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A B S T R A C T

Mountainous regions are changing rapidly across the world due to both land-use change and climate change.
Given the importance of mountainous regions for ecosystem services and endemic biodiversity, monitoring these
changes is essential. Satellite data provide a great resource to map land-cover change in mountainous regions,
however mapping is especially challenging there because topographic complexity affects reflectance. The so-
called ‘topographic effect’ has been successfully corrected for in case studies of small areas, but a comparison of
large-area classifications and land-cover change analyses with and without topographic correction is missing.
Here, we performed a long-term land-cover change assessment for a large mountainous region, i.e., the Caucasus
Mountains with topographic correction. Our two goals were 1) to examine the effect of topographic correction
on land-cover classification for a large mountainous region, and 2) to assess land-cover changes since 1987
across the Caucasus based on the full Landsat archive. Both the complex topography and the history of land-use
changes, especially after the collapse of the Soviet Union in 1991, make the Caucasus Mountains an ideal study
area to understand topographic effects on large-area land-cover mapping for the last three decades. First, we
compared a non-topographically-corrected Landsat classification for 2015 with a classification that was topo-
graphically-corrected with an enhanced C-correction for the same year and assessed the accuracy of both.
Second, we derived topographically-corrected Landsat classifications for six dates to assess changes in cropland
and forest from 1987 to 2015, based on class probabilities and post-classification comparisons. In regard to our
first goal, topographic correction improved the overall accuracy of the classification only by 2% (from 79 to
81%), but disagreement rates were as high as 100% in mountainous regions, especially among forest types. In
regard to our second goal, we found that cropland loss was the most prevalent change process since 1987.
Cropland loss was particularly widespread in Georgia and Armenia until 2000, and in Azerbaijan until 2005. The
North Caucasus (the Russian Federation) had more stable cropland over time, most likely due to different land
reforms after the collapse of the Soviet Union, and the prevalence of flat landscapes and very fertile soils, which
make cultivation easier than in the South Caucasus. Rates of forest change throughout the Caucasus Mountains
were surprisingly low, with forest loss and forest gain being roughly equal. Forest loss was most likely related to
both illegal logging and natural disturbance, whereas forest gain was most likely due to cropland abandonment
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and less grazing pressure. Our results highlight both the importance and the feasibility of topographic correction
for accurate large-area land-cover classifications in steep terrain.

1. Introduction

Mountainous regions have a unique environment, harbor rich bio-
diversity, are high in endemism, and provide important ecosystem
services such as water supply and recreation (EEA, 2010). However,
mountainous regions are often subjected to land-use changes and cli-
mate changes, both of which impact mountain environments sub-
stantially. For example, forests in mountainous regions are often under
threat due to illegal logging and livestock grazing (Bhatta et al., 2018;
García-Ruiz et al., 1996). Mountainous areas are also often hotspots of
agricultural abandonment resulting in forest expansion, particularly on
steep slopes where cultivation is labor-intensive, for example, in the
European Alps (Gellrich and Zimmermann, 2007; MacDonald et al.,
2000). Changes in climate have contributed to increased tree mortality
in some areas, but also increased growth and tree line shifts in other
areas (Kulakowski et al., 2011). Further, extreme weather events such
as drought can have detrimental effects on agricultural production,
especially in regions where water is scarce (Lipper et al., 2014). Last but
not least, land-use change and climate change often interact (Oliver and
Morecroft, 2014), and to identify the causes of changes in land cover in
mountainous regions, and ultimately ensure their sustainable manage-
ment, it is necessary to map their spatial and temporal patterns accu-
rately.

Land-cover changes in mountains require long-term observation
with high-spatial resolution to ensure accurate mapping. With the
opening of the Landsat archive (Woodcock et al., 2008; Wulder et al.,
2012) the spatial and temporal coverage of satellite imagery has in-
creased substantially, opening new opportunities for land-cover map-
ping such as gap-free imagery composites for large areas that overcome
the challenges of limited, cloud-free data availability for large-areas
(Griffiths et al., 2013; White et al., 2014). Such composites ensure that
satellite image analyses are no longer restricted to scenes that are cloud-
free in their entirety, and include all pixels that are not affected by
clouds (Griffiths et al., 2013). Similarly, multi-seasonal imagery com-
posites derived from Landsat imagery can capture phenological patterns
among different parts of a study area. Phenology-adapted compositing
algorithms dynamically adjust for spatial and temporal variations in
land surface phenology due to, e.g., climate or altitude, and choose
observations that matches the phenological phase of interest best
(Frantz et al., 2017). Additionally, image metrics (e.g., average, stan-
dard deviation or percentiles) created during the compositing process
based on all available cloud-free observations can provide valuable
information for land-cover classifications (Bleyhl et al., 2017; Frantz
et al., 2017; Gómez et al., 2016).

However, in mountainous regions land-cover mapping is challen-
ging because of topographic effects (Tan et al., 2013; Vanonckelen
et al., 2013). Topographic illumination effects due to shadows and steep
slopes alter reflectance and thereby introduce classification errors
(Vanonckelen et al., 2014). Topographic correction methods aim to
remove these effects by calculating the radiance a pixel would have
received and reflected without topography (Liang, 2005). Multiple to-
pographic correction algorithms have been proposed to eliminate to-
pographic effects. These algorithms can be categorized into three dif-
ferent types. First, empirical approaches only considering image-based
statistical relationships that transform pixel reflectance so that the
correlation between reflectance and illumination condition derived
from a Digital Elevation Model (DEM) is eliminated (Tan et al., 2013).
Second, physically based models model the transfer of radiance through
the atmosphere to the target pixel and back (Balthazar et al., 2012).
Third, semi-empirical models combine empirical and physical terms,

via the inclusion of both image-based statistics and physical formula.
The C-correction is one such semi-empirical model and compares fa-
vorably to other correction methods (Riano et al., 2003; Richter et al.,
2009; Sola et al., 2016). The original C-correction has been improved to
a modified C-correction, which includes an additional empirically de-
rived parameter C (Frantz, 2019; Frantz et al., 2016; Kobayashi and
Sanga-Ngoie, 2008). In prior studies, topographic correction of Landsat
imagery improved land-cover classification accuracy in general
(Moreira and Valeriano, 2014) and of forest mapping in particular to
distinguish between forest types (i.e., coniferous forest and mixed
forest) (Vanonckelen et al., 2013; Yin et al., under review). Topographic
correction also increased overall accuracy of forest change maps up to
34% (Tan et al., 2013). However, most studies testing topographic
correction have been limited to one or two Landsat footprints (e.g.,
Balthazar et al., 2012; Dorren et al., 2003; Hantson and Chuvieco,
2011; Li et al., 2015; Moreira and Valeriano, 2014), and very few have
analyzed large areas (Flood et al., 2013; Frantz et al., 2016; Rufin et al.,
2019). A topographically corrected Sentinel-2 product is made avail-
able by ESA since May of 2019, but the USGS does not offer operational
correction for the Landsat data, and there is little information how to-
pographic correction can affect broad-scale land-cover classification
accuracy. In the era of Analysis Ready Data (ARD), an automatic ap-
proach for atmospheric and topographic correction of satellite imagery
covering large areas is of growing importance though. Our aim was thus
to test the feasibility and effectiveness of topographic correction for
large-area mapping, and we selected the Caucasus Mountains as our
study area. The Caucasus Mountains with their high elevation range
and complex land-cover patterns are an ideal study area to assess the
value of topographic correction for land-cover mapping of large areas.

