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Land-use is transforming habitats across the globe, thereby threatening wildlife. Large mammals are especially
affected because they require large tracts of intact habitat and functioning corridors between core habitat
areas. Accurate land-cover data is critical to identify core habitat areas and corridors, andmedium resolution sen-
sors such as Landsat 8 provide opportunities tomap land cover for conservation planning. Here,we used all avail-
able Landsat 8 imagery from launch throughDecember 2014 to identify largemammal corridors and assess their
quality across the Caucasus Mountains (N700,000 km2). Specifically, we tested the usefulness of seasonal image
composites (spring, summer, fall, and winter) and a range of image metrics (e.g., mean and median reflectance
across all clear observations) to map nine land-cover classes with a Random Forest classifier. Using image com-
posites from all four seasons yielded markedly higher overall accuracy than using single-season composites (8%
increase) and the inclusion of imagemetrics further improved the classification significantly. Our final land-cover
map had an overall accuracy of 85%. Using our land-cover map, we parameterized connectivity models for three
generic large mammal groups and identified wildlife corridors and bottlenecks within corridors with cost-dis-
tance modeling and circuit theory. Corridors were numerous (in total, 85, 131, and 132 corridors for our three
mammal groups, respectively), but often had bottlenecks or high average cost along the least-cost path, indicat-
ing limited functioning. Ourfindings highlight the potential of Landsat 8 composites to support connectivity anal-
yses across large areas, and thus to contribute to conservation planning, and serve as an earlywarning system for
biodiversity loss in areas where on-the-ground monitoring is challenging, such as in the Caucasus.
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1. Introduction

Increasing human domination of the Earth has resulted in rapid
losses of natural ecosystems and wildlife habitat (Butchart et al.,
2010). Functioning protected areas are therefore cornerstones for con-
servation (Bruner et al., 2001; Macdonald et al., 2012; Watson et al.,
2014), particularly for large mammals which typically have large
home ranges and are attractive to poachers (Di Marco et al., 2014;
Ripple et al., 2014; Ripple et al., 2015). Unfortunately, many protected
areas are not large enough to support viable large mammal populations
by themselves andwide-ranging species in particular depend onhabitat
outside protected areas (Di Minin et al., 2013; Ripple et al., 2015). This
Bleyhl).
means that the landscapes between protected areas are crucial to pre-
vent extirpation within them and that detailed information on land
cover and use around protected areas is important for large mammal
conservation planning (Beier et al., 2008; DeFries et al., 2007; Jones et
al., 2009).

One way to overcome some of the limitations of small protected
areas is to provide connectivity between them, for example through
corridors (Crooks and Sanjayan, 2006; Haddad et al., 2003; Walker
and Craighead, 1997). Corridors are swaths of habitat that allow move-
ment of species among habitat patches (Beier et al., 2008; Hilty et al.,
2006). Increased movement and dispersal can support both genetic ex-
change and range shifts, therebymitigating effects of habitat fragmenta-
tion (Brudvig et al., 2009; Gilbert-Norton et al., 2010). Thus, corridors
are an important conservation management tool to increase connectiv-
ity (Crooks and Sanjayan, 2006). Yet, delineating and assessing
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corridors at the regional or landscape scale is challenging because it re-
quires consistent, fine-scale, and up-to date land-cover information for
large areas (Sanderson et al., 2006; Wiens et al., 2009; Zeller et al.,
2012).

Remote sensing plays a key role in acquiring broad-scale environ-
mental information for conservation planning (Pettorelli et al., 2014),
and particularly Landsat imagery provide a sufficiently high spatial
and temporal resolution to map land cover in a way suitable for identi-
fying corridors. Unfortunately though, using Landsat data over large
areas is often difficult due to clouds, especially in mountainous regions
(Wulder and Coops, 2014). Landsat image compositing algorithms are
a promising tool to overcome limitations of single-scene analyses,
such as excessive cloud coverage, data gaps (e.g., through the failure
of the scan-line corrector in Landsat 7 imagery), or limited data avail-
ability because of acquisition policies or archive consolidation issues.
Landsat compositing algorithms mine all available imagery on a per-
pixel basis to create a gap-free coverage of any user-defined study re-
gion at 30-m resolution (Griffiths et al., 2013b; Hansen et al., 2013;
Potapov et al., 2011; Roy et al., 2010). Composites can be targeted to a
user-defined time of the year (so-called seasonal best-pixel composites,
BPC), thatmay be particularlywell-suited to separate two ormore land-
cover classes (e.g., broadleaved and coniferous forest or cropland and
grassland; Griffiths et al., 2013a; Roy et al., 2010). Seasonal composites
are likely particularly beneficial for mapping land covers with strong
phenology, because many land covers are similar in terms of their spec-
tral properties in some times of the year, but differ in others (Baumann
et al., 2012; Griffiths et al., 2013a). Existing studies so far have only test-
ed the use of multi-seasonal data (e.g., Prishchepov et al., 2012; Senf et
al., 2015) or usedmulti-seasonal composites (e.g., Baumann et al., 2016;
Griffiths et al., 2013a), but no study tested the usefulness of seasonal
composites to improve land-cover classifications empirically.

