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A B S T R A C T

Remotely sensed data can estimate terrestrial productivity more consistently and comprehensively across large
areas than field observations. However, questions remain how species richness and abundances are related to
terrestrial productivity in different biogeographic realms. The Dynamic Habitat Indices (DHIs) are a set of three
remote sensing indices each related to a key biodiversity productivity hypothesis (i.e., available energy proxied by
the annual cumulative productivity, environmental stress proxied by the minimum productivity throughout the
year, and environmental stability proxied by the annual coefficient of variation in productivity). Here, we quantify
the relevance of each hypothesis globally and for different biogeographic realms using models of species richness
for three taxa (amphibians, birds, and mammals) derived from IUCN species range maps. Using parameterized
generalized additive models (GAM’s) we found that the available energy hypothesis was the best individual
index explain 37–43% of the variation in species richness globally with the best models for amphibians and
worst for mammal richness. Examining the residuals of these GAMS indicated that adding the environmental
stress hypothesis explained 0–22% additional variance, especially in the Nearctic where large amounts of snow
and ice are prevalent and environmental conditions deteriorate during winter. The addition of the environmental
stability hypothesis generally explained more variance than the environmental stress hypothesis, especially in
the Neartic and Paleartic and for birds however, in certain cases, the environmental stress hypothesis explains
more variance at the realm scale.

1. Introduction

Understanding the patterns and processes of bio-geochemical,
carbon, and water cycles within terrestrial ecosystems, and their related
effects on biodiversity is a key question for macro-ecology (Keith et al.,
2012). As early as 1917, Grinnell (1917) proposed a suite of environ-
mental factors that affect bird species abundance in California, in-
cluding vegetation, climate, food availability, and soil type. The ability
to ask questions and pose hypothesis about biodiversity across broad
spatial scales, however, has traditionally been limited by a lack of fine-
grained datasets that are systematically produced and cover large areas
consistently (Keith et al., 2012; Pfeifer et al., 2012). This is unfortunate,
because fine-grain patterns and processes are critical to the main-
tenance and conservation of biodiversity, making indicators of habitat
and biodiversity derived from remotely sensed data are fundamental for
biodiversity assessments (Pereira et al., 2013; Scholes et al., 2012).

Remote sensing indices such as the ubiquitous Normalized

Difference Vegetation Index (NDVI, Tucker, 1979) have been success-
fully linked to the species richness of both flora and fauna for decades,
because such indices of vegetation productivity are indicative of the
food or habitat resources available (Bawa et al., 2002; Buckley et al.,
2012; Hurlbert and Haskell, 2003; Seto et al., 2004). In a comprehen-
sive discussion of different remotely sensed products for macro-ecology,
(Pfeifer et al., 2012) highlight the use (or misuse) of some vegetation
indices derived from remote sensing observations for biodiversity as-
sessment and illustrate the need for additional indices. The fraction of
light absorbed by the vegetation (fPAR) provides a more directly re-
levant index to predict species richness because of the more direct es-
timation of vegetation productivity in the fPAR algorithms (Nightingale
et al., 2007; Coops et al., 2008).

Several global species richness hypotheses provide a lens through
which the available remotely sensed datasets can be examined
(Radeloff et al., 2019), and arguably the most important of them is the
available energy hypothesis. This hypothesis suggests that areas of high
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vegetation productivity have more resources to partition among com-
peting species, thus supporting a greater number of species, and higher
population densities than areas with lower productivity (Bonn et al.,
2004; Rowhani et al., 2008; Storch et al., 2005; Walker, 1992; Waring
et al., 2006; Wright, 1983). Alternative hypotheses address the im-
position of inclement climate and seasonally low productivity as con-
straints on biodiversity, including the environmental stress hypothesis,
which predicts that areas where the minimum productivity is never
very low have higher species richness (Currie et al., 2004; Mason et al.,
2008), and the environmental stability hypothesis, which posits that
high annual variation in productivity limits the capacity of the land-
scape to support permanent resident species (Williams and Middleton,
2008), but not migratory species, which is particularly evident for bird
communities (Field et al., 2009; Hawkins et al., 2003; Hawkins and
Porter, 2003; Jetz and Fine, 2012; Julliard et al., 2004).

