 2009).

Hierarchical partitioning (Mac Nally, 2002) quantifies the contribution of a variable to the fit of a multiple linear regression model by comparing the model including this variable to a model without it. This is carried out for each hierarchical level (i.e., model dimensionality), and the improvement in model fit is averaged

<table>
<thead>
<tr>
<th>Variable group</th>
<th>Variable name</th>
<th>Time period covered</th>
<th>Hypothesized influence</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental variables</td>
<td>Median elevation [m]</td>
<td>—</td>
<td>+</td>
<td>SRTM</td>
</tr>
<tr>
<td></td>
<td>Median slope [%]</td>
<td>—</td>
<td>+</td>
<td>SRTM</td>
</tr>
<tr>
<td></td>
<td>Gleysol content [%]</td>
<td>—</td>
<td>+</td>
<td>FAO</td>
</tr>
<tr>
<td></td>
<td>Podsol content [%]</td>
<td>—</td>
<td>+</td>
<td>FAO</td>
</tr>
<tr>
<td></td>
<td>Cambisol content [%]</td>
<td>—</td>
<td>+</td>
<td>FAO</td>
</tr>
<tr>
<td></td>
<td>Phaeozem content [%]</td>
<td>—</td>
<td>+</td>
<td>FAO</td>
</tr>
<tr>
<td></td>
<td>Regosol content [%]</td>
<td>—</td>
<td>+</td>
<td>FAO</td>
</tr>
<tr>
<td></td>
<td>Median agricultural suitability (1 = very suitable, 7 = unsuitable)</td>
<td>1989–2008</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>Accessibility variables</td>
<td>Total length of roads per rayon [km]</td>
<td>1989–2008</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Mean distance to market center [km]</td>
<td>1989–2008</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>Population variables</td>
<td>Population change [%]</td>
<td>1989–2008</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Urban population change [%]</td>
<td>1989–2008</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td># of towns per rayon</td>
<td>1989–2008</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td># of villages per rayon</td>
<td>1989–2008</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>Agricultural input intensity</td>
<td># of tractors on farm</td>
<td>2008</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Change of aver. # of employees per farm</td>
<td>1989–2007</td>
<td>—</td>
<td>+</td>
</tr>
</tbody>
</table>

a www.ukrcensus.gov.ua.
b Geodezkartinformatyka.
c State Statistics Committee of Ukraine 2008.

across all hierarchies, resulting in the independent contribution of this variable (Chevan and Sutherland, 1991; James and McCulloch, 1990). We calculated the average independent contribution of each explanatory variable in our twenty best models for each model group and used the adjusted r^2 values as goodness-of-fit measure.

Results

Patterns of post-socialist farmland abandonment in Western Ukraine

Farmland abandonment was widespread in our study region (Fig. 2). Of the 22,350 km² farmed at the end of socialist times (46% of the study region), about 30% were abandoned in 2006 (Fig. 2A and B, 6600 km²). Overall classification accuracy for the 1980s farmland was 94.4%, (Kappa 0.88), and for the abandonment map 93.5% (Kappa 0.83, Table 2).

Abandonment was widespread in the plains and in the Carpathian foothills, but less abandonment occurred at higher elevations. Abandonment rates were higher closer to the Polish-Ukrainian border and decreased eastwards (Fig. 2A and C). For example, the Peremyshtianski rayon in the north had an abandonment rate of >56%, whereas the Rakhivski rayon in the Carpathians had an abandonment rate of ~0.2%. On average, 24.44% of the socialist farmland was abandoned on the rayon level (standard deviation of 15.9%), with a median value of 20.69%.

Farmland abandonment rates also differed markedly by elevation and slope (Fig. 3, left column). Abandonment rates were highest between 200 m and 400 m (>35%), and lowest between 1100 m and 1200 m (<2%). Abandonment rates were also higher on gentle slopes and in flat terrain (Fig. 3, left column), and were substantially higher in the northern part of the study region (Fig. 3, right column).

Determinants of post-socialist farmland abandonment

The statistical analysis revealed that environmental and population variables were the best available predictors for explaining farmland abandonment patterns at the district level. Our regression models explained up to 76% of the variability in abandonment rates, and population change, slope, Cambisol content, and unemployment were the most important variables regarding the best-subsets regression and hierarchical partitioning.

Univariate correlations between abandonment rates and our predictor variables showed relatively strong linear relationships for Cambisol content ($R^2 = 0.36$), urban proportion change ($R^2 = 0.38$), number of villages ($R^2 = 0.33$), and elevation ($R^2 = 0.32$) (Fig. 4). Slope and elevation displayed clear negative relationships with
farmland abandonment. Abandonment rates also decreased with higher Cambisol content, whereas relationships of abandonment rates and the other soil variables were less clear. Besides those already listed, we found additional important relationships: we found higher abandonment rates in regions with decreasing population, in regions with the lowest increase in unemployment, and in regions with decreasing number of employees per farm. We furthermore found lower abandonment rates in regions with lower numbers of villages, in regions with increasing urban population, and in regions with higher total road length.

Average goodness-of-fit of our 60 best models (i.e., 20 models with three, four, and five predictors, respectively) was $R^2 = 0.69$.
The collapse of socialism resulted in widespread farmland abandonment in Western Ukraine, but abandonment rates varied considerably across our study region. What drives these spatial patterns and thus what mediates or amplifies the effects of the high-level causes of abandonment (such as disappearing subsidies and markets, land reforms or tenure insecurity) remains unclear for many regions. Here, we contribute to a better understanding of these drivers by quantifying what determines abandonment patterns in Western Ukraine. Our statistical models showed that soil type, topography, and rural population change explain the spatial heterogeneity of farmland abandonment best at the district level. The relative influence of these variables was sometimes surprising and opposite to what has been observed in Western Europe, suggesting that post-socialist farmland abandonment in Eastern Europe, specifically in Ukraine, followed different rules than so far known.

