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A B S T R A C T

Remotely sensed data can help to identify both suitable habitat for individual species, and environmental conditions
that foster species richness, which is important when predicting how biodiversity will respond to global change. The
question is how to summarize remotely sensed data so that they are most relevant for biodiversity analyses, and the
Dynamic Habitat Indices are three metrics designed for this. Our goals here were to a) derive, for the first time, the
Dynamic Habitat Indices (DHIs) globally, and b) use these to evaluate three hypotheses (available energy, en-
vironmental stress, and environmental stability) that attempt to explain global variation in species richness of
amphibians, birds, and mammals. The three DHIs summarize three key measures of vegetative productivity: a)
annual cumulative productivity, which we used to evaluate the available energy hypothesis that more energy is
associate with higher species richness; b) minimum productivity throughout the year, which we used to evaluate the
environmental stress hypothesis that higher minima cause higher species richness, and c) seasonality, expressed as
the annual coefficient of variation in productivity, which we used to evaluate the environmental stability hypothesis
that less intra-annual variability causes higher species richness. We calculated the DHIs globally at 1-km resolution
from MODIS vegetation products (NDVI, EVI, LAI, fPAR, and GPP), based on the median of the good observations of
all years from the entire MODIS record for each of the 23 or 46 possible dates (8- vs. 16-day composites) during the
year, and calculated species richness for three taxa (amphibians, birds, and mammals) at 110-km resolution from
species range maps from the IUCN Red List. We found marked global patterns of the DHIs, and strong support for all
three hypotheses. The three DHIs for a given vegetation product were well correlated (Spearman rank correlations
ranging from −0.6 (cumulative vs. variation DHIs) to −0.93 (variation vs. minimum DHI)). Similarly, DHI com-
ponents derived from different MODIS vegetation products were well correlated (0.8–0.9), and correlations of the
DHIs with temperature and precipitation were moderate and strong respectively. All three DHIs were well correlated
with species richness, showing in ranked order positive correlations for cumulative DHI based on GPP (Spearman
rank correlations of 0.75, 0.63, and 0.67 for amphibians, resident birds, and mammals respectively) and minimum
DHI (0.73, 0.83, and 0.62), and negative for variation DHI (−0.69, −0.83, and −0.59). Multiple linear models of all
three DHIs explained 67%, 65%, and 61% of the variability in species richness of amphibians, resident birds, and
mammals, respectively. The DHIs, which are closely related to well-established ecological hypotheses of biodiversity,
can predict species richness well, and are promising for application in biodiversity science and conservation.

https://doi.org/10.1016/j.rse.2018.12.009
Received 28 February 2018; Received in revised form 4 December 2018; Accepted 6 December 2018

⁎ Corresponding author.
E-mail address: radeloff@wisc.edu (V.C. Radeloff).

Remote Sensing of Environment 222 (2019) 204–214

0034-4257/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2018.12.009
https://doi.org/10.1016/j.rse.2018.12.009
mailto:radeloff@wisc.edu
https://doi.org/10.1016/j.rse.2018.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2018.12.009&domain=pdf


1. Introduction

Biodiversity is declining globally, and remotely sensed data can play
an important role in assessments of biodiversity, habitat, and threats.
Humankind is rapidly transforming Earth's ecosystems (Barnosky et al.,
2012; Haberl et al., 2007; Kareiva et al., 2007) threatening biodiversity
(Ehrlich and Pringle, 2008; Newbold et al., 2015; Pimm and Raven,
2000) when species decline due to habitat loss, invasions, and climate
change (Brook et al., 2008; Cahill et al., 2013; Sala and Jackson, 2006).
To predict how species will respond to changing environments, there is
a need for better assessments of the current patterns of biodiversity,
species distributions, and population densities (Meyer et al., 2015;
Sutherland et al., 2009; Thuiller, 2007). Satellite data can be quite
valuable to model species distributions and hence support conservation
efforts (Leimgruber et al., 2005; Rose et al., 2015; Turner et al., 2015).
However, the question is how to summarize remotely sensed data so
that they are most relevant for biodiversity analyses.