The Dynamic Habitat Indices (DHIs) were originally developed by
(Mackey et al., 2004) and (Berry et al., 2007) in Australia, and updated
by (Coops et al., 2008) and (Hobi et al., 2017) for North America, and
globally by (Radeloff et al., 2019). Because the three DHIs (cumulative
FPAR, minimum FPAR, and FPAR variation) have a strong underlying
basis in biodiversity theory, they offer an opportunity to examine these
competing hypothesis of species richness. The DHIs capture (a) the
cumulative annual productivity as the integrated landscape productive
capacity over a year, (b) the annual minimum productivity as the
minimum amount of vegetation production over a year, and (c) annual
seasonal variation in productivity which reflects how the vegetation
varies within the year, an indicator of climatic variation, and phe-
nology. Each Dynamic Habitat Index component is therefore related to
a key biodiversity productivity hypothesis (i.e., available energy proxied
by the annual cumulative productivity, environmental stress proxied by
the minimum productivity throughout the year, and environmental sta-
bility proxied by the annual coefficient of variation in productivity).

Here, we take advantage of the newly developed global DHIs pro-
duced from over a decade of consistent, high quality reflectance dataset
produced by the MODIS sensor onboard TERRA and AQUA satellites. In
a previous study Radeloff et al., (2019) found marked patterns in the
DHI’s and their support for all three hypotheses at the global scale. All
three DHIs were well correlated with a range of species, with linear
models of all three DHIs explaining 61–67% of variability in amphibian,
resident bird, and mammal richness. In this paper our goal is to ex-
amine more statistically relevant model types regionally through the
use of realms, rather than globally, to untangle competing species
richness hypotheses. This in turn can provide improved insights into the
use of biodiversity remote sensing indicators at regional, rather than at
the global scale, and allows for further untangling of the often complex
remote sensing signal compare to species richness.

To do so, we use the available energy hypothesis as our primary
hypothesis (both because it is most widely used, and because it was the
most important hypothesis in a prior global (only) analysis of the DHIs
and species richness and test the extent to which the other two hy-
potheses explain additional variation in patterns of species richness. We
conducted our analyses at two different spatial scales, the global and
the realm scale, because we expected differences in the DHI species
richness relations across biogeographic realms. In doing so, we asked
what is the relative impact and importance of energy constraints, either
through minimum vegetation productivity or seasonal vegetation in-
stability, on global species richness?

2. Methods

2.1. Dynamic habitat indices

The development of the global DHIs is fully described in Hobi et al.
(2017) and Radeloff et al. (2019) and only briefly detailed here. We
utilized the fPAR versions of the DHI as it provides a key metric of the
fraction of photosynthetically active radiation (or fPAR) intercepted by

vegetation, which is analogous to greenness cover (Knyazikhin et al.,
1998) fPAR is linearly related to the positive end of the more commonly
used Normalized Difference Vegetation Index (NDVI), a measure of
reflected radiation. Despite fPAR being less commonly however, it is
fPAR, that is theoretically linked to the rate at which carbon dioxide
and energy are assimilated into carbohydrates during photosynthesis,
yielding in landscape gross primary productivity (Monteith, 1972;
Coops et al., 2011).

Eight-day MODIS fPAR layers were downloaded from the MODIS
DAAC and the HDF files were converted to GeoTIFFS. Individual tiles
were mosaicked to produce global coverage for each time step. Only
high-quality pixels (quality assessment < 83) were considered, and all
land cover types were processed except deserts and snow and ice,
covering all terrestrial land globally except Antarctica, and islands. All
DHIs are freely available for download at http://silvis.forest.wisc.edu/
data/DHIs. The calculation of the DHIs is sensitive to noise and inter-
annual variability, which is why the composite DHIs are based on all
MODIS data from 2003 to 2014 rather than just a single year. The
composite phenology curve represents the median value for each of the
12 annual observations that were available for each of the 46 time steps
available in the 8-day MODIS fPAR product and based on this the three
indices cumulative FPAR, minimum FPAR and FPAR variation were
calculated.