Using all available imagery allows to complement Landsat BPC with
spectral metrics that summarize the full image record. For example,
spectral metrics provide information on the average or variability of re-
flectance for a given time period (e.g., one year), or capture the mini-
mum or maximum reflectance. Such metrics have the potential to
greatly improve land-cover classifications (Griffiths et al., 2013b;
Hermosilla et al., 2015; Potapov et al., 2011). Furthermore, metadata-
layers can be produced containing, e.g., the number of available cloud-
free observations, or zenith and azimuth of the observations used in
the BPC. While Landsat composites have been applied to data from
Landsat 4/5/7 (e.g., Griffiths et al., 2014; Potapov et al., 2015), increased
image collection capacity may make Landsat 8 particularly suitable for
large-area compositing (White et al., 2014; Wulder et al., 2015), but
we are not aware of any prior studies that used Landsat 8 composites
andmetrics for land-cover classifications. Likewise, despite their advan-
tages in addressing landscape-scale questions, image composites have
not been derived to support large mammal conservation planning.

One region that harbors a range of iconic and wide-ranging large
mammal species is the Caucasus at the intersection of Europe, the
Middle East, and Central Asia. However, land-use pressure in the Cauca-
sus is widespread and increasing, especially in the form of agriculture,
infrastructural development, mining, logging, and tourism (Williams
et al., 2006). All this raises concern about land-use effects on wildlife
populations and habitats, suggesting that conservation opportunities
may be diminishing as land use intensifies (Zazanashvili et al., 2012).
Many of the iconic large mammals such as the European bison, the Per-
sian leopard, and the Eurasian lynx occurred in the past in large parts of
the region, but their current distributions are only a fraction of where
they occurred before, and they require conservation action (Bleyhl et
al., 2015; Khorozyan and Abrarnov, 2007; Zazanashvili et al., 2012).
Moreover, conservation planning is challenging because the Caucasus
extends into six countries (i.e., Russia, Georgia, Armenia, Azerbaijan,
Turkey, and Iran), creating the necessity of ecoregion-wide coordina-
tion. Despite numerous local conservation initiatives and a trans-na-
tional conservation plan (Montalvo Mancheno et al., 2016; Williams et
al., 2006; Zazanashvili et al., 2012), implementing conservation plan-
ning at broad scales is currently severely hindered by a lack of up-to-
date, fine-scale land-cover information that is consistent across political
borders and that may be used to identify bottlenecks for connectivity
(CORINE land cover, for example, only covers European Union coun-
tries). The Caucasus is therefore an interesting region to test new ap-
proaches for broad-scale land-cover mapping and how they could
enable connectivity assessments.

Our goal herewas to utilize the full Landsat 8 imagedata record from
launch (April 2013) to December 2014 to assess landscape connectivity
for large mammals across the entire Caucasus ecoregion. Specifically,
our objectives were to (1) test the usefulness of seasonal Landsat 8
image composites and spectral metrics for land-cover classifications,
(2) map land cover across the Caucasus, (3) identify potential wildlife
corridors between protected areas in the Caucasus ecoregion, and (4)
highlight potential bottlenecks that jeopardize landscape connectivity.

2. Methods

2.1. Study area

The Caucasus ecoregion is located between the Black and Caspian
Seas. We analyzed the Caucasus ecoregion as defined by the World
Wide Fund for Nature (WWF; Krever et al., 2001) plus a buffer of
30 km to avoid edge effects (760,000 km2; Koen et al., 2010). The
ecoregion's topography includes mountain ranges (e.g., the Greater
and Lesser Caucasus, the Talysh Mountains), plains, mainly north of
the Greater Caucasus and in the eastern part, and upland areas in the
central part. Climate varies from moist and temperate in the west
(N2000 mm precipitation) to arid in the east (b250 mm). Forests
occur mainly in the mountains and are dominated by broadleaved
tree species (mostly beech (Fagus orientalis), oak (Quercus spp.),
hornbeam (Carpinus betulus, Carpinus orientalis), and chestnut
(Castanea sativa)). Additionally, the region harbors large steppe areas,
as well as semi-deserts and arid woodlands in the drier eastern parts
(Krever et al., 2001).

Agricultural land use has a long history in the Caucasus and is eco-
nomically important. During Soviet times, agriculture in Armenia,
Azerbaijan, Georgia, and Russia was characterized by large state farms.
Today, most farms in Armenia and Azerbaijan are private with small
fields, whereas in Russia and Georgia parts remained as larger state or
corporate farms (Giovarelli and Bledsoe, 2001; Lerman et al., 2004).
Main crops include cereals, vegetables, fruits, tea, and tobacco. In the
mountainous regions, livestock production is also important (Williams
et al., 2006).