Remote sensing data are well suited to monitor biodiversity patterns
and evaluate ecological theories (Pereira et al., 2013; Scholes et al.,
2012). Three hypotheses are particularly amenable to evaluations with
remote sensing data: a) the available energy hypothesis, which predicts
that more energy causes higher species richness (Currie et al., 2004;
Hurlbert, 2006; Wright, 1983); b) the environmental stress hypothesis,
which predicts that higher minimum productivity results in higher
species richness (Currie et al., 2004; Mason et al., 2008); and c) the
environmental stability hypothesis, which predicts that lower intra-
annual variability in productivity causes higher species richness
(Williams and Middleton, 2008). Remotely sensed measures of

productivity and seasonality are strong predictors of species richness
(Evans et al., 2005; Hawkins et al., 2003a; Hawkins and Porter, 2003;
Mittelbach et al., 2001) and there is considerable empirical evidence for
the available energy hypothesis (Bonn et al., 2004; Rowhani et al.,
2008; Storch et al., 2005; Waring et al., 2006). Productivity measures
and climate variables that constrain productivity are among the
strongest empirical determinants of species richness at continental to
global scales (Field et al., 2009; Fine, 2015; Hawkins et al., 2003a;
Hawkins et al., 2003b), although underlying mechanisms of positive
species-energy relationships are still debated (Currie et al., 2004; Evans
et al., 2005; Storch et al., 2005).

Vegetation productivity is a good proxy for food resources available
to animals, and satellite observations provide rich data on plant pro-
ductivity. For example, the Normalized Difference Vegetation Index
(NDVI) provides a measure of photosynthetic activity (Tucker, 1979),
and can predict regional- to landscape-scale distributions of both plant
and animal species (Krishnaswamy et al., 2009; Oindo, 2002; Seto
et al., 2004), as well as species richness for many taxa (Bawa et al.,
2002; Buckley et al., 2012; Hurlbert and Haskell, 2003), but not all
(Buckley and Jetz, 2010; Parmentier et al., 2011). However, NDVI is
only a proxy for productivity, and it saturates and cannot detect dif-
ferences in productivity among highly productive areas (Huete et al.,
2002). Productivity can be more directly assessed through other mea-
sures, such as foliage vigor inferred from the leaf area index (LAI),
photosynthesis, inferred from the fraction of light absorbed by the ve-
getation (fPAR), or estimates of Gross Primary Productivity (GPP). Ir-
respective of the type of productivity measure, it is necessary to sum-
marize satellite observations throughout the course of the year in order

Fig. 1. The global patterns of the DHIs, a) a color composite of the three DHIs based on median MODIS NDVI data from 2003 to 2014 with cumulative DHI in green,
minimum DHI in blue, and variation DHI in red, b) cumulative DHI by itself, c) minimum DHI by itself, d) variation DHI by itself, e) fPAR-based DHIs, f) LAI-based
DHIs, and g) GPP-based DHIs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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to evaluate the predictive ability of remote sensing measures of pro-
ductivity, and to evaluate the available energy, environmental stress,
and environmental stability hypotheses.

The Dynamic Habitat Indices (DHIs) provide integrated measures of
a) cumulative annual productivity, b) the minimum level of vegetation
cover, and c) the degree of seasonality (Berry et al., 2007; Mackey et al.,
2004). The DHIs were originally proposed by Berry et al. (2007), and
updated by Coops et al. (2009a, 2009b). Cumulative annual productivity
(‘cumulative DHI’ hereafter) integrates the productive capacity of a
landscape across a year, and is well suited to evaluate the available
energy hypothesis. Annual minimum productivity (‘minimum DHI’) cap-
tures the lowest point in terms of productivity during the year, and is
closely related to the environmental stress hypothesis. Lastly, Seasonal
variation in productivity (‘variation DHI’) reflects how much productivity
in a given pixel varies within a year, and is thus well suited to evaluate
the environmental stability hypothesis.