2.2. Species richness data

Global layers of species distributions are available through the
International Union for the Conservation of Nature (IUCN), BirdLife
International, and NatureServe (2018), which are based on range maps
for amphibians, bird, and mammals (IUCN, 2017; Schipper et al.,
2008). These layers have formed the basis of many previous global
biodiversity studies (Karanth et al., 2009; Mittermeier et al., 2003;
Myers et al., 2000; Roy et al., 2009). These range maps are converted
into maps of species richness by counting the number of species ranges
that overlap a given grid cell. Jenkins et al. (2013) derived species
richness maps for amphibians, birds, and mammals globally from spe-
cies range maps at 10 km spatial resolution, which are available at
biodiversitymapping.org, and this is the datasets that we obtained for
this analysis. The spatial pattern of the species richness and the DHI is
shown in Fig. 1.

2.3. Statistical analyses

We conducted both a global and a regional analyses for the six
major biogeographic realms according to Olson et al. (2001).

Our approach was as follows: First we sampled the DHI and richness
layers by realm to develop a dataset for modelling. We used para-
meterized generalized additive models (GAM’s) to model relationships
between species richness and the DHI cumulative fPAR index, which is
a proxy for the available energy biodiversity hypothesis. We chose this
initial DHI component to drive the modelling as it has been shown in
previous work to often be the most related to species distributions
globally (Radeloff et al., 2019). We then examined if the other two
hypotheses (DHI components) provide additional explanatory power by
modelling residuals, and explored regional variability in explained
variance using geographically-weighted regressions. The detailed
methods are described below:

We average the DHIs from 1 to 10 km to match the spatial resolution
of the species richness layers. Due to spatial autocorrelation, neigh-
boring 10 km cells often do not represent independent samples in either
the DHI or richness layers. Therefore, we drew a random sample of 10-
km cells from the global population, with a minimum distance of
250 km among cells, resulting in 1636 sampled cells globally. After
excluding areas with no data we carried out our analysis with 1415 cells
at the global scale and at least 100 cells for each realm (ranging be-
tween 133 and 419). We applied a similar approach of Roll et al. (2015)
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and parameterized GAM’s to allow for non-linear relationships between
the DHIs and species richness (Hastie and Tibshirani, 1986). The choice
of GAM based model development as opposed to linear model devel-
opment undertake by Radeloff et al. (2019) focuses on the increased
recent interest that skewed response curves are common and better
support ecological theory (Austin, 2007; Elith et al., 2006). Specifically,
mammal, bird, and amphibian richness were modelled using cumula-
tive FPAR as the independent variable. Models were developed glob-
ally, as well as for each of the six biogeographic realms. After the
models were developed, the residuals of these models were used to test
the alternate hypotheses. Specifically, the residuals were modelled
using minimum FPAR, and variation in FPAR, as the independent
variables to determine if these two DHIs and their associated hypothesis
can explain additional variability in richness, both globally and re-
gionally. Again, GAMs were used to model these residuals.

To examine if the relative contributions of the two complementary
hypotheses changed as overall terrestrial vegetation productivity in-
creased, we stratified the cumulative productivity into four classes
(low, moderate, high and very high cumulative productivity) and ex-
amined the explanation of variance in the residuals by the two addi-
tional DHIs. To examine where the addition of the additional hypoth-
esis was greatest we applied geographically-weighted regressions
(GWR) (Fotheringham et al., 1998) using a fixed kernel. This was done
by analyzing the two alternative indices as predictors of the local
standardized residuals of species richness against cumulative pro-
ductivity derived from the GAM.

Spatial analyses, and GWR modelling were conducted in ArcMap
10.1 (Esri, 2012), while GAM analyses were conducted using the mgcv
package (Wood, 2014) in R (R-Core-Team, 2013).