The Caucasus is a key region for the conservation of largemammals.
In the late 1980s and ‘90s, large mammal populations declined dramat-
ically, mostly due to poaching and weak law enforcement during the
political and economic transition period from communism to market
economies (Bragina et al., 2015; Williams et al., 2006; Zazanashvili et
al., 2004). Since the early 2000s, wildlife populations have recovered
somewhat, but land-use change, mining, and infrastructural develop-
ment, as well as ongoing political and armed conflicts threaten this re-
covery. New protected areas have been established in the last two
decades, yet it remains unknown howwell protected areas are connect-
ed across the region.

2.2. Image compositing

To map the land cover of the Caucasus ecoregion, we applied pixel-
based image compositing (Griffiths et al., 2013b). We acquired all
available Landsat 8 images from April 12th 2013 to December 18th
2014 for the 63 Landsat footprints covering our study area. We
downloaded terrain-corrected images with b70% cloud cover as the
Landsat Surface Reflectance High Level Data Product (i.e., Landsat 8
bands 1–7), as well as the surface temperature product provided by
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the USGS (i.e., Landsat 8 bands 10 and 11; in total N 2000 images;
downloaded in April 2015 from: https://espa.cr.usgs.gov). To create
best pixel composites, we used a score-based weighing function to as-
sess each pixel's suitability for the final composite, based on acquisition
year, day of year, distance to clouds, thermal brightness temperature,
and distance to nadir for the Landsat 8 bands 2–7, resulting in 6-band
composites consisting of pixels with the highest suitability score
(Griffiths et al., 2013b). The thermal brightness temperature was incor-
porated into the scoring, assuming that warmer pixels are less likely to
be affected by cloud remnants or haze. Distance to clouds was based on
the cloud mask delivered with the Surface Reflectance Product (i.e., the
C Language Function of Mask cloud mask or CFmask) and calculated as
the number of pixels to the nearest cloud or cloud shadow. As our target
year we chose 2014, meaning that pixels from that year were favored
over pixels from 2013. To capture different phenological stages of the
vegetation, we produced seasonal composites that were based on all
available observations, but employed different target days of year for
the compositing (i.e., pixels close to that day were favored). The output
from the pixel-based compositing algorithmwere four cloud-free image
composites, one for spring, summer, fall, andwinter (defined by the tar-
get days of year: 105 for spring, 196 for summer, 288 for fall, 349 for
winter). Each of these composites consisted of 6 spectral bands (i.e.,
bands 2–7).

In addition to the best-observation composites, we calculated spec-
tral metrics and metadata flags for each pixel. The spectral metrics
were based on all clear observations and thereby contain information
on phenology of the land-cover classes over time (e.g., band-wise
mean and standard deviation surface reflectance; Griffiths et al.,
2013b). In total, our compositing resulted in 93 bands (see Table S1
for a full list).

2.3. Assessing the value of seasonal composites and spectral metrics for
land-cover mapping

We classified nine land-cover classes: coniferous forest, broadleaved
forest, mixed forest, rangeland (including pastures), cropland, built-up,
sparse vegetation, permanent ice and snow, and water. We collected
training data using current high-resolution GoogleEarth images in com-
binationwith the full set of Landsat 8 composites, digitized training data
polygons, and randomly sampled 4000 training points within these
polygons for each class. Training data for built-up, permanent ice and
snow, and water was gathered based on visual interpretation of the
high-resolution imagery. For the forest classes, if available in
GoogleEarth, we also considered imagery from leaf-off seasons. We
identified cropland areas visually based on their rectangular shape,
plowing patterns, homogeneous texture, and signs of bare soil in spring.
Conversely, we labeled areas as rangeland that did not show rectangular
shape, evidence of plowing, or bare soil in spring. The sparse vegetation
class was defined as not showing a clear vegetation signal (i.e., spectral
profile) in any of our Landsat composites or being clearly identified as
bare areas due to the presence of rocks, cliffs, or sandy areas in the
Table 1
Species in the three dispersal groups.

Dispersal group Species

#1: Forest-and-shrubland group Brown bear
European bison
Persian leopard
Eurasian Lynx
Caucasian red deer

#2: Open-land group Goitered gazelle
Striped hyena
Gmelin's mouflon

#3: Mountain group Bezoar goat
Caucasian chamois
Caucasian tur

a Considered as one species for the purpose of our analysis.
GoogleEarth high-resolution images. After initial classifications, we
added additional training data iteratively in misclassified areas.

To test the usefulness of the seasonal composites, we ran initial clas-
sifications based on single-season composites and all possible combina-
tions of seasonal composites. For the classification, we used a Random
Forests classifierwith 300 trees. RandomForests are amachine-learning
algorithm (Breiman, 2001) that consistently outperform parametric
classifiers (Gislason et al., 2006) while being computationally efficient.
To validate the land-cover maps of our alternative classification runs,
we randomly collected 200 points per class (strata derived from the
classification using all bands), and labeled them individually according
to visual inspection of current (2010 or later) high-resolution
GoogleEarth imagery in conjunction with our Landsat composites. We
assessed composite-combinations using standard accuracy measures
(Foody, 2002).

To assess the extent towhich the spectralmetrics andmetadataflags
improved classification accuracy, we took the best-performing seasonal
composite combination and compared it to classifications that included
also the spectral metrics, the metadata flags, and both. We used the
best-performing classification run to generate our final land-cover clas-
sification and applied aMcNemar's test to assess if differences in accura-
cy between the classifications were significant (De Leeuw et al., 2006).