The DHIs have been shown to correlate well with species richness in
several case studies conducted at landscape- to sub-continental scales.
For example, cumulative DHI is significantly correlated with avian
species richness in the United States (Coops et al., 2009a; Hobi et al.,
2017). In Canada, grassland bird species richness is highly correlated
with two of the DHIs (minimum DHI and variation DHI, (Coops et al.,
2009b)). In addition to the application of DHIs to predict species
richness, beta diversity of butterfly communities is positively correlated
with minimum DHI and cumulative DHI (Andrew et al., 2012), and all
three DHIs are significant predictors in models of moose (Alces amer-
icanus) occurrence and abundance models (Michaud et al., 2014). The
DHIs can also be used to improve ecoregion mapping (Powers et al.,
2013). The DHIs have been derived from both MODIS and AVHRR data
(Coops et al., 2014), and from the different MODIS vegetation data
products, with only minor differences in their predictive power in
models of bird species richness in the U.S. (Hobi et al., 2017). However,
there has been no global analysis to date of the DHIs and their asso-
ciation with species richness patterns.

Our goal here was to calculate the Dynamic Habitat Indices (DHIs)
globally, and to evaluate hypotheses about global species richness.
Specifically, we sought to:

a) derive and describe the DHIs globally at 1-km resolution from all
MODIS vegetation products;

b) evaluate three biodiversity hypotheses (available energy, environ-
mental stress, and environmental stability) on the causes of global
species richness of amphibians, birds, and mammals.

2. Methods

2.1. MODIS vegetation data and the DHIs

We calculated the DHIs from the full data record of collection 5
MODIS vegetation products at 1-km resolution, which are available for
all land cover types except deserts and snow and ice- and analyzed all
terrestrial land globally except Antarctica and small islands (Fig. 1).
Specifically, we analyzed MODIS Normalized Difference Vegetation
Index (NDVI, MOD13A2), Enhanced Vegetation Index (EVI,
MOD13A2), Fraction of Photosynthetically Active Radiation (fPAR,
MOD15A2), Leaf Area Index (LAI, MOD15A2), and Gross Primary
Productivity (GPP, MOD17A2) data. We extracted the yearly MODIS
data from the DAAC and converted the HDF files into GeoTIFFS. The
MODIS data are available in tiles, and as either 23 (16-day NDVI and
EVI data) or 46 (8-day fPAR, LAI, and GPP data) datasets for each year,
and we mosaicked all tiles to obtain a global coverage per time step and
calculate the three DHIs: productivity DHI, which is the sums of the
productivity values of a year; minimum DHI, which takes the minimum
value of the phenological curve of a year; and variation DHI, calculated
as the coefficient of variation of the productivity values over the course
of a year.

The DHIs, especially minimum productivity, are somewhat sensitive
to occasional changes in data values that are typical for MODIS data,
and climate events, such as droughts can affect vegetation in a given
year. To account for inter-annual differences, we calculated median
DHIs based on a single composite phenology curve for all MODIS data
from 2003 to 2014, rather than just analyzing a single year. The com-
posite phenology curve represents the median value for each of the up
to 12 observations that were available for each time step. In addition,
we only calculated the median if there were at least three valid pixels
among the 12 possible years.

We utilized the MODIS quality assessment flags to remove poor
quality pixels prior to calculating the DHIs. To remove noise due to
clouds or haze, and to focus on terrestrial pixels, we extracted the as-
sociated quality assessment (QA) metadata for each vegetation product
to identify those pixels that had to be excluded from the analysis. Two
different rules had to be applied due to the different quality assessment
data provided for NDVI and EVI data on the one hand, and for FPAR,
LAI and GPP data on the other hand. For the NDVI/EVI data, we used
only pixels classified as ‘land’ or ‘ocean coastlines and lake shorelines’
(Explicit QA rule: (QA ≥ 34′817 & QA ≤ 38′378) or (QA ≥ 51′201 &
QA ≤ 54′574)). For FPAR/LAI/GPP, we applied a threshold for good
pixels with a QA < 83 (Explicit QA rule: QA < 5′411 or
(QA ≥ 18′433 & QA ≤ 21′798)).