3. Results

Globally, cumulative productivity explained 43% of the variation in
amphibian richness, followed by 38% for bird richness, and 37% for
mammal richness (Tables 1 and 2). By realm, the most variance was
explained by cumulative productivity in the Neotropics
(R2= 0.43–0.55, depending on the taxa), while the least variance was
explained in the Indo-Malay (R2= 0.11–0.25). In four of the six realms,
cumulative productivity explained the most variance in amphibian
richness (R2= 0.38–0.55), with the exception of Australia where the
most variation was explained in bird richness (R2= 0.36) and Indo-
Malay where the most variation was explained in mammal richness

Fig. 1. Spatial pattern of the species richness and the DHI.

Fig. 2. Additional variance explained by species group for inclusion of the two
additional productivity hypothesis environmental stress (Minimum FPAR) and
environmental stability (FPAR Variation) stratified by cumulative productivity
level. (AA: Australia, AT: Afrotropic, IM: Indo-Malay, NA: Nearctic, NT:
Neotropic, PA: Palearctic).
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(R2= 0.25). The Nearctic had the largest range in variance explained
between taxa, with 41% explained for amphibians, 22% explained for
birds, but only 1% for mammals.

In all cases, we found positively increasing relationships – based on
our GAMs –between cumulative productivity and species richness, as
predicted by the available energy hypothesis, but the shape differed by
realm and species (Figs. 3–5). In most cases, the trend was close to
linear except for mammals in the Palearctic and Australia, which ex-
hibited a humped-shaped distribution with highest species richness
occurring at mid-productivity. For birds, we found generally increasing
trends in all realms except the Palearctic and the Afrotropics, which
both exhibited drops in species richness at higher productivity levels.
For amphibians, the Afrotropics and Indo-Malay exhibited slightly more
humped-shaped distributions than the other two taxa. All taxa, ex-
hibited a humped-shaped distribution in Australia, however, with only
a slight increase in richness at the very high productivity levels.

The addition of the environmental stress hypothesis, represented by
adding the minimum DHI, indicative of the lowest productivity level
throughout a year, to the cumulative productivity model, explained 0 –
22% additional variance in richness (Table 3, Fig. 2). By realm, this DHI
was most relevant in the Nearctic where large amounts of snow and ice
are prevalent and environmental conditions deteriorate during winter.
The addition of the stress hypothesis in the Neartic was most important
for mammals and birds (22% more variance explained). Realms where
the stress hypothesis did not provide additional predictive power were
in warmer climates such as the Afrotropics and Indo-Malay where
productivity is highest and consistently high throughout the year.
Globally, the addition of this hypothesis only explained an additional
6% of variation for birds, 5% for amphibians, and 3% for mammals.

The addition of the environmental stability hypothesis into the
models was generally more important than the stress hypothesis and
explained slightly more variation in richness (Table 4, Fig. 2). Again,
the most additional variance was explained in the Neartic, especially for
birds (33%), followed by mammals (29%), and the least additional
variance explained for amphibians (9%). The Palearctic had the second
highest level of additional variance explained, with 13% for birds, 9%
for mammals, and 8% for amphibians.

When examining the effect how the addition of the environmental
stress and environmental stability hypotheses to the available energy
hypothesis differed depending on the level of productivity (low, mod-
erate, high and very high), we found strong trends (Figs. 6 and 7).

Markedly more variance was explained by the additional two hy-
potheses at low and moderate productivity levels, where the addition of
the other two hypotheses explained up to 25% more variance for am-
phibians and birds, and 10 – 15% more variance for mammals. In
contrast, at higher productivity levels much less additional variance in
richness was explained, in most cases,< 10%.

In order to better understand where, globally, the environmental
stability hypothesis or the environmental stress hypothesis explained
additional variance, we used geographically-weighted regression ana-
lyses to explain residuals of the productivity-based GAM models for
each taxa (Fig. 7). For amphibians the highest local R2 values occurred
generally in regions with lower productivity either due to drought or
cold. The higher correlations produced by the minimum fPAR suggest
that the environmental stress hypothesis was relevant in the northern
boreal, both in cooler North America and Siberia and northern Russia as
well as in the drier regions of the southern Mediterranean and northern
Africa. Strong correlations were also observed in the dry Western and
Southern Australia and central Africa. Parts of Southern South America
also showed increased correlations associated with the higher eleva-
tions and cooler temperatures in the Andes. In contrast, the tropical
areas of Indonesia showed high correlations too, but those could not be
directly associated with stress due to lack of water or low temperature.

