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A B S T R A C T

Agricultural land abandonment is a common land-use change, making the accurate mapping of both location and
timing when agricultural land abandonment occurred important to understand its environmental and social
outcomes. However, it is challenging to distinguish agricultural abandonment from transitional classes such as
fallow land at high spatial resolutions due to the complexity of change process. To date, no robust approach
exists to detect when agricultural land abandonment occurred based on 30-m Landsat images. Our goal here was
to develop a new approach to detect the extent and the exact timing of agricultural land abandonment using
spatial and temporal segments derived from Landsat time series. We tested our approach for one Landsat
footprint in the Caucasus, covering parts of Russia and Georgia, where agricultural land abandonment is
widespread. First, we generated agricultural land image objects from multi-date Landsat imagery using a multi-
resolution segmentation approach. Second, we estimated the probability for each object that agricultural land
was used each year based on Landsat temporal-spectral metrics and a random forest model. Third, we applied
temporal segmentation of the resulting agricultural land probability time series to identify change classes and
detect when abandonment occurred. We found that our approach was able to accurately separate agricultural
abandonment from active agricultural lands, fallow land, and re-cultivation. Our spatial and temporal seg-
mentation approach captured the changes at the object level well (overall mapping accuracy= 97 ± 1%), and
performed substantially better than pixel-level change detection (overall accuracy= 82 ± 3%). We found
strong spatial and temporal variations in agricultural land abandonment rates in our study area, likely a con-
sequence of regional wars after the collapse of the Soviet Union. In summary, the combination of spatial and
temporal segmentation approaches of time-series is a robust method to track agricultural land abandonment and
may be relevant for other land-use changes as well.

1. Introduction

Land-use and land-cover change is one of the main drivers of global
change (Lambin and Geist, 2006). Growing food demand has triggered
rapid agricultural expansion and the loss of forest, grassland and wet-
land (Meyer and Turner, 1992; Ramankutty and Foley, 1999). How-
ever, agricultural land abandonment also is a common land-use change
process in many parts of the world as a result of trade, socio-economic
shocks, institutional structures and land-use policies (Gellrich et al.,
2007; Haddaway et al., 2014; Meyfroidt et al., 2016; Müller et al.,
2009).

Agricultural land abandonment has manifold effects on both human
society and ecosystems. Abandonment can have negative effects on
food security and local livelihoods (Khanal and Watanabe, 2006; Knoke
et al., 2013), may threaten farmland biodiversity (Beilin et al., 2014;
Obrist et al., 2011), and the persistence of cultural landscapes (Van
Eetvelde and Antrop, 2004). Yet, agricultural land abandonment is also
an opportunity for ecological restoration (Haddaway et al., 2014;
Plieninger et al., 2014), forest regeneration on abandoned fields en-
hances carbon sequestration (Kuemmerle et al., 2011; Schierhorn et al.,
2013) and it benefits woodland birds and large mammal populations
(Blondel et al., 2010; Sieber et al., 2015). Many of these effects vary
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depending on the time since abandonment. For example, below-ground
carbon sequestration is five times larger in the first 20 years after
abandonment than thereafter, whereas above-ground sequestration in-
creases dramatically after 5-10 years of abandonment in the temperate
region (Goulden et al., 2011; Kurganova et al., 2014; Schierhorn et al.,
2013). To better understand and evaluate the diverse social and eco-
logical consequences of abandonment, it is, therefore, necessary to as-
sess the exact timing of agricultural land abandonment.

Although monitoring agricultural land abandonment is a priority for
many national agricultural monitoring programs (Keenleyside and
Tucker, 2010; Renwick et al., 2013), consistent maps of abandoned
agricultural lands, and robust approaches for generating such maps
from satellite data, are lacking. Agricultural land abandonment is de-
fined as agricultural land that has not been used for a minimum of two
to five years (FAO, 2016; Pointereau et al., 2008). It is necessary to
distinguish long-term fallow (abandoned) from temporal fallow fields,
which are a part of the crop rotation cycle. It might be particularly
important in multi-year crop rotation systems, where the crop rotation
includes prolonged fallow periods (Loboda et al., 2017). Moreover, the
trajectory of abandonment is often not uniform over time (Kraemer
et al., 2015). Temporal re-cultivation may occur a few years after an
agricultural field was abandoned if land-use policies or other socio-
economic settings such as the fluctuation of wheat prices changed
(Meyfroidt et al., 2016; Smaliychuk et al., 2016). All this contributes to
difficulties in accurately monitoring agricultural land abandonment
with Earth Observation products.

The freely accessible Landsat archive provides great opportunity to
map agricultural dynamics due to the availability of imagery dating
back to the 1970s (Loveland and Dwyer, 2012; Wulder et al., 2012).
The medium resolution of Landsat imagery makes it suitable to monitor
changes in agriculture fields (Duveiller and Defourny, 2010; Ozdogan
and Woodcock, 2006). Previously, Landsat imagery has been used to
monitor agriculture expansion (Carlson et al., 2012; Gibbs et al., 2010)
and intensification (Kuemmerle et al., 2013; Lasanta and Vicente-
Serrano, 2012), estimate yields (Lobell et al., 2015; Rudorff and Batista,
1991), identify crop types (Schultz et al., 2015; Zheng et al., 2015) and
delineate field boundaries (Evans et al., 2002; Yan and Roy, 2014).
However, the use of Landsat time series for agricultural monitoring is
still under development, even though the value of time series has been
highlighted in coarser-scale MODIS based mapping of agriculture and
abandonment (Alcantara et al., 2012; Estel et al., 2015).