In our initial calculations, we observed many missing data values
during winter, which artificially inflated the annual minima at these
locations because productivity values were only available once the
growing season had started already. Therefore, we set missing values to
zero if higher values during the middle of the growing season suggested
that vegetation was present. Similarly, we set pixels to zero for deserts,
ice, and snow, which have fill values in the original MODIS vegetation
product (e.g., 32,765 and 32,764 in the GPP data sets) because their
vegetative productivity is zero.

2.2. Evaluation of the DHIs

In addition to correlating the DHIs with species richness (see
below), we correlated the a) different DHIs stemming from a given
MODIS vegetation product, b) DHIs stemming from different MODIS
vegetation products, and c) DHIs versus climate metrics, to quantify the
extent to which the DHIs are interchangeable and complementary to
other metrics. Among the DHIs, we made two comparisons. First, we
correlated the three DHIs for each MODIS vegetation product (e.g.,
cumulative DHI based on NDVI vs minimum DHI based on NDVI) to
reveal the extent to which the three DHIs complement each other.
Second, we correlated DHI components for the same vegetation pro-
ducts (e.g., cumulative DHI based on NDVI vs cumulative DHI based on
LAI) to quantify the extent to which the DHIs from the different vege-
tation products are interchangeable. All correlations were based on one
random sample of 10,000 of the 1-km resolution DHIs pixels (0.009% of
all pixels), with excluded areas where vegetation products were not
available (e.g., lack of GPP estimates for the Sahara Desert).

Vegetation patterns reflect climate to some extent, and environ-
mental measures such as available evapotranspiration are also related
to vegetation productivity. Our main objective was to produce the three
DHIs and evaluate the three biodiversity hypotheses, not to derive a
comprehensive model explaining biodiversity patterns. However, we
were interested to see if the DHIs were highly correlated to measures of
climate and evapotranspiration that are commonly used in macro-
ecological and biogeographical studies, or if the DHIs provided unique
information. To assess this, we correlated the DHIs to the nineteen 1-km
resolution BIOCLIM variables (Hijmans et al., 2005), and to annual
actual evapotranspiration (Ahn and Tateishi, 1994; Tateishi and Ahn,
1996) for the same random sample of 10,000 pixels as for the corre-
lations among the DHIs.
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2.3. Species richness estimates

In order to correlate the DHIs with species richness, we derived
global species richness from individual species range maps. The
International Union for the Conservation of Nature (IUCN) Red List of
Threatened Species (IUCN, 2017) maintains range maps as part of the
required documentation for each species assessment (IUCN, 2013) for
all amphibians (Stuart et al., 2004), birds (BirdLife International &
NatureServe, 2017), and mammals (IUCN, 2010; Schipper et al., 2008).
These range maps are not occupancy maps, but instead delineate the
currently known geographic limits of distribution of a species, and have
to be analyzed at coarse resolution to obtain reliable estimates of spe-
cies richness (Hawkins et al., 2008; Hurlbert and Jetz, 2007). However,
at the global scale, these range maps provide the best consistent dataset
available to assess species richness, and they have been used to identify
biodiversity hotspots (Karanth et al., 2009; Mittermeier et al., 2003;
Myers et al., 2000), examine human population density in hotspots
(Ceballos and Ehrlich, 2006; Cincotta et al., 2000; Jha and Bawa,
2006), identify which facets of biodiversity require more protection
(Pollock et al., 2017), and model determinants of species ranges
(Arntzen and Themudo, 2008; Di Marco and Santini, 2015; Roy et al.,
2009). On the other hand, databases of species occurrences, such as the
GBIF-database, are so far too inconsistent to estimate species distribu-
tions consistently across the globe (Beck et al., 2013; Maldonado et al.,
2015; Meyer et al., 2015).