The Caucasus underwent major institutional and political changes
after the collapse of the Soviet Union in 1991 when the transition from
a planned economy to a market-oriented economy altered institutions
and triggered land reforms (Hartvigsen, 2014). The countries of the
Caucasus implemented different land reforms regarding land owner-
ship, affecting primarily agriculture and forests (Hartvigsen, 2013). The
Russian Federation mostly distributed agricultural land through land
shares to individuals, who often leased their acquired land shares back
to large corporate farms, ultimately limiting the fragmentation of the
land ownership. In Georgia, Armenia, and Azerbaijan, collective farms
were privatized, and parcels were distributed to new owners resulting
in a high fragmentation of both ownership and land use with an average
parcel size of< 2.8 ha (Giovarelli and Bledsoe, 2001; Hartvigsen, 2014,
2013; Spoor, 2004; Terra Institute, 2005). Forest was also state-owned
during Soviet times and highly protected under the Soviet forest code
since the 1950s (FAO, 2019). Public ownership and management of
forests remained in the Caucasus region after the collapse (FAO, 2019).
However, enforcement of environmental regulations varies, and there
have been several armed conflicts in the Caucasus region raising the
question of how land cover, particularly cropland and forest, has
changed since the collapse.

Our overall goals were thus 1) to compare large-area Landsat clas-
sification accuracy for non-topographically-corrected versus imagery
that was topographically-corrected with an enhanced C-correction, and
2) to map gains and losses of croplands and forests, the timing of these
changes, and differences in these change trajectories among countries,
across the Caucasus Mountains from 1987 to 2015. These two goals
were mutually dependent. Our first, technical goal required to evaluate
a land-cover classification in a large mountainous region, and our
second goal, mapping land-cover changes in a mountainous region with
steep terrain required topographic correction to obtain accurate results.
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2. Methods

2.1. Study area

Our study area encompassed Georgia, Armenia and Azerbaijan in
the south (South Caucasus) and parts of the Russian Federation in the
north (North Caucasus), with a total area of 455,000 km2 and included
two major mountain ranges: the Greater Caucasus Mountain Range and
the Lesser Caucasus Mountain Chain (Fig. 1) (Zazanashvili et al., 2012).
The mountains in the Greater Caucasus range from 500 to 3000m a.s.l.
in the west but are lower eastwards towards the Caspian Sea
(Volodicheva, 2002). The so called Side or Parallel range contains the
tallest mountains peaking at 5642m a.s.l. at Mount Elbrus in the wes-
tern part. Precipitation exceeds 2000mm per year in the coastal area
close to the Black Sea (Zazanashvili et al., 1999). The majority of the
mountains in the Lesser Caucasus range from 2000 to 2800m a.s.l. in

the west and 2500 to‐3300m a.s.l. in the south-east with the highest
point of 4090m a.s.l. at Mount Aragats in Armenia (Volodicheva,
2002). Similar to the Greater Caucasus, the Lesser Caucasus has wet
climate in its western part, but is more continental and dry in the
eastern and south-eastern parts (Zazanashvili et al., 1999).

The Caucasus region contains seven major vegetation zones: deserts
and semi-deserts, steppes, sparse arid woodlands, forests, subalpine
woodlands, subalpine meadows, and alpine meadows (Gulisashvili,
1964; Volodicheva, 2002). Semi-deserts occur in southern Armenia and
Nikhichevan, Azerbaijan, and along the coast of the Caspian Sea.
Steppes occur in both the North Caucasus and South Caucasus, but have
been heavily modified by humans and are largely replaced by agri-
culture. In the Russian part, secondary steppe occurs on the highlands
of Stavropol and on lower elevation slopes of the Greater Caucasus. In
the south, steppes occur on plains and upper mountain ranges of Ar-
menia. The transitional zone between semi-desert and forests is

Fig. 1. Overview of the 35 WRS2 Landsat footprints covering the Caucasus study area between the Black Sea and the Caspian Sea, including parts of the Russian
Federation in the north, and Georgia, Armenia and Azerbaijan in the south.
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typically covered by sparse arid woodland. Natural formations of this
vegetation type remain in eastern Georgia, Azerbaijan, and Karabakh.
Forests span across the entire Caucasus and occur from sea level up to
2700m a.s.l. Forests are often dominated by one or two species and
species'-rich forests are fairly rare. Mixed and coniferous forests, in-
cluding spruce (Picea orientalis), fir (Abies nordmanniana), and pine
(Pinus spp.), are typical for the western part of the Caucasus at higher
altitudes, whereas deciduous forests, including monodominant beech
(Fagus orientalis), oak (Quercus spp.), oak and hornbeam (Qercus-Car-
pinus caucasica), and chestnut and hornbeam (Castanea sativa-Carpinus
caucasica), are typical at lower elevations and towards the east. Forests
transition into subalpine woodlands in higher altitude, but both being
threatened by wood cutting and grazing. Subalpine woodlands are
succeeded by subalpine meadows and alpine meadows between 2300
and 3700m (Gulisashvili, 1964; Volodicheva, 2002).

The countries of the South Caucasus, i.e., Georgia, Armenia, and
Azerbaijan are relatively small with a population of 3.7 million, 2.9
million, and 9.6 million in 2015, respectively (World Bank Data,
2019a), especially when compared to their northern neighbor, the
Russian Federation. Russia's North Caucasian Federal District, which
covers parts of our study area, had a population of 9.4 million in 2010
(Rosstat, 2010). Both the North Caucasus and the countries of the South
Caucasus are highly agrarian and have a high rural population
(Holland, 2016; Lerman, 2009; O'Loughlin et al., 2007). The agri-
cultural sector is important for employment, economic growth, poverty
reduction, and food security (Welton et al., 2013). Agricultural em-
ployment rates in Georgia, Armenia, and Azerbaijan were 44%, 35%,
and 36% in 2015 and agriculture provided 7%, 18%, and 6% of the
country's GDP respectively in 2010 (World Bank Data, 2019b). Agri-
culture is predominantly carried out by individual households and is
often a mix of crop and fruit production and small-scale animal hus-
bandry, with specific products such as wine, nuts, cognac, or sugar
concentrated in individual countries (Ahouissoussi et al., 2014; Welton
et al., 2013). The republics of the North Caucasus were famous for their
potato production during Soviet times, but the economy of the region
was weaker compared to other republics in Russia after the collapse.
Although increasing social polarization occurred in the North Caucasus,
agriculture remains important for rural livelihoods and some republics
experienced rising consumer demands, which created an increase of
agricultural products such as wheat, corn, sunflower, and fruits
(O'Loughlin et al., 2007; Rada et al., 2017).

2.2. Image processing

We processed 12,651 L1T Landsat TM/ETM+/OLI images from the
USGS archive acquired between 1985 and 2016, i.e., all available
images with<70% cloud cover for 35 WRS-2 footprints covering the
Caucasus Mountains (Fig. 1). We processed the imagery with the Fra-
mework for Operational Radiometric Correction for Environmental
monitoring (FORCE) software (version 1.1 beta, available at http://
force.feut.de) (Frantz, 2019; Frantz et al., 2016). FORCE is based on the
radiative transfer theory and includes both atmospheric and topo-
graphic correction, as well as a correction for adjacency effects to es-
timate Bottom-of-Atmosphere (BOA) reflectance. Topographic correc-
tion is included in the form of an enhanced C-correction in FORCE
(Frantz et al., 2016). Please refer to Appendix A at the end of the paper
for a detailed description of FORCE and the implemented topographic
correction.

All images were projected to Lambert Azimuthal Equal Area
(Datum: WGS 1984, latitude of origin: 42.5, central meridian: 43.5)
with a spatial resolution of 30m and were organized as data cubes with
a tile size of 30× 30 km.

In order to generate a gap-free dataset of clear-sky observations, we
used FORCE to calculate pixel-based composites for six target years
(1987, 1995, 2000, 2005, 2010, 2015, including +/− 1 year for 1995,
because we expected most changes during the transition period, and

+/− 2 years for the others ones). We analyzed multi-year time steps,
because image availability from 1987 to 1995 was too limited for an-
nual analyses (SI Fig. A1).