Landsat image time series are increasingly used to monitor land-use
and land cover change on an annual basis and many trajectory-based
approaches have emerged (Huang et al., 2010; Kennedy et al., 2010;
Verbesselt et al., 2010; Zhu and Woodcock, 2014). Trajectory-based
approaches make full use of image time series to identify the break-
points and temporal segments that represent land cover change, for
example, for forest monitoring (DeVries et al., 2015; Grogan et al.,
2015). However, it is not clear how well these methods are suited to
map land use change processes, such as agricultural land abandonment
at Landsat scale.

The analysis of time series imagery has focused on pixel-level al-
gorithms. The drawback of pixel-based approaches is that they can
generate noisy outputs, because spectral reflectance at single-pixel level
is more prone to problems related to misregistration or errors in the
cloud and shadow screening (Blaschke and Strobl, 2015; Yu et al.,
2016). Furthermore, agricultural land abandonment is typically a
management decision at the field level, and it is best to combine spatial,
spectral and temporal information to produce annual cropland maps
from the full Landsat archive (Schmidt et al. 2016). Mapping agri-
cultural land abandonment at object-level, such as agricultural plots,
could thus take advantages of spatial dependencies and reduce mapping
uncertainties at the pixel-level. However, spatial segmentation used for
change detection is typically based on only a pair of imagery before and
after the change (Desclée et al., 2006; Duveiller et al., 2008), and the
temporal information that is inherent in the full-time series has not

been fully utilized. It may be beneficial to incorporate both spatial and
temporal segmentation to understand the dynamics of land-use systems,
such as agricultural abandonment (Dutrieux et al., 2016; Gómez et al.,
2011).

Our overall goal was to develop and test a new methodology that
captures agricultural land abandonment by combining a spatial and
temporal segmentation. Our objectives were to separate agricultural
land abandonment from active agriculture, temporary fallow and re-
cently re-cultivated abandoned land, and to identify the timing of
changes using long-term remote sensing time-series Landsat imagery.
Using FAO's (2016) definition, we considered agricultural land aban-
donment as agricultural land that has not been used for at least five
years. Abandoned land that was re-used for more than four years was
defined as re-cultivated. Our manuscript is organized as follows. First,
we introduce our study area, followed by our tests to how to segment
multi-date Landsat imagery spatially. Next, we describe our maps of
agricultural land abandonment at both object- and pixel- level from
agricultural land probability time series using a temporal segmentation
approach (LandTrendr, Kennedy et al., 2010) and compare their map-
ping accuracies. Last, we discuss our findings and their implications for
future research and land management.

2. Study area

We mapped agricultural land abandonment for one Landsat foot-
print path 170/row 030, World Reference System (WRS)-2 (Fig. 1).
Landsat 170/030 covers parts of Georgia and the North Caucasian
Federal District of Russia including the Chechen Republic, the Republic
of Ingushetia, the Republic of North Ossetia-Alania, the Republic of
Kabardino-Balkaria, Stavropolskij Kraj.

The two most common soils, Chernozems and Gleysols, and parti-
cularly Chernozems in the study site are well-suited for crop produc-
tion. Precipitation ranges from 347mm in the lowlands to 1677mm in
the mountains (Afonin et al., 2008). The accumulated heat beneficial to
plant growth over 5 °C varies from zero GDD (growing degree days) in
the mountains to 4,038 GDD in the lowlands (Afonin et al., 2008).
Winter crops dominate crop production, primarily winter wheat in the
southern foothills of the Caucasus Mountains. Livestock production,
dairy farming, pork and poultry production are also common
(ROSSTAT, 2016).

After the breakup of the Soviet Union in 1991, agricultural land in
Russia was privatized and redistributed in land shares among former
employees of state and collective farms (Lerman et al., 2004). In the
north Caucasus republics (Chechnya, Dagestan, Ingushetia, Kabardino-
Balkaria, and North Ossetia), however, land privatization of former
collective and state farms was not allowed (Uzun et al., 2014), and the
Soviet farm structure (average farm size > 100 ha) was largely re-
tained (Hartvigsen, 2014; Uzun et al., 2014). Several armed conflicts
occurred in the region and shaped land use (O'Loughlin and Witmer,
2011). According to official statistics, there was widespread agricultural
land abandonment in the study area. In our study site, sown areas de-
clined by 17% from 1990 to 2010 compared to the 1990 level and li-
vestock declined by 40% (ROSSTAT, 2016), which indicates consider-
able cropland and managed grassland abandonment (Ioffe et al., 2004).

