Snow cover dynamics: an overlooked feature of winter bird occurrence and abundance

Download Ecography - 2022 - Keyser - Snow cover dynamics an overlooked yet important feature of winter bird occurrence and

Snow cover dynamics (i.e. depth, duration and variability) are dominant drivers of ecological processes during winter. For overwintering species, changes and gradients in snow cover may impact survival and population dynamics (e.g. facilitating survival via thermal refugia or limiting survival via reduced resource acquisition). However, snow cover dynamics are rarely used in species distribution modelling, especially for over-wintering birds. Currently, we lack understanding of how snow cover gradients affect overwintering bird distributions and which functional traits drive these associations at regional and continental scales. Using observations from eBird, a global community science network, we explored the effects of snow cover dynamics on continental pat-terns of occurrence and counts for 150 bird species. We quantified the relative impor-tance, species-specific responses and trait-based relationships of bird occurrence and abundance patterns to ecologically relevant snow cover dynamics across the United States. Snow cover dynamics were important environmental predictors in species dis-tributions models, ranking within the top three predictors for most species occurrence (> 90%) and count (> 79%) patterns across the contiguous United States. Species exhibited a gradient of responses to snow cover from snow association to snow avoid-ance, yet most birds were limited by long, persistent snow seasons. Duration of winter and percent frozen ground without snow structured species distributions in the east-ern USA, whereas snow cover variability was a stronger driver in the western USA. Birds associated with long, persistent snow seasons had traits associated with greater dispersal capacity and dietary diversity, whereas birds inhabiting regions with variable snow cover were generally habitat generalists. Our results suggest that various snow cover dynamics are important ecological filters of species distributions during winter. Global climate change is rapidly degrading key characteristics of seasonal snow cover. A changing cryosphere may elicit variable distributional changes for many overwinter-ing birds, potentially accelerating range shifts and novel community assemblages.