We embedded land surface phenology in the compositing process to
account for phenological differences related to both climatic variability
and topographic complexity (Frantz et al., 2017). We calculated land
surface phenology by pooling all available observations across all years
to one annual set, because the number of cloud-free Landsat pixels was
too limited to derive annual phenology, especially from 1985 to 1995.
We used the Spline analysis of Time Series (SpliTS) algorithm to cal-
culate land surface phenology (Mader, 2012). SpliTS derives phenolo-
gical parameters (e.g., beginning and end of the growing season) by
fitting polynomial splines to a time series of enhanced vegetation index
(EVI) values and extracts parameters thereof. The pixel-based land
surface phenology dynamically adjusts the target date for each pixel in
an image composite (Frantz et al., 2017). We choose the following key
vegetation stages such as start of season (SOS), which is the timing of
year when vegetation growth begins, peak of season (POS), which is
timing of maximum vegetation growth, and end of season (EOS), which
is the timing when senescence occurs, for our analysis. We defined the
extracted phenological parameters, i.e., SOS, POS, and EOS as the an-
chor sequence for the three image composites (SI Fig. A2). We calcu-
lated land surface phenology only for one set of imagery, the un-
corrected images, because our motivation for calculating this
phenology was to account for the strong climatic gradient from east to
west, and the elevation gradient. Furthermore, we needed to ensure
that the target dates for our composites were the same for both the
topographically-corrected and non-topographically corrected datasets.
We determined the suitability of each observation for each seasonal
composite based on several scores, i.e., acquisition day, acquisition
year, distance to clouds or cloud shadows, potential contamination with
haze, spectral correlation, and off-nadir view angle. A detailed de-
scription of the derivation of these scores is provided in Frantz et al.
(2017). The total score ST was computed as the weighted linear com-
bination of the scores following Frantz et al. (2017):

=S
WS
WT

(1)

where S denotes the phenology-adapted suitability of the acquisition
day (SD) and year (SY), the probability of cloudiness (SC), the potential
contamination with haze (SH), the spectral correlation (SR) and the view
zenith angle (SV), and W denotes the weight for each score. The highest
total score defined the best observation which in turn was used for the
seasonal composite (Frantz et al., 2017). In addition we calculated
spectral-temporal metrics for each season to take advantage of all clear
observations and to represent the variability of the land surface during
the compositing period (target year +/− 2 years) (Frantz et al., 2017;
Griffiths et al., 2013) (SI Fig. A3, SI Table A1, SI Table A2). We cal-
culated average, 25% quantile, 50% quantile, 75% quantile, range,
standard deviation, and the number of observations for each spectral
band for each of the three seasons.

In order to quantify the effect of topographic correction on land-
cover classification, we calculated one set of Landsat imagery and
seasonal composites for 2015 that were topographically-corrected and a
second set of Landsat imagery and composites that were not topo-
graphically-corrected (detailed workflow SI Fig. A4).

2.3. Land-cover classification with and without topographic correction

In our land-cover classifications we separated 10 land-cover classes
namely coniferous forest, mixed forest, deciduous forest, barren, ran-
geland, cropland, built-up, wetlands, water, and snow and ice. In order
to obtain training samples for all classes, we digitized polygons in areas
that were both homogenous and stable over time according to high-
resolution imagery in Google Earth, field visits, and the Climate Engine
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web app (Huntington et al., 2017) and assured that training samples
were located across the study area to capture the heterogeneity of the
landscape. Forest types were identified based on their phenology in fall
and winter imagery and mixed forest was defined as woody vegetation
with neither coniferous nor deciduous tree species covering>70% of
the canopy. Cropland was identified based on the shape of the culti-
vated fields, evidence of plowing, and the homogenous green-up cover
during one year. Areas with sparse vegetation, shrubs, and grassland
were defined as rangeland. Barren was defined as high altitude areas in
rocky terrain and areas with no vegetation cover (SI Fig. A5). We
randomly collected 2000 training pixels within the polygons of each
class with a minimum distance of 30m, and combined these with
training samples that were available for two footprints in our study area
from previous studies that followed the same land-cover classification
scheme and mapped land-cover classes such as stable cropland, as well
as different forest types and grassland (Yin et al., 2018b, Yin et al.,
under review). Our final set of training samples consisted of 9.7%
coniferous forest, 9.1% mixed forest, 10.8% deciduous forest, 10%
barren, 10.1% rangeland, 11.7% cropland, 9.5% built-up, 9.5% wet-
lands, 10% water, and 9.7% snow and ice. As input for our 2015 non-
topographically and topographically-corrected classifications, we used
the three seasonal Landsat composites plus the following spectral-
temporal metrics, i.e., average, 25% quantile, 50% quantile, 75%
quantile, range, standard deviation, and number of observations, cal-
culated for each season (Bleyhl et al., 2017; Griffiths et al., 2013; Yin
et al., 2017). As our classifier, we used the R package ′C5.0′ (Kuhn and
Quinlan, 2018) for all classifications. ′C5.0′ is a decision tree classifier
that consists of a collection of tree-structured classifiers and can ac-
commodate missing values (Friedl et al., 2002; Quinlan, 1986). By
using ′C5.0′ we were able to keep pixels with missing values in the
seasonal composites by using values from the spectral-temporal metrics
layers for the classification instead. We applied adaptive boosting with
100 trials. Ultimately, we calculated the per-pixel class probability
based on the percentage of tree votes for each given class.

Initial results showed strong confusion between built-up, rangeland,
and barren land, with built-up having a high commission error. In order
to better separate the built-up class from other classes, we used class
probability and a calibration approach (Yin et al., 2018a). Specifically,
we sampled 200 validation points with< 50% probability and 200
validation points with>50% probability of the built-up class for each
time step, and labeled them based on high-resolution imagery in Google
Earth. Based on these 400 validation points we calculated user's and
producer's accuracy for different probability thresholds for the build-up
class (i.e., probability> 50%,>60%,>70%,> 80%, and >90%).
The threshold that yielded the most balanced user's and producer's
accuracy was selected for mapping the built-up class (SI Fig. A6) (Yin
et al., 2018a). Every built-up pixel that was below the probability
threshold was assigned to the second-highest ranked class. Further-
more, based on visual interpretation, we label pixels above 2000m a.s.l
that were classified as ‘built-up’ as ‘rangeland’. In a final step, we ap-
plied a minimum mapping unit of 8 connected pixels and assigned
smaller areas to the nearest neighboring class. We applied the same
post-classification rules to both the non-topographically and the topo-
graphically-corrected classification.

In order to understand in which parts of our study area the topo-
graphic correction made the biggest difference, we summarized the
disagreement between the non-topographically-corrected and the to-
pographically-corrected classifications in a 300-m grid. Furthermore,
we summarized the disagreement results based on the cosine correction
term ACC for the annual classification as follows:

= + +A cos
cos i

cos
cos i

cos
cos i

/3CC
SSOS

SOS

SPOS

POS

SEOS

EOS (2)

where ΘS denotes the solar zenith angle and i denotes the solar in-
cidence angle, both for the different seasons. Values above 1 indicate

shaded areas, and values below 1 indicate brightened areas. Cos i is
defined a-s in eq. (6) in Appendix A.

2.4. Land-cover change assessment for 1987, 1995, 2000, 2005, 2010,
and 2015

Based on our results for 2015 (see section 3.1) we analyzed cropland
and forest changes after 1987 using only topographically-corrected
composites because they yielded higher classification accuracy. Data
processing for all the remaining target years (1987, 1995, 2000, 2005,
and 2010) followed the steps outlined for year 2015 in section 2.3. For
our cropland change assessment, we retained two classes, ‘cropland’
and ‘non-cropland’. For the forest change assessment, we aggregated
coniferous, mixed, and deciduous forest to ‘forest’ and the remaining
classes to ‘non-forest’. We applied a post-classification comparison
based on the classification maps for the six time steps. We did not
classify change classes directly, because changes were generally rare
making it infeasible to collect sufficient training samples for each of the
20 changes classes among the six time steps for both cropland and
forest. In a final step, we applied a 3×3 window majority filter for
both the cropland change map and the forest change map to reduce
noise.