3. Data and methods

We mapped agricultural land abandonment using Landsat imagery
from 1985 to 2015 using both spatial and temporal segmentation
(Fig. 2). First, we applied multi-resolution spatial segmentation in
eCognition™ (Baatz and Schäpe, 2000) to create spatially homogenous
objects based on multi-date cloud-free Landsat imagery (Section 3.2).
Second, we estimated the agricultural land probability for each object
by summarizing per-pixel probability estimated from a random forest
model based on annual Landsat spectral-temporal metrics (Section
3.3.1). Third, we applied a temporal segmentation algorithm,
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LandTrendr (Kennedy et al., 2010), on the agricultural land probability
time series to create temporal segments at the object-level (Section
3.3.2). We classified agricultural land abandonment, stable agricultural
land, fallow and re-cultivation based on the temporal segments, and
identified the first and the last year of the change. Fourth, we validated
our agricultural land abandonment map using a disproportional sam-
pling approach (Section 3.3.3) and compared it with a conventional
pixel-level mapping approach (Section 3.4). Fifth, we estimated the
total area of agricultural land abandonment using error-adjusted stra-
tified estimation as described in Olofsson et al. (2014).

3.1. Landsat pre-processing

We downloaded all the available geo-rectified L1T Landsat imagery
less than 70% cloud cover for the study area. For the years with few L1T
imagery, we added three L1G images acquired between April and
October with less than 10% cloud cover. In total, we obtained 236 and
65 images from the United States Geological Survey (USGS) and the
European Space Agency (ESA), respectively (Fig. 1, Fig. S1).

To ensure consistency among different sensors and dates, we per-
formed atmospheric correction and radiometric calibration using the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
for each USGS and ESA Landsat image (Masek et al., 2006).

Additionally, we applied FMASK to mask cloud, cloud shadows and
snow for each image (Zhu and Woodcock, 2012). We co-registered all
the L1G archives to the L1T images using automated tie point matching
with less than half a pixel (15m) in positional error (Exelis Visual
Information Solutions, 2014).

3.2. Agricultural land object generation

We stacked cloud-free L1T imagery acquired on 31 August 1989, 17
September 1998, 21 May 2007 and 30 July 2015 as input layers for the
spatial segmentation because multi-temporal data create temporally
homogenous objects (Desclée et al., 2006; Dutrieux et al., 2016).

We used a bottom-up multi-resolution segmentation algorithm in
eCognition™ (Baatz and Schäpe, 2000). This approach initiates each
pixel as a single segment and merges spatially adjacent segments based
on their similarity until the desired scale is met. Scale is a ‘window of
perception’ and determined by the spatial resolution of the satellite
imagery and the size of the objects of interest (Marceau, 1999). Spe-
cifically, the scale parameter defines the maximum standard deviation
of heterogeneity used for image segmentation (Benz et al., 2004). A
higher scale value allows more tolerance of heterogeneity within one
object and results in larger image objects (Fig. S2). The merging deci-
sion is based on local homogeneity criteria which describes the

Fig. 1. Location of the study area and the numbers of the Landsat imagery used for the agricultural land abandonment mapping. The Landsat footprint (path/row 170/030) is outlined in
red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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similarity (e.g. Euclidean distance) of adjacent objects. Two homo-
geneity criteria, spectral and shape homogeneity are used in eCogni-
tion™. The spectral criterion is more important for generating better
segmentation (Yu et al., 2016). However, a certain degree of shape
homogeneity often improves the quality of object extraction because it
ensures the compactness of spatial objects (eCognition, 2011). We as-
signed equal weight to each band and used weights for color and shape
of 0.8 and 0.2, respectively (Pu et al., 2011; Yu et al., 2016).

Applying single-scale parameter to different types of land-cover that
vary in size often consolidates small neighboring objects into larger
ones (under-segmentation), or partitions single large objects into
smaller sub-objects (over-segmentation) (Evans et al., 2002). The con-
ventional evaluation approach requires to check for either visually, and
test different parameters iteratively, which is time-consuming and
subjective (Vieira et al., 2012). Spatial variance and autocorrelation
provide alternative means to assess segmentation quality because op-
timal segmentation should minimize intra-segment variance while
maximizing inter-segment difference (Espindola et al., 2006; Johnson
and Xie, 2011). We parameterized the segmentation model following
Johnson & Xie (2011). First, we generated multiple segmentations using
different scale parameters. Second, we calculated area-weighted local
variance (ALV) and Global Moran's I (MI) of layers for each segmen-
tation. Because we were only interested in the accuracy of agricultural
land segmentation, ALV (Eq. (1)) and MI (Eqs. (2) and (3)) were only
calculated for the agricultural land, which was mapped from multi-
temporal image stack and a random forest classifier (Section 3.3.1).
Third, we calculated the value Global Score (GS) (Eq. (4)), which
combines intra-segment variance and inter-segment autocorrelation.
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where Ik is Global Moran’s I for the input layer k, wi, j is equal to spatial
weight between object i and j with values of 0 (non-adjacent) and 1
(adjacent), si and s are aggregate spectral reflectance of the object i and
the whole layer.

= +GS ALV Inorm norm (4)

where ALVnorm and Inorm stand for normalized area-weighted local
variance (ALV) and Global Moran's I (I), respectively.

We identified optimal image segmentation scale as the one with the
lowest value of Global Score.

3.3. Agricultural land abandonment mapping

3.3.1. Agricultural land probability estimate
We used spectral-temporal metrics derived from Landsat imagery as

input variables to estimate the per-pixel agricultural land-cover prob-
ability for each year (Yin et al., 2017). Agricultural land included
managed cropland and managed grasslands, i.e., pastures and hay
fields. To reduce classification error due to data scarcity, we in-
cluded±1 year imagery around the target years, which allowed us to
calculate spectral-temporal metrics for each year except 2003 because
there were too few clear observations (Fig. S1). We calculated five
metrics for each reflectance band: the mean, median, standard devia-
tion, 25th percentile, and 75th percentile for each year.