We downloaded the IUCN Red List range maps in polygon format,
and converted them to rasters with 110-km resolution, reducing the
probability of false positive errors that would consider a species present
in a cell when it is actually absent (Hawkins et al., 2008; Hurlbert and
Jetz, 2007). We considered a species as present in all grid cells that
intersected with that species range (i.e., we employed no threshold for
how much of the grid cell was part of the range), as is typical in bio-
geographic studies (Hurlbert and Jetz, 2007), and we calculated the
mean GPP-based DHIs for the same 110-km resolution raster to match
the species richness estimates.

We produced global species richness maps for amphibians,

mammals and for resident, breeding, and non-breeding bird species
(Fig. 2). The IUCN Red List range maps provide codes for the different
parts of a species' range occupied throughout the annual cycle
(Somveille et al., 2013), which we used to define three groups of birds.
The three groups were resident birds, that occur year round; breeding
birds, which includes only the breeding ranges of migratory species;
and non-breeding birds, which includes only the non-breeding ranges of
migratory species, and we used these for more detailed analyses of bird
species richness. When comparing birds with amphibians and mam-
mals, we used resident bird species richness (Fig. 2).

In order to correlate species richness with the DHIs, we calculated
Spearman rank correlations, and produced scatter plots with density to
visualize their relationship. We also conducted multiple linear regres-
sion analyses, predicting species richness based on all three DHIs
jointly, and hierarchical partitioning analyses using the R package
hier.part (Walsh and Mac Nally, 2015) to estimate the relative con-
tribution of each of the three DHIs to the overall model. This was based
on a new sample of 10,000 of the 110-km resolution resampled DHIs
(1% of all pixels).

3. Results

3.1. Patterns of the DHIs globally

The global patterns of the MODIS-based DHIs were visually striking
(Fig. 1a). The cumulative DHI showed highest values in the tropics, as
expected, but also high values in the temperate and boreal forests of
Eurasia (Fig. 1b). The minimum DHI values were also high in the tro-
pics, but northern temperate and boreal forests had low minima, as did
grasslands, mountain ranges and the tundra (Fig. 1c). The variation DHI
was distinctly different from the other two DHIs, with highest values in
northern latitudes (Fig. 1d). Displayed jointly, the three DHIs captured
the great variability in the annual patterns of vegetative productivity in
the different parts of the globe (Fig. 1a).

The three DHIs for each MODIS vegetation dataset were moderately
to strongly correlated (Fig. 3), especially the minimum DHI with both

Fig. 2. Species richness patterns of a) amphibians, b) mammals and c) resident birds, d) the RBG composite of all three taxa, e) non-breeding bird richness, f)
breeding bird richness, and g) the RBG composite of the three bird guilds.
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cumulative and variation DHIs, for which Spearman rank correlations
ranged from 0.72 to −0.93 depending on the MODIS vegetation da-
taset. Variation DHIs were negatively correlated to the other two DHIs
(−0.53 to −0.60 and −0.85 to −0.93 for cumulative and minimum
DHIs, respectively). The relationships of both minimum and variation
DHIs with cumulative DHI showed strong heteroscedasticity, but with
higher variance in minimum DHI at higher values of cumulative DHI
versus higher variance in variation DHI at lower values of cumulative
DHI. The relationship of variation DHI with minimum DHI was nega-
tively asymptotic, with the highest values of variation DHI occurring at
the lowest minimum DHI (Fig. 3).