For our final land-cover map, we applied a minimummapping unit
of 0.54 ha (six Landsat pixels) to remove salt-and-pepper structures
that mainly represented misclassifications. Furthermore, we used
point locations of settlements (i.e., one point location per settlement)
from Open Street Map (OSM; http://www.openstreetmap.org/) to im-
prove the discrimination between the built-up and sparse vegetation
classes. We limited built-up to areas within 1 km around the OSM set-
tlement point layer and assigned built-up pixels outside this buffer to
the sparse vegetation class. To validate our final land-covermap,we cal-
culated overall accuracy and class-wise user's and producer's accuracy
(Foody, 2002). We accounted for potential sampling bias by adjusting
error and area estimates according to the class distribution of our target
classes (Olofsson et al., 2014).

2.4. Corridor mapping

To assess landscape connectivity and tomap corridors,we converted
our land-cover map into a resistance surface that measured how diffi-
cult it is for a given species to move through the landscape (Zeller et
al., 2012; Ziółkowska et al., 2014).We selected all eleven largemammal
species as focal species identified as priority species in the Caucasus
Ecoregion Conservation Plan (Table 1; Zazanashvili et al., 2012). A key
step for assessing connectivity using resistance surfaces is setting resis-
tance values for each land-cover class. This is best doneusingmovement
data for the species in question (Ziółkowska et al., 2016a) but such data
are rarely available and expert-knowledge can be an alternative (Beier
et al., 2008). To obtain expert knowledge,we conducted an email survey
among 27 wildlife experts in the Caucasus, asking them to assign resis-
tance values for each combination of focal species and land-cover class.
Number of expert scorings

Ursus arctos 16
Bison bonasus 8
Panthera pardus saxicolor 15
Lynx lynx 14
Cervus elaphus maral 13
Gazella subgutturosa 12
Hyena hyena 14
Ovis ammon gmelini 13
Capra aegagrus 14
Rupicapra rupicapra caucasica 10
Capra cylindricornis & Capra caucasicaa 11

https://espa.cr.usgs.gov
http://www.openstreetmap.org/


Table 2
Resistance values for the land-cover classes used to parameterize the cost surface for the connectivity analysis. Values refer to the minimum, median, andmaximum resistance values per
focal species cluster according to our wildlife expert survey.

Resistance valuesa

Coniferous forest Broadleaved forest Mixed forest Rangeland Cropland Sparse Vegetation

Forest-and-shrubland min 1 1 1 2 5 5
median 1 1 1 3 7 7
max 3 2 2 4 9 8

Open-land min 7 7 7 1 4 2
median 7 7 8 1 5 3
max 9 10 10 2 5 3

Mountain min 4 4 3 2 7 2
median 4 5 4 4 8 3
max 6 6 6 5 8 7

a The land-cover classes built-up, permanent ice and snow, and water formed total barriers (i.e., no movement through these covers was allowed in our analysis).
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Resistance valueswere allowed to range from 1 (most permeable) to 10
(least permeable). In total, we received 17 responses (return rate of
63%; Table 1).

Our goal was to identify corridors that would benefit many species,
which is whywe assigned the eleven species to broad dispersal groups.
To do so, we first calculated themedian resistance values for each land-
cover class and species based on all expert scorings. We used the medi-
an to account for variability in expert scorings (Fig. S1). Second, we used
a k-means clustering analysis to derive three clusters of focal species
that were similar in terms of their dispersal limitations. We discussed
and further verified these dispersal groups in a workshop with Cauca-
sianwildlife experts held in Berlin in February 2016.We labeled the dis-
persal groups according to movement traits of the species within each
group as ‘forest-and-shrubland species’, ‘open-land species’, and ‘moun-
tain species’. For each of these three groups, we delineated three resis-
tance surfaces representing the minimum, median, and maximum
resistances of the species in a specific group (Table 2).

We further added barriers that are known to inhibit dispersal to our
resistance maps. As partial barriers, we used motorway, trunk, and pri-
mary roads, asmapped in OSM, as well as elevations above 3000m (ap-
proximately the sub-nival zone in the Caucasus). We assigned
resistance values of 100 to these barriers. We tested for sensitivity of
this cost parameter by also testing cost values of 50, 200, and 500, re-
vealing only slight changes in corridor distributions (Fig. S2). As total
barriers (i.e., no-data in the connectivity analyses), we considered the
land-cover classes built-up, permanent ice and snow, and water, as
well as areas above 4000 m (the limit of vascular plant growth;
Fig. 1.Overall acurracies of different composite combinations: (A) across all combinations and (B
composites that were used. Error bars show the 95% confidence intervall.
Zazanashvili et al., 2000). Although some of our species can occur
above 3000 m, and at least temporarily above 4000 m, many areas in
the Caucasus at this elevation do not foster vascular plant growth or
are permanently glaciated, severely hindering the movement of most
species. We therefore chose to use elevation barriers to avoid
overestimating connectivity or deriving unrealistic corridors.