We analyzed both Landsat imagery and high-resolution images from
Google Earth to collect training samples. First, we selected Landsat
pixel-size samples. Second, these samples were labeled as active and
non-active agriculture fields using high-resolution imagery available
via Google Earth™ mapping platform (Fig. S3). Third, we visually ex-
amined and updated the label of each training sample for each year. We
excluded samples that were not active agricultural land based on our
visual interpretation of Landsat and ASTER imagery. Active agriculture
is typically tilled, which means, there is a clear soil signal, and a drop of
NDVI during the growing season. Furthermore, active agriculture land
has a smoother spatial texture and homogenous vegetation growth
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Fig. 2. Flowchart of spatial and temporal segmentation.
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within a field (Fig. S4). We analyzed approximately 3000 Landsat pixel-
size training samples, of which 1500 were active agriculture land.

We estimated pixel-wise probabilities for both active agricultural
and non-agricultural land using the random forest model implemented
in the statistical software CRAN R (R Core Team, 2016) for each year
from 1985 to 2015. The number of variables randomly sampled as
candidates at each split (mtry) was set to the square root of the number
of input variables, and the minimum size of the terminal nodes was set
to 10. Per-pixel class probability was estimated based on the percentage
of tree votes for a given class. Per-pixel agricultural land probability
was aggregated by object using the median value.

To examine the robustness of the random forest model, we calcu-
lated the F1 score for agricultural land using the out-of-bag (OOB) error
provided in the random forest model. For each random forest models
during 1985 and 2015, we increased the number of the tress from 1 to
1000 at a step of 1. The F1 score was calculated as F1= 2×UA×PA /
(UA+PA), where UA and PA stand for user’s and producer’s accuracy
derived from the out-of-bag (OOB) error in random forest model, re-
spectively. The result showed that the F1 score was higher than 90%
using a tree number of 1000 for every year from1985 to 2015 (Fig. S5).
We, therefore, used a tree number of 1000 to train the random forest
model for each year.

We generated an agricultural land mask for our study area using
annual agricultural land probability from 1985 to1989. First, we con-
verted the continuous agricultural probabilities to discrete land-cover
classes. We labeled objects as agricultural lands when the agricultural
land probability was larger than non-agricultural land probability.
Second, we summarized the frequency of agricultural land between
1985 and 1989. Third, we mapped objects as agricultural land when
objects were considered as an agricultural area in more than three of
the five years between 1985 and 1989.

3.3.2. Temporal segmentation and agricultural land abandonment labeling
We used a temporal segmentation approach LandTrendr to detect

changes in each object class probability over time (Fig. 3). LandTrendr
decomposes annual Landsat time series into different segments to
capture both long-term gradual and short-term drastic changes. The
core curve fitting function used in LandTrendr is MPFIT, which is an
implementation of the Levenberg-Marquardt algorithm (Markwardt,
2009). The MPFIT is used to solve non-linear least squares problems
and is an efficient and robust optimizer for a variety of fitting functions

(Kennedy et al., 2007; Vrieling et al., 2017).
We used several metrics to describe temporal segments in the time

series of agriculture land probability, including the start and end time
and segment duration (in years). Because of the Landsat data gap in the
early 1990s, we ran LandTrendr on agriculture land probability from
1998 to 2015.

Based on the fitted agriculture land probability time series, we
distinguished agricultural land abandonment, re-cultivation, and fallow
from stable agricultural land (Fig. 3). First, we labeled those pixels as
abandoned that changed from active agricultural land (agricultural
probability value≥ 0.5) to non-active agricultural land (agricultural
probability value < 0.5) and for which the duration of the non-active
period was longer than five years. The timing of agricultural land
abandonment was recorded correspondingly. We calculated agri-
cultural land abandonment follows:

≥ < > + <LA = 1 if v v d v m( 0.5)&( 0.5)&( 5)&[( ) 0.5]1 2 2 (5)

where LA is agricultural land abandonment, v1 and v2 are pre-change-
vertex and post-change-vertex values for focal segment, respectively, d
is the post-change-segment duration and m is the post-change-segment
magnitude.

If the agricultural land was not active from 1998 to 2003, we con-
sidered the corresponding object as agricultural land abandonment
before or in 1998 (hereafter 1998). Second, we labeled agricultural land
abandonment objects that were converted to active agricultural land
and remained active for more than four years as re-cultivation. Third,
agricultural land that stayed inactive for less than five years was
mapped as fallow land. Last, agriculture objects which were never la-
beled as abandoned, re-cultivation, or fallow were mapped as stable
agricultural land.