For birds, the patterns were similar but with less importance of the
environmental stress hypothesis compared to amphibians. However,
the boreal forests of North America, the Iberian Peninsula and Southern
Australia were areas of strong correlations between productivity re-
siduals and minimum fPAR. For mammals the addition of this second
hypothesis was clearly the most important with marked portions of
mammal species richness being explained in North America, especially
in the north and in the Southern United States, as well as in central
America, southern south America, south Australia, and central Russia.
These areas largely represent extreme environments of cold and
drought, but others are also highly productive, such as central America,
indicating that mammalian richness cannot be easily explained with a
simple productivity driven hypothesis.

The addition of the environmental stability hypothesis (fPAR
Variation) generally explained less of the overall minimum (Minimum
fPAR) in species richness (Fig. 7). For amphibians, the patterns were
similar to the minimum fPAR with the exception of the warmer loca-
tions such as the southern Mediterranean, Northern Africa, and western
Mexico. Areas with high intra-annual changes in productivity, such as
the northern Boreal, Scandinavia have higher predictions. Papua New
Guinea and some parts of Indonesia were also high, and that was sur-
prising, because they do not have large changes in intra-annual pro-
ductivity. The relationship for birds was much more muted than for the
other taxa, indicating that seasonality is globally not a driver of avian
species richness. However, locations that deviated from the global
trends were the eastern and central United States, Japan and eastern
Russia and Tasmania. For mammals the responses were stronger than
for birds but still much weaker than for the environmental stress hy-
pothesis, except in the Eastern and Central United States, Japan and
northern South America.

4. Discussion

We found strong relationships between the productivity-driven DHI
and patterns of biodiversity, similar to what others had found both
globally (Radeloff et al., 2019) and regionally (Andrew et al., 2012;
Coops et al., 2009; Hobi et al., 2017; Michaud et al., 2014), but ex-
tending prior work by providing the first consistent analysis for all
realms globally, as well as spatial regression analysis globally. Our re-
sults concur with others in that we found strong correlations globally
between the DHI and mammal and bird species richness. Interestingly,
we found equally strong relationships with amphibians, which was
unexpected as poor models are often expected due to amphibian’s ec-
totherm physiology with stronger correlations being found with global

Table 1
GAM model R2 for Cumulative FPAR indicating the available energy hypoth-
esis.

Realm Mammal Amphibian Bird n

Australia 0.28 0.32 0.36 144
Afrotropic 0.48 0.53 0.34 253
Indo-Malay 0.25 0.18 0.11 133
Nearctic 0.01 0.41 0.22 217
Neotropic 0.43 0.55 0.51 247
Palearctic 0.19 0.38 0.26 419
Global 0.37 0.43 0.38 1413

Table 2
GAM model R2 for all DHI variables in one model.

Realm Mammal Amphibian Bird n

Australia 0.31 0.41 0.44 144
Afrotropic 0.48 0.59 0.37 253
Indo-Malay 0.26 0.17 0.17 133
Nearctic 0.42 0.66 0.59 217
Neotropic 0.51 0.54 0.57 247
Palearctic 0.32 0.46 0.40 419
Global 0.41 0.49 0.46 1413
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water available and potential vs actual evapotranspiration than pro-
ductivity alone (Coops et al., 2018a; Qian et al., 2007; Rodríguez et al.,
2005). It was also fascinating to compare the global- vs realm-level
results. For example, we found for amphibians strong relationships in
some realms where there was a clear additional benefit of adding the
additional hypotheses to cumulative productivity into the models.
However, at the global scale the overall species richness predictions for
amphibians was much weaker and the additional hypotheses did not
provide as much benefit.