We mapped corridors between Caucasian protected areas of IUCN
category I and II based on the World Database on Protected Areas
(IUCN andUNEP-WCMC, 2015) andWWF's Caucasus ProgrammeOffice
database (wwfcaucasus.net; Fig. S3). We focused on only these IUCN
categories because protected areas with lower protection status rarely
contained any of the species we focused on in our study. Protected
areas (PAs) bordering each other were considered as one PA. Disjunct
patches of the same PAs were modeled as one patch if patches were
b10 km apart and as separate patches otherwise (resulting in 57 PAs
in total). In order to exclude PAs without forest cover for the forest-
and-shrubland group, we only considered PAs with forest cover N10%
for that group (resulting in 41 PAs in total; we chose 10% as our thresh-
old because some species from that group such as Eurasian lynx or
brown bear occur in areas with 11% forest cover). We calculated cumu-
lative resistances for the closest protected area pairs using the Linkage
Mapper Toolkit (McRae and Kavanagh, 2011), resulting in least-cost
paths (i.e., the single pixel-wide path between each PA pair with the
lowest cumulative resistance) and corridors around them (i.e., those
areas around least-cost paths with a cumulative resistance below a cer-
tain threshold; Ziółkowska et al., 2016b). For each path, we calculated
the ratios of (a) the cost-weighted distance divided by the Euclidean
) comparing the four seasons plusmetadata andmetrics. Filled boxes indicate the seasonal

http://wwfcaucasus.net
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distance and (b) the cost-weighted distance divided by the least-cost
path distance as indicators of corridor quality (Dutta et al., 2015). High
values of these indices indicate low corridor quality. To identify bottle-
necks within our corridors, we applied circuit theory using the
Pinchpoint Mapper tool within the Linkage Mapper Toolkit (McRae et
al., 2008). This tool uses Circuitscape to model connectivity based on
concepts from electric circuits where landscapes consist of nodes, resis-
tors between them, and a current density flowing from node to node
(McRae et al., 2013). This current density can be interpreted as the like-
lihood of a species passing through a cell, with high current indicating a
lack of alternative routes and therefore a bottleneck in a corridor
(McRae, 2012). Although such bottlenecks can be identified well in cur-
rent densitymaps, there is at themoment no systematic way to validate
bottlenecks (Pelletier et al., 2014).We defined bottlenecks here as areas
with current density of themean plus two standard deviations. Because
the connectivity modeling is computationally very demanding, and ini-
tial results for smaller sub-regions at coarser resolutions were qualita-
tively similar to fine resolutions, we ran all connectivity models at a
300-m resolution.
3. Results

3.1. Comparison among seasonal composites and spectral metrics

We generated four seasonal best-pixel composites (spring, summer,
fall, and winter 2014) at 30-m resolution over a heterogeneous area of
760,000 km2. Although using N2000 images with at least 10 images
per footprint, there were a few areas without any clear-sky observation
(0.17% of all pixels). These areas were excluded from further analyses.

Our comparison of different composite combinations revealed
highest overall accuracy (OA; 69.9%) when using all four seasonal com-
posites together (Fig. 1). The spring and the summer composite resulted
in the highest accuracies when using only one season for the classifica-
tion (62.0% and 62.3%, respectively). When we used two seasons, com-
binations that included the summer and fall composite performed best
(Fig. 1), and theMcNemar's tests showed that these differences to other
two-season combinations were significant (p b 0.05) except to the
spring-fall combination. When using three seasons, the spring-sum-
mer-fall combination outperformed other combinations (p b 0.05). De-
spite having the highest overall accuracy, using all four seasons together
was not significantly better than using a three-season combination that
included the summer and fall composites (p N 0.05; see Tables S2–S4 for
full McNemar's test results).

To assess the value of spectral metrics and metadata layers for our
land-cover classification, we added them to the four season composites.
Adding the spectral metrics improved accuracy significantly (Fig. 1; OA
from 69.9% to 76.4%; p b 0.001). Accuracy of the land-cover maps based
on all seasons plus the metadata was slightly, but not significantly,
higher than for the four seasons by themselves. Similarly, adding the
metadata layers to the four seasons plus spectral metrics led to a higher
accuracy but not to a significant change. Because the land-cover map
Table 3
Overall and class-wise accuracies, adjusted for potential sampling bias.

Overall accuracy [%] Land-cover classes Class-wise acc

Producer's acc

84.8 Coniferous forest 60.2
Broadleaved forest 84.6
Mixed forest 56.9
Rangeland 84.1
Cropland 90.4
Built-up 20.5
Sparse vegetation 66.3
Ice & permanent snow 92.0
Water 97.4
based on the four seasons plus spectral metrics and metadata layers
yielded the highest overall accuracy (77.5%), we chose this combination
as our final land-cover map.