The DHIs from the different vegetation datasets were strongly cor-
related, but some of the relationships were non-linear (Fig. 4). In gen-
eral, Spearman rank correlation of DHIs based on indices from the same
MODIS product (i.e., correlations of NDVI- versus EVI-based DHIs, and
fPAR- vs. LAI-based DHIs) were higher than correlations of DHIs based
on different MODIS products (e.g., NDVI- versus GPP-based DHIs).
Correlations between fPAR- and LAI-based DHIs were the strongest
(ranging from 0.96 for variation DHI to 0.98 for cumulative and

minimum DHI). However, both sets of correlations were non-linear,
with cumulative and variation DHIs based on fPAR being better dif-
ferentiated at lower values, and those based on LAI better differentiated
at higher values. Correlations between NDVI- and fPAR-based DHIs
were also strong, but exhibited most scatter, especially for minimum
DHI. GPP-based DHIs were the least well correlated with those based on
DHIs from other MODIS vegetation products, with a minimum of 0.83
for minimum DHI.

When we correlated the GPP-based DHIs to climate datasets, we
found only moderately strong correlations (Fig. 5), suggesting that the
DHIs provide unique, and potentially complementary information. For
cumulative DHI, the highest Spearman rank correlation with any tem-
perature-related BIOCLIM variable was only −0.67 (BIO 7, annual
range), and that for annual average temperature (BIO 1) was only 0.46.
However, correlations with precipitation-related BIOCLIM variables
were generally stronger, reaching 0.87 for annual precipitation (BIO
12), and the correlation with annual evapotranspiration was 0.72.
Minimum DHI was well correlated with temperature (e.g., 0.85 with
BIO 6, the temperature in the coldest month), and with precipitation

Fig. 3. Scatterplots and spearman rank correlations among the three components of the DHIs derived from MODIS NDVI (left column), fPAR (middle column), and
GPP (right column).
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(e.g., 0.76 with BIO 12, annual precipitation, but only 0.27 with BIO 17,
precipitation in the driest quarter). Variation DHI was well correlated
with temperature (0.86 with BIO 4, temperature seasonality, and
−0.82 with BIO1, annual average temperature), but not well correlated
with precipitation (−0.06 with BIO 15, precipitation seasonality, and
−0.57 with BIO12, annual precipitation).

3.2. Global species richness and DHI

The relationships between the GPP-based DHIs (Fig. 1) and the
species richness of amphibians, mammals, and resident birds (Fig. 2)
provided strong support for all three biodiversity hypotheses, i.e., the
available energy, environmental stress, and environmental stability
hypotheses (Figs. 6, 7).

Fig. 4. Scatterplots and spearman rank correlations of the DHIs from different MODIS vegetation products.
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The available energy hypothesis predicts that species richness is
higher where more energy is available. Indeed, the richness of all three
taxa was positively correlated with cumulative DHI based on GPP, with
Spearman rank correlation coefficients of 0.75, 0.63, and 0.67 for
amphibians, resident birds, and mammals, respectively. However, there
was also considerable scatter, and, especially for amphibians, hetero-
scedasticity, with higher variance in amphibian species richness at
higher values of cumulative and minimum DHI, and lower values of
variation DHI. The environmental stress hypothesis predicts that species
richness is higher where the minimum DHI is higher. This was indeed
the case, with positive correlations of 0.73, 0.83, and 0.62 for amphi-
bians, resident birds, and mammals, respectively. Scatterplots of
minimum DHI versus species richness of the three taxa resembled those
of cumulative DHI. The environmental stability hypothesis predicts that
species richness is higher where there is less variability in

environmental conditions, such as vegetation productivity. Indeed,
variability was negatively correlated with species richness of all three
taxa, at a level of −0.69, −0.83, and −0.59 for amphibians, resident
birds, and mammals, respectively. For all three taxa, there was again
considerable heteroscedasticity, with low values of variation DHI
having high variance in species richness.

The multiple linear regression models explained somewhat more of
the variance in species richness than our univariate models, and they
highlighted that the three DHIs complemented each other (Fig. 7a). The
hierarchical partitioning analyses of the multiple regression models
showed that all three DHIs contributed substantial portions of the
overall variability in richness that was explained, with cumulative DHI
being the most important in each of the regression models, minimum
DHI the second most important, and variation DHI the least important.
Among the major taxa, the regression model for resident birds

Fig. 5. Scatterplots and spearman rank correlations between the three MODIS GPP-based DHIs versus selected BIOCLIM variables (BIO 1: Annual mean temperature,
BIO 4: Temperature seasonality, BIO 6: Min Temperature of the coldest month, BIO 12: Annual precipitation, BIO 15: Precipitation seasonality) and evapo-
transpiration (AET).
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Fig. 6. Scatterplots and spearman rank correlations depicting the relationship among species richness of the three main taxa (Amphibians, resident birds, and
mammals) with the three DHIs.