3.3.3. Validation of agricultural land abandonment map
We calculated confusion matrices and producer's, user's, and overall

accuracies to address the accuracy of the agricultural land abandon-
ment map, accounting for possible sampling bias (Card, 1982). To avoid
problems with small sample sizes for rare thematic classes such as
agricultural land abandonment, we used disproportionate stratified
sampling at the pixel level for validation (Olofsson et al., 2014;
Stehman et al., 2003). We randomly selected 150 Landsat pixels within
the stable agricultural land and non-agricultural land classes, and
75 pixels within each change class as reference samples following
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Congalton and Green (2009). The actual land cover change was as-
sessed based on visual interpretation of the remote sensing time series
(Cohen et al., 2010; Estel et al., 2015). Each sample was labeled without
knowledge of the mapped class label using the Landsat time series from
1985 to 2015 and 56 L1T ASTER imagery acquired from 2001 to 2015.
To avoid misinterpretation due to intra-annual variability of crop
growth, we selected cloud-free imagery acquired in spring (May–June),
summer (July–August) and autumn (September–October) for inter-
pretation. High-resolution imagery from Google Earth and Bing Aerial
maps aided our visual interpretation. In addition, we examined tem-
poral profiles of the MODIS NDVI time series (MOD13Q1) to support
labeling samples with data gaps in ASTER, Landsat, Google Earth and
Bing Aerial images. We used the time series visual interpretation tool
HUB TimeSeriesViewer (Jakimow et al., 2017) for this task.

3.4. Pixel-level agricultural land abandonment mapping and comparison

We compared the object-based with the pixel-based agricultural
land abandonment map. In addition to creating temporal segments at
the object-level, we ran LandTrendr on agriculture probability time
series per-pixel and labeled agricultural land abandonment, re-culti-
vation, fallow and stable agricultural land following the same labeling
approach as described in the Section 3.3.2.

We estimated mapping accuracy of pixel-based agricultural land
abandonment map using the same validation samples generated from
the object-based map (Section 3.3.3). Because the strata (i.e. map class)
of the object-based abandonment map were different from the pixel-
based abandonment map, the inclusion probability of validation sam-
ples needed to be taken into account to derive unbiased estimators
(Stehman, 2014). We calculated the inclusion probability-adjusted
overall, producer's and user's accuracy for the pixel-based agricultural
land abandonment map and compared them with estimators derived
from the object-based map.

For stratum i, the agreement between map class ( ̂ei) and reference
class (ei) was defined as yi.
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Overall accuracy (OA) was calculated as the sample mean of
agreement (yh) between the map class (pixel-based agricultural land
abandonment map) and the reference class weighted by the inclusion
probability (ωh) in each stratum h (object-based agricultural land
abandonment map):
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where the inclusion probability ωh was calculated as the area pro-
portion of stratum h. User’s accuracy (UA) and producer's accuracy (PA)
for a map class c (e.g. agricultural land abandonment, stable cropland)
were calculated as:
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where Nh is the population size for stratum h, yh is the sample mean
of agreement between map class (pixel-based agricultural land aban-
donment map) and reference class in each stratum h for map class. xh
and zh were calculated as the sample proportion of map class c and
reference class c in each stratum h, respectively.

4. Results

4.1. Spatial segmentation

Our spatial segmentation captured the boundaries of fields well, but
both intra- and inter-segment variances changed considerably when we
changed the scale parameters (Fig. 4). Area-weighted local variance
within segments gradually increased as the segmentation scale para-
meter increased, but the inter-segment variance (global Moran's I)
drastically decreased. There was no substantial difference in Moran’s I
autocorrelation when scale parameters were>70. To avoid including
different land-use trajectories into the same object, we used a scale of
50 to obtain actual field size and create homogenous agricultural land
objects.

Visual inspection of our resulting multi-resolution segmentation
confirmed that image objects captured patterns on the ground well,
both in the parts of the study area where fields were large and homo-
genous (Fig. 5B) and where they were more fragmented resulting in
heterogeneous agricultural landscapes (Fig. 5A,C). Regardless of field
size, shape, and orientation, the agriculture land objects matched well
with actual field boundaries, although some big fields were subdivided
into a few smaller objects (Fig. 5B).

4.2. Agricultural land abandonment mapping

We found strong cross-boundary differences in agricultural land
abandonment in our study site (Fig. 6). Chechnya and Ingushetia had
much higher agricultural land abandonment rates (24.6% and 21.0%,
respectively) than the other three administrative regions. In Chechnya,
marginal lands especially areas close to the Caucasus Mountains were
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more likely to be abandoned. Stavropolskij Kraj and Kabardino-Balkaria
had the least agricultural land abandonment (1.4% and 3.4%). Regions
with higher agricultural land abandonment rates also had lower re-
cultivation rates (10.3% and 39.4% in Ingushetia and Stavropolskij Kraj
respectively).

4.2.1. Agricultural land abandonment mapping accuracy
Our spatial and temporal segmentation and subsequent classifica-

tion resulted in an accurate map of abandonment. The overall mapping
accuracy of our agricultural land abandonment map was 97 ± 1%,
albeit with variations in accuracy among classes. Stable classes, such as
stable agricultural land and non-agricultural land, had producer's and
user's accuracies ranging from 95% to 99% (Fig. 7). Agricultural land
abandonment classes, however, showed a somewhat lower mapping
accuracy with an average producer's and user's accuracy of 69% and
66%, respectively. Compared to agricultural land abandonment classes,
re-cultivation generally had a lower mapping accuracy.