The reasons behind regional differences in diversity patterns are still
under active research, but generally have received less attention than
simply documenting those patterns (with exceptions such as (Oberle
et al., 2009). Frequently, regional differences are highlighted at very
broad scales, such as biogeographic realms, and qualitatively explained
as a function of differing evolutionary histories. More mechanistically,
the drivers of richness patterns differ latitudinally, with ambient energy
variables having greater importance at high latitudes and water-energy
driving richness gradients at lower latitudes (Hawkins et al., 2003;
Qian, 2010; Whittaker et al., 2007). Regionally, our results suggest that
a range of drivers of species richness are relevant in different regions,

and not just a single productivity hypothesis. Overall, across all species
and using all DHI components we found the strongest species richness
relationships with the DHIs in the Neotropics and Neartic and the
poorest species richness models occurred in the Indo-Malay.

Overall the environmental stability hypothesis was stronger than
the environmental stress hypothesis and most important in the Ne- and
Paleartic, i.e., in environments with major changes in productivity
throughout the year causing migration and movement of species within
these realms, and into neighboring ones. Globally this contrasts with
the result of Radeloff et al., (2019) who found the environmental stress
hypothesis globally more important stability; except in the case of
breeding birds

The use of GAMs allowed for more complex representations of the
relationship between the DHI and species richness beyond linear or
curvi-linear relationships. The shape of the diversity-productivity re-
lationship may differ between the temperate zone (generally hump-
shaped) and the tropics (generally increasing) because of the differing
sizes of the species pools (Pärtel et al., 2007) even if the specific criteria
for including studies in that meta-analysis and the techniques used to
classify observed biodiversity patterns into different shapes have been

Fig. 3. Generalized additive models (GAM) approach applied to the single Cumulative fPAR DHI index and mammal species richness across realms and globally.
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criticized (Whittaker, 2010).
Similar to other studies that have utilised the IUCN and BirdLife

International range maps we recognise both their utility and limita-
tions. There are inherent limitations of using range maps, which re-
present the area where a given species may occur if its habitat is pre-
sent, thus overestimating actual species occurrences (Ficetola et al.,
2014; Hurlbert and White, 2005; Radeloff et al., 2019). Hurlbert and
Jetz (2007) investigated the representation of species richness using
range maps and an overestimate of the area of occupancy of individual
species and some mischaracterization of the spatial patterns of species
richness. To reduce spatial autocorrelation, we summarised both the 1-
km DHIs and the species ranges to 10-km cells, and selected only
samples that were at least 250 km apart. Others have demonstrated the
correlations of the DHIs both globally and regionally to more conven-
tional metrics of productivity such as climate (Radeloff et al., 2019;
Coops et al., 2018b), and found globally that the DHIs were moderately
correlated with actual evapotranspiration and climate, which is ex-
pected given the strong link between environment and productivity.
The addition of other remotely sensed datasets to the DHIs, such as
finer-resolution data layers on land cover and land cover change as well

as disturbance is likely to be useful and informative to better investigate
regional differences.

We encourage researchers to evaluate the generality of these re-
lationships more regionally and across diverse settings. Rigorous in-
vestigations of regional differences require a larger number of regions
than have been considered to date, and fine-grained biotic and other
environmental datasets in order to sufficiently characterize biodiversity
patterns at the regional level. We hope that such studies will encourage
greater adoption of contemporary remotely sensed datasets in macro-
ecological research and stimulate interactions between the macro-
ecological and remote sensing communities, to contribute new insights
into patterns of species richness within and among broad areas. As such,
we believe the global coverage of the DHIs has the potential to advance
both biodiversity science and conservation efforts, and we make them
freely available at http://silvis.forest.wisc.edu/data/DHIs/ in support
of such efforts.

Data availability

DHI data are available for download, free of charge from http://

Fig. 4. Generalized additive models (GAM) approach applied to the single Cumulative fPAR DHI index and bird species richness across realms and globally.
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silvis.forest.wisc.edu/data/DHIs.
Global layers of species distributions are available through the

International Union for the Conservation of Nature (IUCN), BirdLife
International, and NatureServe (2018) at 10 km spatial resolution,
available at biodiversitymapping.org.
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