3.2. Land-cover mapping

After applying our post-classification steps (minimummapping unit
and built-up area correction), the overall accuracy of thismapwas 84.8%
(Table 3). Single-class user's accuracy ranged from 71.8% to 100% (for
the sparse vegetation and the water class, respectively) and producer's
accuracy from 20.5% to 97.4% (for the built-up and the water class, re-
spectively). Our land-cover map highlighted extensive cropland areas,
mainly in Russia, north of the Greater Caucasus (Fig. 2). Rangeland
was the most widespread class (300,000 km2 or 39% of the study area;
numbers are rounded, see Table 3 for exact numbers) followed by crop-
land (190,000 km2; 25%), water (100,000 km2; 13%), and broadleaved
forest (90,000 km2; 12%; Table 3). All three forest classes together cov-
ered an area of 120,000 km2. Forest was mainly found in mountainous
regions (72% of forest N500 m) and primarily consisted of broadleaved
trees (74% of all forest). Coniferous forest was mainly found above
1500m. About 8% of the forest in the ecoregionwas protected. In gener-
al, protected areasweremainly composed of forest and rangeland (each
class covered 39% of the total protected land). Croplands were concen-
trated at lower elevations (72% b500 m).

3.3. Wildlife corridors

Using the three large mammal dispersal groups that emerged from
our expert survey and subsequent clustering, we generated three resis-
tance surfaces for each dispersal group, corresponding to the minimum,
median, and maximum resistance values per group. These maps did not
result in substantially different corridors and we here therefore only
show results for the median value (see Fig. S4 for the other values). In
total, we identified 348 potential wildlife corridors linking protected
areas (Fig. 3). Euclidean distances among protected areas ranged from
0.6 to 333 km (mean: 60 km, standard deviation: 52 km). Corridor length
also varied substantially (e.g., least-cost path length ranging from 0.9 to
410 km; Table 4). Corridors for the forest-and-shrubland and for the
open-land dispersal groups were on average shorter than for the moun-
tain group (73 km and 67 km mean least cost path length, respectively,
versus 78 km for the mountain group) and of better quality. Quality was
on average highest for the forest-and-shrubland group (Table 4). While
low-quality corridors for the forest-and-shrubland group were mainly
located in the eastern part of the study region, there was no such pattern
for the other groups (Fig. 4).

Bottleneckswere commonwithin our corridors (Fig. 3). Some narrow
corridors were almost entirely classified as bottlenecks indicating that
these corridors may have limited ecological functionality. For example,
the corridors between Prielbrusie National Park and Severo-Osetinsky
Zapovednik and Alania National Park entailed bottlenecks for all dispersal
groups (inserts A, C, and E in Fig. 3). Additionally,many corridors had very
uracies [%] Adjusted area estimation [km2]

uracy User's accuracy

83.8 15,574
79.8 89,504
76.2 16,023
87.6 300,751
78.2 192,782
91.3 13,254
71.8 26,036
89.0 2104
100.0 101,133



Fig. 2. Land cover of the Caucasus region. Inset shows the location of the study area between the Black Sea and the Caspian Sea.
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narrow swaths of relatively low travel costs (e.g., some of the north-south
leading corridors for the open-land and mountain groups).

4. Discussion

Land-use and land-cover change is a main cause of biodiversity loss
globally, and conservation planning depends on up-to-date and fine-
scale land-cover maps from remote sensing. This is particularly the
case for largemammals,which require large core habitats, and function-
ing corridors between them to persist in increasingly human-dominat-
ed landscapes. The launch of Landsat 8, with its improved radiometric
resolution and imaging capacity, along with new algorithms that
allow making best use of all available imagery, provide opportunities
to support conservation planning with remote sensing. We demon-
strate this by deriving, to our knowledge, the first seasonal large-area
image composite from Landsat 8 imagery, which we used to map land
cover andwildlife corridors across the Caucasus ecoregion, a global bio-
diversity hotspot.

Our results highlight the value of temporal information for mapping
land cover across complex landscapes. Multiple seasonal composites
resulted in better classifications than using only a single-season com-
posite, and adding spectral metrics that capture information from all
available clear observations further improved the accuracy of our
land-cover classifications.

Based on our land-cover classes and expert scorings we derived
three large mammal dispersal groups for which we mapped corridors
among protected areas. Corridors were widespread but often had bot-
tlenecks indicating limited functioning and a high threat to loosing con-
nectivity without adequate protection and restoration measures.
Because large mammals require extensive habitats, conservation plan-
ning requires identifying and safeguarding corridors between core hab-
itat areas that are typically located inside protected areas. Our analysis
thus demonstrates how Landsat 8 compositing can contribute to such
broad-scale conservation planning by providing key environmental in-
formation to map corridors at fine scale across large areas.

4.1. Mapping land cover using seasonal Landsat 8 composites

We achieved the highest overall accuracy using image composites
from all four seasons (i.e., spring, summer, fall, and winter). This



Fig. 3. Least cost corridors and bottlenecks among protected areas with IUCN category I and II. Corridors were normalized to the respective least-cost path and therefore low cost refers to
areas of low travel cost. For visualization purposes, corridors were clipped to a cutoff width of 100 km (i.e., themaximum corridor width is set at cells with a 100-times higher cumulative
cost-distance than that of the respective least-cost path (McRae and Kavanagh, 2011)). Bottlenecks in the map were identified as areas with current density higher than the mean plus 2
standard deviations (see Fig. S5 for maps showing the continuous current density).
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Table 4
Corridor properties for the three generic dispersal groups.