Confusions between different abandonment classes, i.e., false as-
signment of the year when abandonment occurred, was the main reason
for the lower mapping accuracy for the agricultural land abandonment
classes (Table 1). Relaxing the precision of timing of agricultural land
abandonment resulted in higher mapping accuracies of change classes,
e.g., producer’s and user's accuracies increased by 10–40 percentage
points when±2 year mapping precision was deemed sufficient (Fig.
S6).

4.2.2. Pixel-based mapping and comparison
The spatial pattern of agricultural land abandonment maps illu-

strated the advantages of using objects as mapping units (Fig. 6).
Comparing the pixel-based and object-based maps showed more small,

isolated land-cover-change patches and a large variation within fields
for the pixel-based approach. On marginal areas that were far from core
agricultural lands, the pixel-based map confused agricultural land
abandonment with non-agriculture land (Fig. 6, subsets 1, 2). Similarly,
in heterogeneous landscapes, such as areas close to settlements, the
pixel-based approach classified mixed vegetation and impervious pixels
as agricultural land abandonment or stable agriculture land (Fig. 6,
subset 3).

Mapping accuracies were consistently lower for the pixel-based
classes compared to the object-based map (Fig. 7). The overall accuracy
of the pixel-based map was 82 ± 3%, but this was largely due to the
stable classes, which cover about 80% of the study region. The average
producer's and user's mapping accuracies of the agricultural land
abandonment map classes in the pixel-based map were only 18% and
10%, respectively. Compared to the object-based agricultural land
abandonment map, there was much higher confusion between agri-
cultural land abandonment and stable agricultural land (Table 2).

5. Discussion

Agricultural land abandonment is difficult to detect because agri-
cultural land abandonment is a heterogeneous land use change process
and it can result in a range of post-abandonment land cover types.
However, accurate information about the timing and extent of agri-
cultural land abandonment is crucial, for instance, to investigate the
drivers of agricultural land abandonment, to estimate carbon seques-
tration, and to see the economic and environmental costs of potential
re-cultivation. In Russia, the latter is particularly important given the
rising interest of the Russian Government in re-cultivation of some
abandoned lands, and elsewhere, given EU policy programs to maintain

Fig. 5. Agricultural land objects overlaid on one Landsat image (31 Aug 1989 shown as RGB=NIR, SWIR 1, Red) for the majority of the study area, and for three subsets.
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farming on socio-economically and agro-environmentally marginal
lands (Shagaida et al., 2017). We were able to map the spatial and
temporal patterns of agricultural abandonment accurately by com-
bining spatial and temporal segmentation of a time series of Landsat
data. Our results showed that spatial and temporal segmentation could
improve the mapping of agricultural land abandonment and accurately
capture both the extent and the year of agricultural land abandonment
based on 30-m Landsat imagery.

5.1. Spatial segmentation

Spatial segmentation based on textural features and neighborhood
information that is inherent in temporal stacks of Landsat imagery al-
lowed us to create spatial objects that served as a suitable unit for
agriculture change monitoring. Compared to pixel-based mapping,
agricultural land change detection at object-level achieved substantially
higher overall mapping accuracy (overall accuracy: 97 ± 1% vs.
82 ± 3%) and much higher detection probability of agricultural land
abandonment (Fig. 7). We see the main advantages of the object-based
detection of agricultural land abandonment as follow: 1) by averaging
out of the heterogeneity within agricultural fields we created maps of
fields, which are the units at which management decisions are made
(Fig. 6, subset 1), 2) by removing the “salt and pepper effect” due to
individual pixels or small patches we avoided misclassification of
agricultural land abandonment in non-agricultural areas (Fig. 6, subset

2), and 3) spatial segmentation reduced confusions in a heterogeneous
environment such as urban areas, where mixed pixels are prevalent
(Fig. 6, subset 3).

We used a multi-resolution segmentation approach to generate
agriculture objects, and we achieved reliable results (Figs. 4,5). To
identify the optimal spatial segmentation, we used the Global Score
calculated from the area-weighted local variance and Global Moran's I
accounting for the intra-segment variance and inter-segment difference.
The overall performance was strong, but in some cases large fields were
split into smaller ones. The reason was that boundaries of an agri-
cultural landscape were relatively stable while the cropping pattern
within fields changed (Blaschke and Strobl, 2015). We were not con-
cerned about this though, because our goal was not to extract field
boundaries (as in Yan and Roy 2016). Instead, our focus was to group
pixels that have similar spatiotemporal characters (Dutrieux et al.,
2016). If the goal were to identify actual agricultural fields and asso-
ciated changes, further refinement would be necessary to reduce under-
and over-segmentation (Johnson and Xie, 2011).

5.2. Temporal segmentation

One of the great advantages of Landsat data is that the availability
of consistent data for over three decades, which allowed us to analyze a
time series and apply temporal segmentation to map agricultural land
abandonment. Temporal segmentation, such as entailed in LandTrendr,

Fig. 6. Object-level (A) and pixel-level (B) agricultural land abandonment map with three subsets and related Landsat imagery (RGB: NIR, SWIR 1, Red). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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can greatly improve forest change monitoring. Here, we applied
LandTrendr to monitor agriculture change. We successfully separated
agricultural land abandonment from other agricultural land use change
such as fallow and re-cultivation. Compared to multi-date agricultural
land abandonment mapping based on few time-steps (Kraemer et al.,
2015; Kuemmerle et al., 2008; Prishchepov et al., 2012), the Landsat
time series allowed us to map both gradual changes and abrupt de-
viations in land-cover. Being able to do so is particularly important
when monitoring land-use classes with high inter-annual and intra-
annual variability such as agriculture. Furthermore, the temporal seg-
mentation allowed us to label the timing of agricultural land aban-
donment well, which is important when assessing the ecological con-
sequence of abandonment (Deng et al., 2013; Navarro and Pereira,
2015) and designing land use policies (Renwick et al., 2013; Swinnen
et al., 2017).