To compare cropland loss and gain, and forest loss and gain among
different countries, regions and time steps, we calculated relative net
changes (RNC) following Kuemmerle et al. (2009) as:

=

=

+RNC ( 1)100

i {1987, 1995, 2000, 2005, 2010}

L
L
i 1

i

(3)

where L denotes the land class (either cropland or forest in km2), and i
denotes the time step.

2.5. Accuracy assessment

We validated both the non-topographically-corrected and the to-
pographically-corrected classification map for 2015 by calculating
overall accuracy, user's and producer's accuracy (Congalton, 1991), and
the F1-score. The F1-score was calculated following Powers (2011) as:

=
+

F1 2 UA PA
UA PA (4)

where UA denotes user's accuracy, and PA producer's accuracy. The F1-
score ranges from 0 to 1, being 1 when both UA and PA are 1, and being
0 if either UA or PA is 0. Greater differences between UA and PA result
in a lower F1-score (Powers, 2011).

We selected a disproportionate stratified sampling approach for our
validation samples to account for small classes (Olofsson et al., 2014;
Stehman et al., 2003). We generated a total of 1553 validation samples
(SI Table A3), randomly sampled within each class of the topo-
graphically-corrected map and corrected the resulting confusion matrix
by the area proportions of each class (Griffiths et al., 2014; Olofsson
et al., 2014). For the accuracy assessment of the non-topographically-
corrected map we used the same validation samples. Because the strata
of the topographically-corrected map differed spatially from the non-
topographically-corrected map, we took the inclusion probability of the
validation samples into account to derive unbiased estimators
(Stehman, 2014; Yin et al., 2018b). All samples for the accuracy as-
sessment of the topographically-corrected classification were visually
interpreted and labeled by two independent interpreters using high-
resolution images in Google Earth and time series of the normalized
difference vegetation index (NDVI), the bare soil index (BSI), and tas-
seled cap wetness calculated from the original Landsat imagery for
2015 in Google Earth Engine (Gorelick et al., 2017; Yin et al., 2020a).

For the validation of our change detection maps, we selected new
samples, and calculated overall, user's and producer's accuracies
(Congalton, 1991). For both the cropland and the forest change map we
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aggregated some of the change classes, and kept single classes only
when one consistent change and no deviations in any year occurred
(example 1: 1987-‘95: cropland and 2000-‘15: non-cropland; example 2:
1987-’00: non-cropland and 2005-‘15: cropland). Classes with a de-
viation in any year were aggregated to a ‘transitional’ class (e.g., 1987-
‘95: cropland, 1995-‘00: non-cropland, and 2005-‘15: cropland). We
applied disproportional random sampling for both the cropland and the
forest change map. We randomly selected 50 validation samples for
each cropland and each forest change class. Because the transitional
cropland class was much larger than the transitional forest class, we

selected 150 validation samples for the former and 50 validation sam-
ples for the latter. Furthermore, we selected 150 validation samples
each for the stable non-cropland class, stable non-forest class, stable
cropland class, and stable forest class. In total, we generated 950 vali-
dation samples for the cropland change map and 850 validation sam-
ples for the forest change map (Olofsson et al., 2014). Samples for the
change detection assessment were visually interpreted and labeled by
only one interpreter, who was very familiar with the study region and
the prevailing land-cover changes, using high-resolution images in
Google Earth, and plotting NDVI, BSI, and tasseled cap wetness times

Fig. 2. (A) Topographically-corrected land-cover classification for 2015 and (B) disagreement in percent between non-topographically-corrected and topo-
graphically-corrected classification maps summarized in a 300-m grid for visualization and analysis purposes.
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series based on 1985–2016 Landsat imagery in Google Earth Engine to
detect changes (Gorelick et al., 2017; Yin et al., 2020a). Lastly, we
calculated the error matrix with estimated proportions of area for both
the cropland change map and the forest change map.

3. Results

3.1. Effects of topographic correction on land-cover mapping

Applying topographic correction improved the overall accuracy of
the 2015 classifications from 79.4 ± 0.9% to 81.2 ± 1.8% (SI Table
A4, SI Table A5). The error adjusted area estimates for our topo-
graphically-corrected classes were the largest for rangeland
(175,787 km2± 14,904 km2), followed by cropland (142,669 km2

11,522 km2), deciduous forest (72,669 km2 ±9593 km2), water
(21,066 km2 ± 5210 km2), barren (11,408 km2 ± 3069 km2), wet-
lands (11,062 km2 ± 2308 km2), mixed forest (10,455 km2 ±
3662 km2), coniferous forest 7685 km2 ± 1670 km2), built-up
(1466 km2 ± 2552km2), and ice and snowsnow and ice
(564 km2 ± 135 km2) (Fig. 2, SI Fig. A7).

User's accuracy for the non-topographically-corrected map was

highest for deciduous forest (87%) and lowest for mixed forest (23%)
(Fig. 3). User's accuracy for the topographically-corrected map was
generally higher and highest for rangeland (89%) and lowest for mixed
forest (36%). The topographically-corrected classification had higher
user's accuracies for all three forest types (coniferous forest (65%),
mixed forest (36%), deciduous forest (88%)) compared to the non-to-
pographically-corrected classification (coniferous forest (48%), mixed
forest (23%), deciduous forest (87%)). Producers' accuracy was always
higher for the topographically-corrected classification map, except for
two classes (mixed forest and rangeland). Confidence intervals for
producer's accuracy were always smaller for the topographically-cor-
rected classification, except mixed forest (Fig. 3).

The F1-score of the topographically-corrected map outperformed
the non-topographically-corrected map for all but two classes (barren
and snow and ice) (Fig. 3). Topographic correction improved the F1-
score of the coniferous forest class by 0.15 change points, deciduous
forest by 0.05, mixed forest by 0.04, and rangeland, and cropland by
0.01 change points.

We found that barren, coniferous forest, mixed forest, and decid-
uous forest occurred on steeper slopes (on average 26.57°, 25.97°,
23.15°, and 17.15° respectively). Rangeland occurred on slopes with an

Fig. 3. (A) Area adjusted user's accuracies (UA) and producer's accuracies (PA) of non-topographically-corrected and topographically-corrected classification. Error
bars indicate the 95% confidence intervals. (B) F1-score based on user's and producer's accuracy of non-topographically-corrected and topographically-corrected
classification.
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average of 10.35° and cropland, built-up, wetlands, and water occurred
in flat terrain with an average slope smaller than 3° (SI Table A6). We
found the highest disagreement in class assignments between the non-
topographically-corrected and the topographically-corrected maps
along the crests of both the Greater and the Lesser Caucasus Mountain
ranges (Fig. 2). We observed the lowest agreement for the mixed forest
class (SI Fig. A8). When summarizing the disagreement by ACC, dis-
agreement was generally highest in extreme conditions, i.e., with very
high ACC (Fig. 4). In areas that were moderately shaded or moderately
brightend the disagreement rates were slightly higher for shaded areas
than for bright areas. Disagreement rates were very low for highly
brightend areas, however the percentage of cells, where that was the
case, was less than 0.05% of the study region. In almost flat areas where
the solar zenith angle ΘS and the incidence angle i were roughly the
same, disagreement rates were lowest (7%) (Fig. 4). A good expample
for this are the flat lands of the Northern Caucasus.

3.2. Cropland change

The overall cropland area decreased in all four countries when using
1987 as the baseline (Fig. 5, Fig. 6). The North Caucasus had the least
amount of cropland loss, i.e., only 6% in 2000 compared to 1987. Georgia
had biggest cropland loss in 2005 (−28%) and 2015 (−31%). Armenia
had its highest cropland loss in 2000 (−17%), followed by an immediate
increase in 2005. Armenia was the only country where cropland increased
by 2% in 2010 compared to 1987. Azerbaijan went through the greatest
cropland loss from 1987 to 2005 (−30%), with an increase in 2010 before
again decreasing in 2015 (Fig. 6). Throughout the study region cropland
loss was mainly due to the conversion of cropland to rangeland and only
occasionally due to the conversion to forest. Cropland gain was mostly due
to the conversion of rangeland to cropland (SI Fig. A9).