Least-cost path length [km] Cost-weighted distance [km] Ratio of cost-weighted divided
by Euclidean distance

Ratio of cost-weighted
distance divided by least-cost
path length

Range Mean (±sd) Range Mean (±sd) Range Mean (±sd) Range Mean (±sd)

Forest-and-shrubland group 0.9–409 73 ± 74 0.9–946 143 ± 192 1.07–6.85 2.32 ± 1.25 1.00–4.13 1.72 ± 0.75
Open-land group 2–384 78 ± 63 5–883 127 ± 118 1.02–21.41 2.62 ± 2.23 1.00–7.00 1.75 ± 1.00
Mountain group 0.9–368 67 ± 58 5–1595 298 ± 261 3.45–40.92 5.57 ± 3.43 3.19–9.20 4.54 ± 0.83
All groups combined 0.9–409 72 ± 64 0.9–1595 195 ± 215 1.02–40.92 3.67 ± 2.98 1.00–9.20 2.80 ± 1.62
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underlines the importance of multi-temporal imagery and therefore
considering different phenological vegetation stages when classifying
land cover (Griffiths et al., 2014; Müller et al., 2015; Senf et al., 2015).
Composite combinations that included summer and fall composites al-
ways yielded higher overall accuracies than other combinations, sug-
gesting that important phenological characteristics are captured in
these seasons. For example, cropland might show bare soil in fall after
being harvested while high reflectance in summer likely further helps
to distinguish it from rangeland and other classes. Additionally, using
images from different seasons is well suited to separate between forest
and cropland (Baumann et al., 2012). Combinations with the winter
composite did only marginally improve classification accuracy, likely
due to higher similarity among some classes (e.g., less green vegetation
on rangeland and cropland).

Studies mapping land uses such as farmland abandonment have
previously pointed out the usefulness of jointly using Landsat images
from summer, fall, and spring (e.g., Baumann et al., 2011; Prishchepov
et al., 2012), and our test of phenological composites supported this
finding.
Fig. 4. Corridor quality calculated as the ratio of cost-weighted and Euclidean distance. Low q
protected areas. Our second quality index showed similar patterns (Fig. S6).
Similarly, adding spectral metrics to the seasonal composites further
improved classification accuracy significantly. Spectral metrics capture
information on the variability and distribution of imagerywithin a phe-
nological cycle, complementing the information entailed in the seasonal
composites (Griffiths et al., 2013b; Potapov et al., 2011). Higher variabil-
ity might for example help to distinguish rangeland areas from built-up
areas that contain green spaces. Additionally, image metrics are useful
to compensate for compositing artifacts and to reduce salt-and-pepper
patterns in classifications since they are based on all clear observations
(Griffiths et al., 2013b). Conversely, adding the metadata flags led only
to a minor, and in our case insignificant, increase in accuracy which
may indicate that spectral features alone contained sufficient informa-
tion to separate the classes of interest well. For our classification prob-
lem, the metadata information, such as the number of clear
observations or the day of year of image acquisition, did thus not add
additional information that helps to discriminate land cover, which
could be different though in more data-sparse situations. In sum,
given that compositing algorithms and the calculation of spectral met-
rics are highly automated, we recommend to analyze at least three
uality indicates a high cost-weighted compared to the Euclidean distance between two
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seasonal composites, and to include spectral metrics that capture distri-
butional features of the imagery, when mapping land-cover for large
areas based on Landsat-like sensors.

Our classification resulted in a reliable land-cover map despite the
high heterogeneity of our study area. Nevertheless, a few sources of un-
certainty need mentioning. First, despite having at least ten images per
footprint available, there were areas without any clear-sky observation.
Because these areaswere clustered in the very highmountain areas (i.e.,
areas which we mostly masked out later because they do not allow for
movement of large mammals due to harsh conditions), we do not ex-
pect strong effects on our analyses. Nevertheless, more data might
have helped to better distinguish between sparse vegetation and
built-up areas based on phenology differences between the classes. Sec-
ond, the spectral similarity of the built-up and sparse vegetation classes
led to a high commission error of the built-up class in initial classifica-
tion runs. Settlements often entail areas of open soil and buildingmate-
rials can spectrally be similar to bare areas such as rocks, leading to
confusion between built-up and sparse vegetation classes. In our case,
using a masking approach for built-up areas (i.e., limiting classified
built-up areas to within 1 km distance to the Open Street map settle-
ment point layer), solved this problem and improved accuracy. In situ-
ations where ancillary data are unavailable, generating composites for
multiple years or longer time periods (1.5 years in our case) may result
in a higher spectral separability of built-up and sparse vegetation clas-
ses. Third, for our seasonal composites, we chose the target days of
year to approximate different phenological stages of the vegetation.
Because the timing of seasons (i.e., the day of year) varies across
years, identifying key phenological dates such as the minimum and
maximum peaks of vegetation greenness beforehand instead of using
day of year approximations may further improve land-cover
classifications (Estel et al., 2015; Senf et al., 2015).