Our first hypothesis was that abandonment rates would be higher on more marginal sites. Soil type (especially the relative abundance of Cambisols), elevation, and slope were all powerful predictors of farmland abandonment rates at the district-level in our models. Cambisols are generally more suitable for farming than Podzols and Gleysols, and lower abandonment in areas dominated by Cambisols thus seems in line with our first hypothesis at first glance. However, the association with topography was opposite to our expectations, with lower abandonment rates at higher elevations and steeper slopes.

Three factors likely explain these opposite trends. First, the best soils (Cambisols) in our study area occur in the mountains and foothills (Kruhlov et al., 2008). Soils in the plains are often poor or waterlogged, especially in the floodplains of the rivers Dniester and Prut. Much of the abandoned arable land in the plains occurred in these floodplains (Fig. 2). Second, many mountain valleys in the Ukrainian Carpathians are densely populated. During post-socialism, agriculture there was not as heavily industrialized as in the plains, and traditional subsistence farming became again an important livelihood strategy in such remote regions (Hajda, 1998; Hoshko, 1983). Third, the recent eastward expansion of the European Union reduced border traffic and isolated the lowland close to Slovakia, where we found high abandonment rates (Fig. 2). The bottom line is though that topographic marginality was not a major determinant of abandonment in Western Ukraine.

Our second hypothesis was that there would be higher abandonment rates in less accessible areas. Contrary to our expectation, infrastructure density and distance to local markets were positively related to abandonment rates, although the importance of these variables was low. The low importance and the positive relation of these variables was surprising, because accessibility variables were important predictors in Romania (Müller et al., 2009), suggesting that drivers of post-socialist farmland abandonment patterns may differ regionally.

Our third hypothesis assumed higher abandonment in areas with declining populations and increasing urbanization. Population decline and changes in the proportion of urban population were important to explain the variability of abandonment in our models, and both were positively related to abandonment rates, which was in line with our expectations. Higher abandonment rates in districts with an increasing urban population proportion likely reflect outmigration from rural areas. Often, young population segments are the first to migrate in search for income opportunities and a different life style (Ioffe et al., 2004; Palang et al., 2006). Many villages now have a high proportion of empty households, and a reduced agricultural workforce may have contributed to high abandonment rates. The weak low importance of this predictor may be explained by commuters (i.e., individuals that continue to live in villages, but seek off-farm employment elsewhere) and remittances from family members working abroad, that often help sustain livelihoods in rural areas (Müller and Munroe, 2008).

Our fourth and final hypothesis assumed that abandonment rates were highest where the intensity of farming decreased most.
The relative importance of land-use intensity variables was overall low though, and the relationship with abandonment was contrary to our expectations. We found lower abandonment rates in areas of higher unemployment, potentially also due to the relatively high importance of traditional subsistence farming and off-farm revenues (e.g., remittances). Abandonment rates were high where mechanization (measured in tractor numbers) was high, indicating a higher market orientation and an abandonment of marginal land not suitable for mechanization (Müller et al., 2009). Overall, our results thus suggest a rejection of our fourth hypothesis.

The rejection of most of our hypotheses suggests that patterns and drivers of post-socialist farmland abandonment in Ukraine differed from those in Western Europe. For example, farmland abandonment in the Alps was higher at higher elevation and on steeper slopes (Gellrich et al., 2007), but we found the opposite pattern. Similarly, abandonment patterns in our study area were probably not mainly determined by crop productivity, and subsistence farming was important in our case, but plays only a minor role in Western Europe (ENRD, 2010). Differences in abandonment patterns between Europe's West and East may reflect fundamentally different underlying causes that triggered abandonment. In Western Europe abandonment appears to be mainly driven by gradual industrialization, market-orientation, and urbanization (MacDonald et al., 2000; Verburg et al., 2010). In contrast, abandonment in Eastern Europe was triggered by the collapse of socialism and the followed radical institutional reforms and economic shocks. Considering that the future of Eastern Europe's farmlands remains highly uncertain, with both, recultivation and a continuing rural exodus being plausible scenarios (DLG, 2005; Verburg et al., 2010), the relatively low importance of variables capturing the market-orientation of farming may indicate that abandonment in Eastern Europe could be considered as a temporal disturbance just as well as a permanent transition towards forest dominated landscapes. Additionally, the difference of the abandonment pattern in Western Ukraine compared to other Eastern European studies points out that even in regions that suffered from the same shock in surrounding conditions, more precisely the breakdown of socialism, a generalization across countries is hardly possible.

Our study shows the importance of large-area assessments of landscape change, which revealed in our case unexpected spatial pattern of farmland abandonment that differed from other studies in Western Europe. Our statistical analyses suggested that even across Eastern European countries farmland abandonment followed quite different rules, and considering such regional differences seems important when, for example, simulating future land-use patterns or assessing how post-socialist farmland abandonment will affect flows of ecosystem services or biodiversity of Eastern Europe's landscapes.

Acknowledgements

We would like to thank D. Müller for valuable comments at various stages of this study. Two anonymous reviewers are thanked for thoughtful and constructive comments that helped to improve this manuscript. We gratefully acknowledge support by the Alexander von Humboldt Foundation, the Land-Cover and Land-Use Change Program of the National Aeronautic Space Administration (NASA), and the Office for International Relations of Humboldt-University Berlin.

References