Fig. 7. The relative importance of the three DHIs in the multiple regression model predicting species richness of each of a) the three main taxa, and b) the three types
of birds. The height of the bars represents the overall variance explained of the model.
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explained most variation in species richness (Fig. 7a). Among different
groups of birds, species richness of breeding birds was almost as well
explained as that of resident birds, but variation DHI contributed much
more to the overall explanatory power (Fig. 7b) whereas explanatory
power for non-breeding birds was lowest.

4. Discussion

We derived the Dynamic Habitat Indices (DHIs) globally at 1-km
resolution for five MODIS products, and the DHIs showed clear patterns
across the globe reflecting gradients in the three aspects of annual
productivity that are important for biodiversity, i.e., cumulative,
minimum, and variation in productivity. We found that all three DHIs
were well correlated with global-scale species richness of amphibians,
resident birds, and mammals. The signs of these relationships supported
three key hypotheses in biodiversity science (Currie et al., 2004): the
available energy hypothesis (i.e., a positive relationship between spe-
cies richness and cumulative productivity), the environmental stress
hypothesis (i.e., a positive relationship between species richness and
minimum productivity), and the environmental stability hypothesis
(i.e., a negative relationship between species richness and variability in
productivity), suggesting that the DHIs can provide useful measures of
the environmental drivers of biodiversity patterns.

Among the three taxa, our multiple regression models had similar
explanatory power, but when comparing correlations for resident,
breeding, and non-breeding birds, residents had clearly the strongest
correlations, and non-breeding birds the weakest. This was not sur-
prising because the richness of non-breeding birds, i.e., birds on their
wintering grounds, should not be strongly correlated to annual indices
of productivity. What was interesting though was that the relationship
of variation DHI with the three groups of birds changed from clearly
negative for resident birds to clearly positive for breeding birds, in-
dicating that birds that migrate to their breeding grounds are capita-
lizing on abundant resources that are only available during some sea-
sons, typically summer (Hurlbert and Haskell, 2003).

While the DHIs captured between half (amphibians) and two-thirds
(resident birds) of the variability in species richness, which is quite
respectable in global models of species richness (Davies et al., 2007;
Field et al., 2009; Hawkins et al., 2003a; Jetz and Fine, 2012;
Mittelbach et al., 2001), there was considerable scatter and hetero-
scedasticity in our correlations. Many of our univariate scatterplots
showed triangular distributions. For example, species richness was low
for all taxa in places where the variation DHI was high, but richness
varied greatly where variation DHI was low (Fig. 6). An ecological
explanation for this could be that, while low variation can support
higher species richness, it is not by itself sufficient to provide the ne-
cessary resources for many species. For example, both deserts and
tropical forests can have low variability in variation DHI. In addition,
some of the scatter in our correlations is probably due to inherent
limitations of range maps, which represent the broad area where a
species may occur if the right habitat is present, thus often over-
estimating actual species occurrences (Ficetola et al., 2014; Hurlbert
and White, 2005). Despite this scatter, the variation DHI does appear to
capture an upper limit of species richness at different levels of sea-
sonality well.