4.2. Mapping wildlife corridors

Based on our land-cover map, we delineated resistance surfaces for
three large mammal species groups (labeled as forest-and-shrubland,
open-land, and mountain group) to identify corridors among protected
areas in the Caucasus. Clustering species with similar dispersal ability
reduced the number of individual assessments necessary to derive cor-
ridors. Thismeans that our corridors are largely generic, and thus poten-
tially valuable for more species than those that were explicitly included
in our dispersal groups.

Corridor properties differed among the three dispersal groups. Corri-
dor lengthwas on average shorter for the forest-and-shrubland and the
open-land groups and quality was highest for the forest-and-shrubland
group. The short length and better quality of corridors for the forest-
and-shrubland group suggests that protected areas are relatively well
connected through forest. This is also highlighted by the low corridor
quality for the forest-and-shrubland group in eastern and southern
parts of the study area, where forest cover is naturally lower. Neverthe-
less, many corridors are substantially longer than the distances that sin-
glemovement events of our species typicallywould cover. Our corridors
should be interpreted as starting points for managing towards a better
connected network of protected areas and more detailed analyses
would be needed to assess if corridors do facilitate movement of indi-
viduals, and where conservation action such as habitat restoration is
needed (Beier et al., 2008).

While we found numerous corridors, bottlenecks were common in
most of them. Many of the corridors that connected protected areas in
close proximity to each other had such bottlenecks. Bottlenecks can be
a result of limited availability of permeable land-cover, of passages sev-
ered by roads, or a combination of both factors. Nevertheless, current
density (i.e., the unit to identify bottlenecks with Circuitscape) is com-
monly higher between protected areas in close proximity (Dickson et
al., 2013)whichmight lead towider bottlenecks so that additionalmea-
sures are needed to assess corridor quality, particularly for short
corridors (e.g., corridor width or our quality indices). Bottleneck areas
are candidates for immediate conservation actions, because the loss of
them can lead to a collapse of connectivity in habitat networks (Dutta
et al., 2015). Only about half of the corridors that we mapped were of
high quality, further stressing that connectivity between many
protected areas might already be limited.

Integrating information across focal species to derive general wild-
life corridors is a challenging task. Our expert-based clustering approach
showed how general corridors can be derived when available data are
scarce. However, ourmethod has a fewdrawbacks. First, least-cost anal-
yses always identify the best corridor between protected areas regard-
less of their potential functionality (Beier et al., 2008). Thus, our
corridors will have to be validated on the ground, for example with
trail cameras. Third, land cover was our main variable in determining
the resistance surface. This greatly simplifies the complex decisions re-
lated to animalmovement, which are also affected, for example, by fine-
scale resource availability, predation, or human disturbance. Fourth, ex-
pert scorings of resistance values varied markedly for some land-cover
classes and for some species. We used median values for each scoring
to reduce subjectivity, but we cannot fully rule out bias on our corridors
due to the expert scoring. Finally, while analyses based on expert scor-
ings are common (Beier et al., 2009; Zeller et al., 2012), it would be bet-
ter to have actual movement data. However, such data do not exist for
the Caucasus. We tried to minimize subjectivity by surveying many ex-
perts, and by grouping species (Beier et al., 2008), but we cannot fully
rule out remaining biases.

5. Conclusions

Seasonal Landsat 8 image composites allowed us to reliably map
land cover across a large and highly heterogeneous area, an important
prerequisite for broad-scale connectivity analyses. Testing different
combinations of best-pixel image composites and spectral metrics,
based on all available observations, highlighted the strength of using
multiple seasons in combination with spectral metrics for land-cover
classifications. The Landsat 8 data record is thus very promising for
up-to-date, large-area, yet fine-grained connectivity assessments. This
highlights the value of the Landsat archives for largemammal conserva-
tion, and conservation planning, and suggests that these archives are
currently an underused resource in conservation science and applica-
tion (Turner et al., 2015). For the Caucasus, our results suggest that
protected areas are structurally connected through forests, but wide-
spread bottlenecks and low corridor quality stress the need for immedi-
ate conservation planning and action to both, protect existing corridors
and restore their quality. We identified corridors for three large mam-
mal groups based on all Caucasian large mammals of high conservation
priority, and this canbe a useful startingpoint for such ground-based as-
sessments (Beier et al., 2011), for example in the upcoming revision of
the Caucasus Ecoregional Conservation Plan (Williams et al., 2006).

Habitat fragmentation is one of themain causes of global biodiversi-
ty loss. Therefore, monitoring habitat connectivity consistently over
large areas can provide an important mechanism to track threat to bio-
diversity and potentially biodiversity change, and contribute to the
standardizedmonitoring proposed under the essential biodiversity var-
iable framework (Skidmore et al., 2015). Our approach demonstrates
how Landsat 8 composites can contribute to such a global biodiversity
monitoring strategy (Pettorelli et al., 2016).
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