Although we achieved a relatively high mapping accuracy, there
were still a few uncertainties. Mapping accuracy increased substantially
when temporal mapping precision was relaxed to± 2 years (Fig. S6),
indicating class confusion regarding the timing of abandonment.
Confusion often exists between change classes in neighboring years
when a trajectory-based approach for mapping changes at annual in-
tervals is used (Grogan et al., 2015; Kennedy et al., 2012).

The spectral and phenological similarity between agricultural land
and other herbaceous classes was another error source. Compared to
forest and non-forest land, which have distinctive spectral reflectances,
the spectral boundary between agriculture, especially low-intensive
agricultural lands, and natural herbaceous classes, is less distinct (Xian
et al., 2009). The data paucity and irregular temporal coverage of
Landsat imagery further added difficulties in separating active and non-
active agriculture lands for some areas. With the availability of Landsat
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Table 1
Error matrix of our object-based land abandonment map (area proportion in percent). Years refer to the year when abandonment first occurred. SA: stable agricultural land, NL: non-
agriculture land, FL: fallow, RC: re-cultivation.

Reference

SA NL 1998 1999 2000 2001 2002 2004 2005 2006 2007 2008 2009 2010 2011 FL RC

SA 16.171 0.792
NL 0.490 73.016
1998 0.140 1.872 0.028 0.028 0.028
1999 0.018 0.111 0.222 0.043 0.012 0.006 0.012 0.006 0.018 0.012
2000 0.002 0.014 0.011 0.073 0.008 0.003 0.002 0.002 0.003 0.002
2001 0.002 0.009 0.003 0.003 0.037 0.008 0.002 0.001 0.001 0.001
2002 0.006 0.018 0.006 0.009 0.133 0.018 0.009 0.003 0.003 0.003 0.012 0.006
2004 0.001 0.002 0.005 0.001 0.060 0.009 0.004 0.004 0.001 0.001 0.002 0.002
2005 0.000 0.008 0.002 0.002 0.006 0.103 0.019 0.002 0.006 0.006
2006 0.002 0.003 0.014 0.003 0.002 0.003 0.002 0.005 0.077 0.007 0.005 0.002 0.002 0.002
2007 0.002 0.010 0.001 0.001 0.001 0.002 0.059 0.005 0.002 0.001 0.001
2008 0.001 0.001 0.003 0.001 0.003 0.002 0.000 0.001 0.001 0.041 0.009 0.002 0.001 0.001
2009 0.002 0.001 0.005 0.045 0.005 0.001 0.001 0.001
2010 0.001 0.001 0.001 0.001 0.034 0.007 0.001
2011 0.001 0.001 0.001 0.000 0.001 0.001 0.017 0.004
FL 0.067 0.269 0.202 4.369 0.134
RC 0.011 0.011 0.011 0.011 0.333 0.482

Overall accuracy: 97± 1%
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8 and Sentinel-2 imagery, and new products such as the Harmonized
Landsat Sentinel-2 data (HLS, https://hls.gsfc.nasa.gov), these mapping
uncertainties could be reduced substantially.

5.3. Method transferability

We tested our approach in one Landsat footprint where agricultural
land abandonment was widespread. The study site represented a large
gradient with agricultural land abandonment in the lowland steppes,
where abandonment resulted in herbaceous vegetation communities,
and in the foothills of the Caucasus Mountains, where shrub and tree
encroachment followed abandonment. It suggests that our method
might be transferred to map agricultural land abandonment in other
parts of Europe and the world with similar land-use change processes.
Adjustment, however, may be needed before directly applying our ap-
proach to other areas where social and physical environments are dif-
ferent. First, our approach can be easily adapted to different definitions
of agricultural land abandonment. Depending on local climate-soil
conditions or agrarian policies, the fallow period can be longer than five
years (García-Ruiz and Lana-Renault, 2011; Pointereau et al., 2008). In
this study, we used FAO's agricultural land abandonment definition
(agricultural land set aside at least for a five-year period), which fits the
Caucasus region reasonably well (Gasanov et al., 2013; Ioffe and
Nefedova, 2004; Saraykin et al., 2017). Second, spatial segmentation
may need to consider field boundary changes. For example, many
former Soviet countries broke up large-scale collective farms into small-
scale private household plots and thus created cropland fragmentation
(Davis, 1997; Hartvigsen, 2014). To avoid grouping pixels with dif-
ferent land-use trajectories into one object, the imagery used for seg-
mentation should include images before and after the field boundary
change. Third, pixel or sub-pixel analysis is preferred if changes occur
in fields that are around or smaller than a pixel (Jain et al., 2013). In
many developing countries, small-scale agriculture is prevalent, and
pixel-based methods may advantageous. Our approach may also be
applicable for other land-use change studies especially for mapping
land-use changes that occur in aggregated patches, such as forest dis-
turbances (Coops et al., 2010; Gómez et al., 2011), wetland dynamics
(Dronova et al., 2011) and urban sprawl (Xie and Weng, 2016). To map
complex land cover classes, new classification approaches, such as di-
mensionality reduction techniques of Landsat time series has the po-
tential to archive better classification result (Yan and Roy, 2015).