We produced the three DHIs from different MODIS vegetation
products, raising the question which DHI based on which product
should be used when. Among the three DHIs, minimum DHI was the
most strongly correlated with the other two, while the correlation of
cumulative and variation DHI was −0.60 at most (Fig. 3). Furthermore,
minimum DHI was essentially zero when values for variation DHI
were > 1, suggesting that cumulative and variation DHI capture more
unique information. Among the DHIs from different vegetation pro-
ducts correlations were generally high, especially for cumulative DHI.
However, NDVI- and EVI-based DHIs are advantageous in low-pro-
ductivity environments because the other vegetation products are not

estimated and set to zero in deserts, and because NDVI and EVI exhibit
a larger range of variability of their minimum DHIs (Fig. 4). Between
fPAR- and LAI-based DHIs, we suggest to use fPAR DHIs in lower-pro-
ductivity environmental, and LAI DHIs in higher-productivity en-
vironments, given their non-linear correlation.

The DHIs were moderately correlated with actual evapotranspira-
tion and climate indices, which makes sense given that climate affects
vegetative productivity, but the far-from-perfect correlations suggest
that the DHIs provide unique information. For comprehensive models
of species richness, we recommend combining the DHIs with other
known correlates of richness (Brown, 2014; Currie et al., 2004; Fine,
2015), such as elevation, soils, climate, or evolutionary history
(Rapacciuolo et al., 2017). Indeed, the portion of the variability in
species richness that remained unexplained in our models may at least
partly be explained by these additional variables. However, our goal
here was not to obtain the regression model that best explains species
richness patterns, but rather to derive and evaluate the DHIs by
themselves. We only present correlations between DHIs and a small set
of climate data to highlight that the DHIs can contribute additional,
unique information for biodiversity studies.

The DHIs, being derived from 1-km satellite reflectance measure-
ments, have inherent advantages over other environmental datasets of
similar resolution that are based on interpolations. The advantage of
the DHIs is that they are based on actual measurements obtained at the
resolution of the final dataset. That is important because climate da-
tasets that are typically based on interpolations are constrained by the
density of weather stations, and can suffer from potential biases, e.g.,
when weather stations are systematically placed at lower elevations.
However, while DHIs based on NDVI and EVI are solely derived from
reflectance measurements, DHIs based on other vegetation products,
including GPP, represent the output of models that calculate the re-
spective vegetation measurements from reflectance plus ancillary da-
tasets, such as land cover. Errors in those datasets could propagate into
the respective DHIs, and users of the DHIs thus have to balance the
ecological realism of measurements such as GPP with their reliance on
models, versus the elegant simplicity of the NDVI with its inherent
saturation problems (Hobi et al., 2017).

The DHIs are relevant for biodiversity science, as indicated by the
correlations with species richness of amphibians, birds, and mammals,
raising the question of whether they are also useful for conservation
planning. Species richness alone is not a good measure to prioritize
conservation actions (Margules and Pressey, 2000), and we do not
suggest that our models of species richness should be used for con-
servation planning. However, information captured by the DHIs can
also be used in species distribution models that support conservation
planning (Michaud et al., 2014), and may be valuable for predictions of
endemic species richness (Andrew et al., 2012; Young et al., 2009), as
well as the richness of species of conservation concern. Furthermore,
conservation planning can benefit from predictions of habitat quality,
irreplaceability and complementarity of species occurrences, and rich-
ness of species of conservation concern, and the DHIs have the potential
to improve such predictions (Rose et al., 2015). Combining the DHIs
with other information, such as land cover data, will likely improve
models, but what the DHIs can offer that a land cover map cannot are
differences in vegetative productivity within a given land cover type,
i.e., the identification of areas where forests are most productive, or
where the variation in productivity in a desert is lowest.

In summary, the DHIs represent a new remote sensing dataset
capturing three aspects of annual productivity from MODIS vegetation
data that are particularly relevant for biodiversity. We found that the
DHIs correlated well with global patterns of species richness of am-
phibians, mammals, and resident birds, and that observed relationships
matched major biodiversity hypotheses well. Moreover, the DHIs pro-
vide unique information that is not captured by other commonly used
predictors of broad-scale biodiversity patterns. The DHIs thus have
potential to advance both biodiversity science and conservation efforts,
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and are freely available at http://silvis.forest.wisc.edu in support of
either of these efforts.
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