The North Caucasus had the largest extent of stable cropland
(Fig. 7), 39% of the total land area was continuously in cultivation from
1987 to 2015 there, and only 8% of what was cropland in 1987 was
abandoned in a later year. In contrast, in Georgia, Armenia, and
Azerbaijan, only 7%, 9%, and 10% of the total land area was con-
tinuously cultivated until 2015, and 10%, 10% and 15% of cropland in
1987 was abandoned in each country, respectively (Fig. 7).

Aggregating cropland changes by administrative units (see SI Fig.
A10 for names of administrative units) revealed the substantial spatial
variation in land-cover change trends (Fig. 8). From 1987 to 1995
cropland decreased in all countries but Armenia, where a 6% increase
was observed in its southern regions. Until 2000, Samtskeh-Javakheti
and Shida Kartli in Georgia, as well as Shirak in Armenia showed a
decrease in cropland. At the same time, parts of the North Caucasus,
Kakheti in Georgia, and several regions in Azerbaijan had a slight in-
crease in cropland. Between 2000 and 2005 cropland decreased in the
eastern regions of the North Caucasus, Georgia and in two regions of
Azerbaijan, namely Aran and Lankaran with a decrease of 14.9% and
7.4%, respectively. In Armenia, we found hardly any decrease in
cropland between 2000 and 2005. In Azerbaijan, Aran and Lankaran
had the highest increases of 13.3% and 6.6%, respectively, from 2005
to 2010, the time period during which most areas showed cropland
gains. From 2010 to 2015 we observed a slight decrease in all regions in
the North Caucasus and Georgia, as well as a decrease of 7.2% in Lori,
Armenia. In Azerbaijan we found an increase in most regions, except
Lankaran with a decrease of 7.4% (Fig. 8).

3.3. Forest change

We found far less forest changes than cropland changes (Fig. 9).
Overall, forests increased during our study period (Fig. 10). Most forest
gains occurred along forest edges and on abandoned cropland and were
due to the conversion of barren, rangeland, and cropland to forest
(Fig. 9, SI Fig. A9). Forest loss was scattered throughout the study re-
gion and mostly due to the conversion of forest to rangeland or

cropland (SI Fig. A9).
Forest area increased in the North Caucasus (6%), Armenia (8%),

and Georgia (6%) from 1987 to 2015, and only Azerbaijan experienced
a decrease of forest compared to 1987 (−4%) (Fig. 10). The highest
forest loss rates of 6% occurred in Azerbaijan between 2000 and 2005
(Fig. 10).

We found the highest forest loss rates in earlier years and less forest
loss in later years. The highest forest loss rates from 1987 to 1995 were
in mountain regions in the North Caucasus, in two regions in Georgia
and in the northern part of Azerbaijan (Fig. 11). During that time,
Kalbajar-Lachin in Azerbaijan and Racha-Lechkhumi-Kvemo Svaneti in
Georgia had the highest forest gain of 4.7% and 4.2%, respectively.
From 1995 to 2000 more regions experienced forest loss than forest
gain, with the highest forest loss rates occurring in two regions in
Georgia, concomitant to the highest forest gain in Georgia. Between
2000 and 2005, forest loss was again more widespread than forest gain,
although forest losses in the northern part of the Caucasus were minor,
whereas the southern part of the Caucasus showed higher forest losses,
especially in Azerbaijan. The highest forest gain occurred in Georgia
(Imereti, 2.6%) and Armenia. From 2005 to 2010 forests mostly in-
creased in Georgia, with a forest gain up to 6% in Guria. Lankaran in
Azerbaijan had the highest forest loss (2.7%) for this time period. From
2010 to 2015, only one region in Georgia showed a decrease in forest
higher than 2%, all other areas were more or less stable (< 1.9%
change) or experienced forest gain (Fig. 11).

3.4. Change accuracy assessment

Our cropland change map had an overall accuracy of 75.7 ± 2.6%,
but with high variation among classes (Table 1). We observed highest
user's and producer's accuracies of 97% and 78%, respectively, for non-
cropland, and 71% and 88%, respectively, for stable cropland. Cropland
change classes obtained much lower accuracies ranging from 8% to
43% for user's accuracy, and from 9% to 68% for producer's accuracy.
Confusion occurred mainly between the non-cropland and stable
cropland classes, and change classes often showed confusion with the
previous or following time step, i.e., the change was mapped correctly
but its timing was not (Table 1).

The overall accuracy for the forest change map was 90.2 ± 2.7%,
and similar to the cropland change map with high variation among
classes (Table 2). We found highest user's and producer's accuracies of
95% and 97%, respectively, for non-forest, and 95% and 83%,

Fig. 4. Mean disagreement in percent between the non-topographically-cor-
rected and the topographically-corrected classification in a 300-m grid based on
the mean annual values of ACC for 2015. Please note that bin sizes on the ex-
treme ends differ (0.75 < ACC≤0.80, ACC > 1.95).

J. Buchner, et al. Remote Sensing of Environment 248 (2020) 111967

8



respectively, for stable forest. Our forest gain classes had lower pro-
ducer's accuracies from 5% to 30%, and higher user's accuracies from
22% to 36%. The forest loss classes had higher producer's accuracies
from 14% to 78%, but lower user's accuracies from 4% to 24%. Forest
change classes, similar to cropland, often showed confusion with the
previous or the following time step (Table 2).

4. Discussion

4.1. Effects of topographic correction on land-cover mapping

Land cover in mountainous regions is notoriously difficult to map
with satellite images, because high variation in illumination conditions
introduces errors in land-cover classifications. Here we show that

topographic correction for large-area and long-term analyses is feasible
and can improve classifications considerably. Our results are in line
with previous studies for small study areas that showed that topo-
graphic correction improves the separation of forest types (Pimple
et al., 2017; Vanonckelen et al., 2013), and these results make sense
given that forests are often found in steep terrain where topographic
correction has the largest effect. Topographic correction also enhanced
the separation of forests from other land-cover classes, such as range-
land. By applying topographic correction, we were able to improve our
large-area land-cover classifications, and hence our broad-scale land-
cover change assessment.

The overall accuracy of the topographically-corrected classification
map improved by only 2% compared to uncorrected imagery. The
reason why that number was relatively low was that the large northern

Fig. 5. Cropland gain and loss in the Caucasus region from 1987 to 2015. The transitional cropland class contains pixels that alternated between cropland gain and
loss. Zoom-ins show (A) cropland loss in Chechnya (Russian Federation), (B) cropland loss in parts of Guria and Samegrelo-Zemo Svaneti (Georgia), and (C) cropland
gain in Aran (Azerbaijan).
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part of our study area has little topography and that is where mostly
cropland and rangeland occur. Topographically-corrected imagery im-
proved the classification especially in areas with extreme illumination
conditions. In areas with steep topography, differences between the
classification of topographically-corrected and uncorrected imagery
were substantial, similar to what has been found previously
(Vanonckelen et al., 2013; Yin et al., under review) and especially the
accuracies for forest classes were higher when topographic correction
was applied (Huang et al., 2008). Only two of our land-cover classes,
barren and snow and ice, had a slightly higher F1-score for the non-
topographically corrected classification. In a previous study of topo-
graphic correction methods for different land-cover classes (Sola et al.,
2016), the intraclass interquartile range (IQR) reduction was best for
the rock class, suggesting that this class is very homogenous and
therefore its reflective behavior more controlled. In our case, barren

Fig. 6. Relative cropland change for six time steps with 1987 as baseline for the North Caucasus (Russian Federation), Georgia, Armenia and Azerbaijan. Note that
the y-axis starts at 50%.

Fig. 7. Percentage of stable active cropland from 1987 to 2015 (dark grey) and
of cropland in 1987 that was subsequently abandoned (light grey).