5.4. Agricultural land abandonment in the Caucasus

Agricultural land abandonment was widespread throughout Eastern
Europe after the collapse of socialism (Alcántara et al., 2013), but the
rate of abandonment varied greatly (Kraemer et al., 2015; Kuemmerle
et al., 2009; Müller and Munroe, 2008; Prishchepov et al., 2012). In
comparison, we observed relatively low rates of abandonment. We
found about 12.0% of agricultural land was abandoned in the North
Caucasus during 1989–2015, considerably less than the 31% in Eur-
opean Russia but similar to Belarus (13.0%) (Prishchepov et al., 2017),
and higher than in Armenia and Azerbaijan (4.9%) (Baumann et al.,
2015). Reasons for this difference may have been both relatively good
soil quality and population growth in the North Caucasus. Contrary to
other regions of Russia, Chechnya was the region with the highest po-
pulation growth rate of 15% from 2002 to 2010 (ROSSTAT, 2010).

We found strong cross-boundary differences in agricultural land
abandonment rates, most likely due to political, institutional of socio-
economic factors (Fig. 6). Specifically, we found the highest agri-
cultural land abandonment rates in Chechnya (24.6%) and Ingushetia
(21.0%) where the long lasting and brutal Chechen Wars took place
after the dissolution of the Soviet Union. The considerable amount of
agricultural land abandonment was likely caused by these wars
(O'Loughlin and Witmer, 2011).

6. Conclusion

We successful mapped agricultural abandonment by combining
spatial and temporal segmentation. We included all available Landsat
imagery in our analyses in order to distinguish stable, abandoned and
fallow agricultural land, as well as re-cultivated abandoned land. Our
accuracy assessment of the object-based map confirmed the reliability
of our approach, which is transferable to map agricultural land aban-
donment elsewhere and to the classification of other land-use change
classes. Our results show that most of the agricultural land abandon-
ment in the North Caucasus occurred before 2000 and were con-
centrated where armed conflicts occurred (e.g., Chechnya and
Ingushetia). Ultimately, our new approach for satellite-based agri-
cultural monitoring can thus lead to a deeper understanding of land-use
and land-cover change.

Table 2
Error matrix of pixel-based land abandonment map (area proportion in percent). Years refer to the year when abandonment first occurred. SA: stable agricultural land, NL: non-
agriculture land, FL: fallow, RC: re-cultivation.

Reference

SA NL 1998 1999 2000 2001 2002 2004 2005 2006 2007 2008 2009 2010 2011 FL RC

SA 13.394 0.007 0.061 0.007 0.003 0.004 0.001 0.002 0.005 0.002 1.481 13.394
NL 0.339 64.268 0.225 0.015 0.008 0.002 0.013 0.004 0.002 0.004 0.001 0.002 0.504 0.339
1998 0.226 2.594 1.296 0.033 0.008 0.008 0.012 0.002 0.007 0.004 0.002 0.004 0.002 0.001 0.001 0.072 0.226
1999 0.003 0.199 0.020 0.084 0.076 0.005 0.003 0.002 0.002 0.001 0.001 0.145
2000 0.497 0.109 0.043 0.029 0.003 0.010 0.005 0.002 0.003 0.001 0.002 0.002 0.000
2001 0.569 0.087 0.013 0.016 0.009 0.019 0.003 0.007 0.004 0.001 0.002 0.001 0.156
2002 0.076 0.013 0.009 0.001 0.025 0.008 0.006 0.010 0.001 0.002 0.001 0.001 0.001 0.072
2004 0.002 0.017 0.003 0.001 0.011 0.027 0.010 0.007 0.002 0.001 0.072
2005 0.004 0.007 0.010 0.003 0.009 0.020 0.011 0.001 0.005 0.001
2006 0.002 0.007 0.008 0.002 0.011 0.020 0.029 0.014 0.007 0.001 0.006 0.001 0.219
2007 0.003 0.032 0.001 0.004 0.002 0.006 0.007 0.019 0.016 0.007 0.001 0.003 0.001 0.002 0.079
2008 0.032 0.013 0.001 0.003 0.004 0.017 0.016 0.002 0.012 0.003 0.001 0.000 0.144
2009 0.003 0.002 0.003 0.006 0.010 0.006 0.010 0.018 0.003 0.001 0.072
2010 0.113 0.002 0.002 0.001 0.003 0.005 0.004 0.005 0.010 0.010 0.002 0.001 0.113
2011 0.001 0.001 0.003 0.002 0.002 0.004 0.005 0.005 0.004 0.002 0.001
FL 2.561 4.910 0.262 0.064 0.031 0.009 0.036 0.015 0.023 0.020 0.023 0.009 0.019 0.017 0.015 2.174 2.561
RC 0.226 0.490 0.007 0.002 0.012 0.001 0.002 0.091 0.226

Overall accuracy: 82 ± 3%
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