Fig. 8. Cropland change aggregated for administrative units of the North Caucasus (Russian Federation), Georgia, Armenia and Azerbaijan. Please refer to sup-
plemental information Fig. A10 for names of administrative units.
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and snow and ice were not homogenous, but rather often a mix of rock
and ice that occurred in heavily jointed terrain with cast-shadows and
very low illumination conditions. It is likely that a low availability of
same-class pixels in the local pixel neighborhood resulted in an un-
reliable estimate of the regression parameters for the C-factor. Thus, the
topographic correction potentially produced less accurate corrections.
Indications for this can be derived from SI Fig. A11, where a lower
number of same-class pixels is apparent for snow-covered areas – al-
though a lower number of available pixels does not result in lower R2

for all land-cover classes. A second potential reason for the slightly
higher F1-scores for barren, and snow and ice are errors in the SRTM,
both in terms of geolocation relative to Landsat and the SRTM height
estimates. In high relief areas with steep slopes and high elevation,

SRTM tends to underestimate both slope and elevation (Guth, 2006;
Mukul et al., 2017), and that may have adversely affected our topo-
graphic corrections. The highest disagreement rate between the two
classification maps occurred in areas with extreme illumination con-
ditions. In these areas, rangeland pixels were misclassified as deciduous
forest, and deciduous forest was misclassified as mixed forest, when
using uncorrected imagery. This is in line with a previous study that
found that land-cover mapping accuracies for uncorrected images were
lowest in very low and high illuminated areas (Moreira and Valeriano,
2014). Results from Vanonckelen et al. (2013) show similar results that
the largest accuracy improvements were obtained in low illuminated
areas. The disagreement between our two maps was lowest in areas
where cos ΘS and cos i were similar, which is the case in areas where

Fig. 9. Forest gain and loss in the Caucasus region from 1987 to 2015. The transitional forest class contains pixels that alternated between forest gain and loss. Zoom-
ins show (A) forest loss in Sochi (Russian Federation), (B) forest gain in Guria and Samegrelo-Zemo Svaneti (Georgia), and (C) forest gain in Chechnya (Russian
Federation).
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Fig. 10. Relative forest change for six time steps with 1987 as baseline for the North Caucasus (Russian Federation), Georgia, Armenia and Azerbaijan. Note that the
y-axis starts at 50%.

Fig. 11. Forest change aggregated for administrative units of the North Caucasus (Russian Federation), Georgia, Armenia and Azerbaijan. Please refer to supple-
mental information Fig. A10 for names of administrative units.

Table 1
Error matrix (area proportion in percent) for user's accuracy (UA) and producer's accuracy (PA) for cropland change map (NC=non-cropland, TC= transitional
cropland, SC= stable cropland, CG= cropland gain, CL= cropland loss) for topographically-corrected images for the five time intervals.

Reference

Class NC TC SC CG15 CG10 CG05 CG00 CG95 CL95 CL00 CL05 CL10 CL15 UA

Classification NC 52.05 0.00 0.72 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.36 0.00 0.00 96.67
TC 8.55 7.39 0.92 0.00 0.00 0.00 0.00 0.00 0.23 0.23 0.00 0.00 0.00 42.67
SC 1.54 3.51 15.01 0.00 0.00 0.00 0.14 0.14 0.00 0.00 0.14 0.42 0.14 71.33
CG15 0.61 0.08 0.00 0.07 0.05 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 8.00
CG10 0.25 0.04 0.01 0.01 0.07 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 18.00
CG05 0.17 0.05 0.01 0.00 0.01 0.05 0.00 0.00 0.00 0.01 0.00 0.00 0.00 16.00
CG00 0.21 0.04 0.03 0.00 0.01 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 10.00
CG95 0.30 0.21 0.19 0.00 0.06 0.00 0.06 0.11 0.02 0.00 0.00 0.00 0.00 12.00
CL95 1.60 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00 20.00
CL00 0.40 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.14 0.06 0.00 0.00 18.00
CL05 0.23 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.12 0.00 0.00 26.00
CL10 0.12 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.07 0.08 0.05 0.00 12.00
CL15 0.39 0.22 0.11 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.02 0.09 0.15 14.00
PA 78.36 62.43 88.07 15.52 36.33 67.60 13.99 44.59 33.91 25.98 15.48 9.31 52.16 75.7 ± 2.6
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the topographic effect is minimum, such as in flat terrain, which was in
our study area especially the case in the Northern Caucasus. We further
found that within the total area where the land-cover classification
differed, shaded pixels were more common than brightened pixels. For
brightened pixels topographic correction mainly has to correct for
geometric terms, whereas in shaded areas, direct illumination is re-
duced, resulting in larger correction factor areas, and consequently
higher disagreement rates, too. This result is in line with Dorren et al.
(2003), who found that classification errors for uncorrected images are
more common for pixels with high incidence angles. Another reason for
the lower disagreement rates in brightened areas may be the favored
distribution of training samples in sunlit areas and therefore an opti-
mized classification result (Meyer et al., 1993).

We found that in mountainous regions topographic correction is
particularly valuable for distinguishing forest types, especially in a
study region such as the Caucasus, where most forest occurs in rugged
terrain. The mixed forest class had the highest disagreement between
the non-topographically-corrected and topographically-corrected maps,
which is similar to previous studies (Hill et al., 1995; Meyer et al.,
1993). When illumination conditions are high, mixed forest is mis-
classified as deciduous forest, and when illumination conditions are
low, mixed forest is misclassified as coniferous forest. By using topo-
graphically-corrected imagery, we greatly reduced the classification
error among forest types, thereby improving the F1-score for all three
forest types.

4.2. Cropland and forest change assessment

Our study presents the first broad-scale land-cover change assess-
ment for the Caucasus Mountains that spans the entire 30-m resolution
Landsat record. We successfully mapped cropland and forest changes
over a large spatial extent with high-temporal frequency. By mapping
the Caucasus Mountains frequently and identifying the timing of
cropland and forest change, we provide important information to un-
derstand determinants for land change processes.

We found a general decline in cropland from 1987 to 2000 (North
Caucasus, Georgia, Armenia) and 2005 (Azerbaijan), similar to what
occurred elsewhere in Eastern Europe and former Soviet Union coun-
tries (Estel et al., 2015; Kraemer et al., 2015; Kuemmerle et al., 2006;
Schierhorn et al., 2013). However, we were surprised to find though
that the North Caucasus had much less cropland loss than temperate
European Russia, the Baltics, and Ukraine (Alcantara et al., 2013;
Prishchepov et al., 2013). Our rates of cropland loss were also con-
siderably lower than what had been previously estimated based on the
mapping of early-successional woody vegetation as a proxy of aban-
donment, but those maps were based on 250-m MODIS data (Alcantara

et al., 2013), which may be too coarse for the finely grained cropland
cover in the Caucasus Mountains (Yin et al., 2019; Yin et al., 2018b).

Interestingly, we detected much more stable cropland in the North
Caucasus compared to Georgia, Armenia, and Azerbaijan, although the
agricultural sector of all four countries underwent major land reforms
after the collapse of the Soviet Union (Lerman, 2006). A possible ex-
planation for observed differences may be the differences in land dis-
tribution (Spoor, 2012). In Georgia, Armenia, and Azerbaijan, land of
collective farms was distributed among community members and vil-
lagers (Hartvigsen, 2014). Communities with higher population density
received smaller parcels resulting in highly fragmented land ownership,
which may have hampered cultivation if parcels were far apart from
each other. In contrast, in the Russian Federation, land distribution was
carried out through land shares and the structure of the collective farms
was often maintained resulting in less ownership fragmentation
(Hartvigsen, 2014; Spoor, 2012). Another possible reason for higher
rates of stable agriculture in the North Caucasus could be market de-
mand, market accessibility and cost of cultivation (Rada et al., 2017). In
the North Caucasus, the internal demand and access to the main market
(the Russian Federation) did not change considerably shortly after the
collapse of the Soviet Union. In the South Caucasus however, crop
production that was oriented towards the Russian market (e.g. tea)
became problematic, due to, among others factors, increased trans-
portation costs and rising competition with other countries
(Kochlamazashvili and Kakulia, 2013; O'Loughlin et al., 2007). Further,
the plains of the North Caucasus with fertile chernozem soils and good
climatic conditions make cultivation much easier than the hilly terrain
of the South Caucasus (Afonin et al., 2008; de Beurs et al., 2017). The
South Caucasus, especially the eastern part, is also prone to climate
change. Droughts, heat events and water stress, as well as insufficiently
managed irrigation and drainage systems, make cropland cultivation
challenging (Ahouissoussi et al., 2014; Elizbarashvili et al., 2018).

We found that forest change rates in the Caucasus between 1987
and 2015 were smaller than forest changes in Central and Eastern
Europe, and the former Soviet Union during the same time (Baumann
et al., 2012; Griffiths et al., 2014; Potapov et al., 2015), which also
surprised us. In general, we found a slight increase in forest cover for
the North Caucasus, Georgia and Armenia since 1987, but a decrease
until 2005 for Azerbaijan. Forest gain was often due to the conversion
of cropland or rangeland to forest. Forest recovery on abandoned
agricultural fields is common across former Soviet countries (Griffiths
et al., 2014). Our results generally matched those from prior case stu-
dies of parts of our study area. For the war-torn regions Chechnya and
Nagorno-Karabakh, located in Kalbajar-Lachin and Yukhari-Karabakh,
we found very low rates of both forest loss and forest gain, and cropland
change dominated, similar to previous results (Baumann et al., 2015;

Table 2
Error matrix (area proportion in percent) for user's accuracy (UA) and producer's accuracy (PA) for forest change map (NF=non-forest, TF= transitional forest,
SF= stable forest, FG= forest gain, FL= forest loss) for topographically-corrected images for the five time intervals.

Reference

Class NF TF SF FG15 FG10 FG05 FG00 FG95 FL95 FL00 FL05 FL10 FL15 UA

Classification NF 73.46 0.00 0.51 1.54 1.03 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 95.33
TF 1.33 0.63 1.72 0.00 0.08 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.08 16.00
SF 0.00 0.00 15.50 0.00 0.33 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.11 95.33
FG15 0.14 0.00 0.08 0.16 0.04 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 36.00
FG10 0.04 0.00 0.05 0.03 0.07 0.02 0.01 0.02 0.00 0.00 0.00 0.00 0.00 30.00
FG05 0.04 0.00 0.04 0.00 0.01 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 34.00
FG00 0.04 0.02 0.12 0.00 0.01 0.01 0.06 0.01 0.00 0.00 0.00 0.00 0.00 22.00
FG95 0.06 0.04 0.31 0.01 0.00 0.02 0.00 0.15 0.00 0.00 0.00 0.00 0.00 26.00
FL95 0.37 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 4.00
FL00 0.09 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.00 12.00
FL05 0.03 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.01 0.00 24.00
FL10 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 20.00
FL15 0.04 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 20.00
PA 97.07 87.71 83.43 9.24 4.73 9.18 34.28 29.84 63.66 40.58 77.93 53.50 14.06 90.2 ± 2.7
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Yin et al., 2018b). For Georgia, a previous study found 0.8% forest loss
from 1990 to 2000 and forest gain was miniscule (0.09%, (Olofsson
et al., 2010). We found an overall slight increase of 1.17% in forest
cover between 1987 and 2000 across Georgia and some forest gains
along forests edges and on abandoned fields in Abkhazia, which may be
related to the armed conflict there in the early 1990s. In the North
Caucasus, our results are in line with a previous study that detected
large areas of forest loss related to the Olympic Games in Sochi in 2014
(Bragina et al., 2015).

In general, the reasons for forest change in the Caucasus Mountains
are multifold, but are most likely primarily a result of the political si-
tuation, illegal logging, and sheep and cattle grazing (FAO, 2019). The
increase in forest in Georgia and Armenia is likely related to the re-
duction of sheep grazing. After the collapse of the Soviet Union not only
did the demand for sheep decrease, but the herds from Georgia also lost
access to winter pastures in Dagestan (North Caucasus) (Radvanyi and
Muduyev, 2007). As a result, forests started to regrow on former pas-
tures in the mountains. A similar decline in sheep herds was observed in
Armenia, when the Azerbaijani population moved to Azerbaijan after
the start of the Nagorno-Karabakh conflict and forests started to regrow
in some areas of former rangelands located within forested zones. Yet,
in Azerbaijan pressure from sheep grazing on mountain grasslands in-
creased since the collapse of the Soviet Union and may have resulted in
forest loss (de Leeuw et al., 2019) and cattle grazing inside forests is
causing forest degradation (UNECE and FAO, 2019). Another reason for
forest loss in all four countries between 1987 and 2000/2005 was the
unstable political situation. The forest sectors suffered from weak law
enforcement and illegal logging both for fuelwood by the local popu-
lation and for wood export by companies (FAO, 2015; Ozdogan et al.,
2017). Illegal forest cutting has been identified as one of the main
threats to biodiversity in the Caucasus (Zazanashvili et al., 2012).
However, most forests occur in high elevation making transportation
costly. Further, the establishment of many protected areas with rela-
tively high protection status in the last 20 years likely protected forest
from large clear cuts and broad-scale exploitation.

4.3. Limitations

To our knowledge, this is the first broad-scale land-cover change
assessment for the Caucasus Mountains back to the 1980s. However, we
acknowledge that our maps have some limitations. In order to account
for the climatic variability in our study region we integrated phenology
for each pixel. Unfortunately, the number of cloud-free Landsat pixels
was very limited in some years and consequently we had to average
phenology across all years. Moreover, to generate gap-free composites
we had to use satellite observations acquired within 1 or 2 years of the
target year. Both steps reduced the temporal accuracy of our maps. This
is why we restricted our land-cover change assessment to only two
trajectories (gain and loss) and aggregated more complex changes to
one transitional class, which improved change classification accuracies
but prohibited an analysis of re-cultivation. Further, because of the lack
of ground truth, most of our training samples were gathered using vi-
sual image interpretation. Labeling errors may have biased our accu-
racy assessment, but collecting a sufficient amount of error-free re-
ference to validate land-use change maps over a large area is
challenging (Stehman and Foody, 2019), and was not feasible for our
study.

Our change detection maps had overall high accuracy, but user's
and producer's accuracies for change classes were low. Validating a
large number of change classes is challenging, especially for small
change classes (Stehman and Foody, 2019). In our case, 19 out of the 20

change classes covered less than 1% of the study area, making it diffi-
cult to achieve high area adjusted user's and producer's accuracies.
However, change classes often showed confusion with the previous or
following time step, indicating that the changes are mapped correctly,
but the exact timing may be shifted by one time step. Cropland change
mapping is especially difficult in areas where the climate is highly
variable, and where a variety of cropland cultivation methods are ap-
plied. Furthermore, non-intensively managed fields in arid regions are
spectrally very similar to rangelands. For forest change maps, forest
gain is typically more difficult to map than forest loss, because it occurs
gradually and its timing is difficult to determine (Hansen et al., 2010; Li
et al., 2017). Spectral similarities between orchards, vineyards, and
forests also resulted in some classification errors. Lastly, we were not
able to detect sub-pixel-level changes, which is unfortunate because
overgrazing and selective logging are the dominant threats to forests,
not large clear cuts (FAO, 2019).

5. Conclusion

We applied an integrated atmospheric and topographic correction
approach and mapped land-cover changes in the Caucasus Mountains
from 1987 to 2015 based on the full Landsat archive. In deriving our
topographically-corrected land-cover classification, we demonstrated
that it is feasible to correct for topographic effects when mapping large
areas. The resulting maps were considerably more accurate, especially
where the terrain is steep. It follows that we recommend making an
integrated atmospheric and topographic correction of Landsat satellite
imagery a matter of routine in mountainous regions to ensure accurate
land-cover classifications. We found that the majority of the land-cover
changes in the Caucasus were related to cropland changes that occurred
between 1987 and 2005. Cropland was much more stable in the
northern part of the Caucasus (the Russian Federation) compared to the
southern countries, Georgia, Armenia, and Azerbaijan. In the South
Caucasus, cropland was much more variable and the amount of culti-
vated cropland dropped especially from 2000 to 2005. Few changes
occurred in forests, and forest loss and forest gain had similar magni-
tude. The observed changes are most likely connected to the collapse of
the Soviet Union in 1991, and the subsequent land reforms and armed
conflicts during the 1990s.
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All land-cover maps can be downloaded at http://silvis.forest.wisc.
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Appendix A. Methods - FORCE and implemented topographic correction

The framework for operational radiometric correction for environmental monitoring (FORCE) is a software to enable mass-processing of medium-
resolution satellite imagery for large area applications. The FORCE Level 2 Processing system (L2PS) masks clouds, cloud shadows and snow pixels
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with an extended Fmask algorithm, which drops the termination criterion to increase cloud classification producer's accuracy, and includes a
darkness filter to counteract false positives in dryland areas (modifications are described in Frantz et al., 2015; Zhu et al., 2015; Zhu and Woodcock,
2012). The cloud masking was evaluated in the Cloud Masking Inter-comparison Exercise (Earth ESA, 2016).

The atmospheric correction in FORCE L2PS is based on radiative transfer theory (Tanre et al., 1979) and includes integrated atmospheric and
topographic correction, as well as a correction for adjacency effects to estimate Bottom-of-Atmosphere (BOA) reflectance (Frantz et al., 2016).
Aerosol optical depth is estimated for each image over dark water and dense dark vegetation objects using multiple scattering. A precompiled water
vapor database (Frantz et al., 2019; Frantz and Stellmes, 2018) was derived from MODIS (Gao and Kaufman, 2003) to correct for gaseous absorption
(Frantz et al., 2016). The performance of the atmospheric correction implemented in FORCE was compared to other approaches (including ATCOR,
LaSRC, and Sen2Cor) in the Atmospheric Correction Intercomparison eXercise (ACIX) (Doxani et al., 2018). In those comparisons, FORCE produced
high quality estimates of aerosol optical thickness and surface reflectance that were similar to those from LaSRC. The second edition of ACIX will
include more in the depth comparison using a much larger reference dataset (Earth ESA, 2016).

The topographic correction algorithm in FORCE L2PS is an enhanced C-correction based on the theoretical principles outlined in Kobayashi and
Sanga-Ngoie (2008) and on the predecessor algorithm described in Frantz et al. (2016). The topographic correction is closely integrated with
atmospheric correction featuring both empirical and physical terms.

The traditional C-correction complements the cosine correction with a factor C (Teillet et al., 1982):

= +
+

A cos C
cos i C

S

(5)

where cos i represents the illumination angle and is defined as:

= +cos i cos cos sin sin cos( )S n S n S n (6)

with ΘS being the solar zenith angle, Θn the topographic slope angle, ФS is the solar azimuth angle, and Фn is the aspect angle of the topographic
surface (Civco, 1989). Cos i ranges from −1 (minimum illumination) to 1 (maximum illumination). Values below 0 do not receive direct radiance.
The subscript λ indicates terms that are dependent on wavelength.

The C-factor is assumed to model the contribution of the diffuse illumination (Teillet et al., 1982) and thus the C-correction is less affected by
overcorrection in poorly illuminated areas because Cλ has a moderating influence on the cosine correction (Teillet et al., 1982). Commonly, Cλ is
empirically derived from a linear regression between the at-satellite radiance or reflectance and the illumination angle:

=C b
m (7)

with bλ and mλ being the intercept and slope of the regression line, respectively. The empirical estimation of Cλ accounts for non-Lambertian
scattering of the surface target (Teillet et al., 1982). However, due to different Lambertian characteristics of different land surfaces, it is generally
advised to estimate Cλ for at least vegetated and non-vegetated surfaces separately, e.g., by applying an NDVI threshold and to exclude relatively flat
pixels (e.g. Hantson and Chuvieco, 2011). Frantz et al. (2016) analyzed the performance of approx. 40,000 C-corrected Landsat images, and results
indicated that the correction was generally successful for the near and shortwave infrared bands, whereas topographic correction results for the
visible bands were not a substantial improvement over non-corrected imagery for a considerable share of images. Frantz et al. (2016) concluded that
this was likely due to the lack of a relationship between radiance and illumination angle in the visible bands when aerosol optical depth was high,
i.e., when a strong and spatially homogeneous diffuse illumination component affected both sunlit and shaded areas.

Kobayashi and Sanga-Ngoie (2008) proposed that the topographic correction factor Aλ can be expressed with consideration of diffuse and direct
illumination components as:

= +
+

A cos f cos
cos i h f cos

S S

S (8)

where h is the portion of the sky dome diffusing on to the tilted surface:

=h 1 ( in radians)n
n (9)

and fλ is the proportionality factor between the direct Eb, λ and the diffuse Ed, λ irradiance reaching the horizontal surface:

=f
E
E

d,

b, (10)

Kobayashi and Sanga-Ngoie (2008) derived that Cλ can be expressed as:

=C h f cos0 S (11)

with h0 being the h-factor at cos i=0, and can be expressed as:

= +h 2
2

( in radians)0
S

S (12)

When combining eq. 8 and 11, the A-factor becomes:

= +
+

A cos C h
cos i C h h

S 0
1

0
1 (13)

Thus, if direct and diffuse illumination terms are known, and that is the case when the topographic correction is integrated with atmospheric
correction, the topographic correction factor can be computed. However, the reader may notice that this formulation of Cλ only takes into account
the diffuse illumination, but not land surface characteristics such as non-Lambertian behavior. Therefore, an image-based estimation of Cλ might still
be more practical. Nevertheless, as 1) Cλ can be modelled when direct and diffuse components are available, and 2) the empirical estimation of C is
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most successful for the SWIR2 band, but 3) might fail for the visual bands, it is feasible to empirically estimate C in the SWIR2 band only (CSW2) and
then propagate through the spectrum to any other wavelength. From eq. 11, it follows that the wavelength-dependency of Cλ is only due to fλ. Thus,
Cλ can be computed from CSW2 as:

=C C f fSW2 SW2
1 (14)

As shown in literature, it is most desirable to estimate CSW2 for each land-cover class individually to capture different land surface characteristics.
Our approach thus estimated CSW2 for each pixel individually. However, this is computationally expensive, thus, we only estimated C SW2 for lower
illumination areas (cos i < cos ΘS), whereas CSW2 was computed with eq. 11 for sunlit areas where overcorrections were less problematic. No
topographic correction was attempted for deep shadow areas (cos i < 0), and we assumed that topographic correction became less reliable for
i > 80° (Flood et al., 2013). For relatively flat pixels (slope < 2°), the traditional cosine correction was used. Please see an example map of CSW2 in
SI Fig. A11 for one Landsat image.

In order to calculate CSW2 for each pixel, it is necessary to include pixels from its neighborhood to parameterize the linear regression. Tan et al.
(2013) suggested to use 3×3 km kernels for their empirical correction, which we basically adopted. Nevertheless, for performance considerations
we only used sparse sampling, wherein the area closer to the central pixel was more densely sampled. Flat pixels (slope < 2°) were excluded from
the linear regression. Pixels that were in a different land-cover class were excluded, too. Commonly, this is achieved using a fixed NDVI threshold of
e.g., 0.4. However, this was disadvantageous in two respects: 1) this arbitrary division is ill-suited for pixels that are close to this threshold and 2)
NDVI only separates vegetated a non-vegetated areas, thus e.g., forest and grassland are in the same class although they have substantially different
Lambertian characteristics. Therefore, we used a (SWIR1 - SWIR2) / (SWIR1+SWIR2) threshold, which we found more meaningful when estimating
C for the SWIR band. In addition, we did not use a fixed threshold but accepted a pixel if it differs less than + / - 0.025 from the central pixel. If C
could not be estimated (e.g., because there were not enough samples or negative retrieval), the computed C (eq. 11) was used instead.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2020.111967.
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