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A B S T R A C T

Land degradation affects over one-third of the global land area and is projected to become even more widespread
due to climate change and land use pressures. Despite being a critical issue for climate change mitigation,
biodiversity conservation, and food security, the detection of the onset, duration, and magnitude of land de-
gradation remains challenging, as is early identification of short-term vegetation loss preceding land degrada-
tion. Here, we present a new approach for monitoring both short-term vegetation loss and decadal degradation
in grasslands using satellite data. Our approach integrates Spectral Mixture Analysis and temporal segmentation,
and analyzes dense time-series of satellite observations in three steps. First, we unmix all available satellite
observations and aggregate them into monthly composites. Second, we calculate the annual Cumulative
Endmember Fractions and examine their piecewise trends among years to determine the onset, duration, and
magnitude of short-term vegetation loss and decadal degradation. Third, we attribute a decrease in the green
vegetation fraction with a concomitant increase in either open soil, or non-photosynthetic vegetation. We tested
our method mapping short-term vegetation loss and decadal degradation in grasslands in the Caucasus Ecoregion
using the 2001–2018 time series of MODIS 8-day reflectance data. We found strong patterns of short-term
vegetation loss and decadal degradation, mostly in the eastern part of the Caucasus Ecoregion in areas of desert-
and semi-desert natural vegetation. Short-term vegetation loss episodes (3–9 years) were more common and had
greater magnitude than decadal degradation (≥10 years), especially in steppe regions. On average, 9.3% of
grassland area was subjected annually to either decadal, or short-term vegetation loss. Desiccation, i.e., the shift
from green vegetation to dry vegetation, was the most prevalent type of change pathway, with green vegetation
loss to open soil coming second. Decadal degradation and short-term vegetation loss rates were the highest in dry
areas where the potential natural vegetation is sub-shrub deserts, or halophytic, alluvial, and wet lowland
forests. Our findings support known general degradation patterns in the Caucasus Ecoregion, but provide better
understanding of ongoing processes, by detecting exact location, timing, and magnitude of changes. More
broadly, our method advances the monitoring of grasslands by detecting both decadal degradation and short-
term vegetation loss. This flexibility supports adaptive degradation monitoring, aids sustainable land manage-
ment, and provides new information for carbon stock analyses and biodiversity conservation.

1. Introduction

Degradation is one of the most pressing, yet challenging, global
environmental problems (IPCC, 2019; UNCCD, 2017a). Caused by both
climate change and land use intensification (Cowie et al., 2011), land
degradation negatively affects the environment, economy, and public
life (Aronson and Alexander, 2013; FAO, 2011; Hassan et al., 2005;

IPCC, 2019). Despite general awareness of widespread land degradation
(Hassan et al., 2005; IPCC, 2019; UN General Assembly, 2010; UNCCD,
2017a), statistics on the extent, duration, and severity of degradation
vary widely (Gibbs and Salmon, 2015). This is partly due to the ple-
thora of different types of degradation, combined with a variety of land
degradation definitions, and numerous detection methods (Jamsranjav
et al., 2018; Reed et al., 2011; Vogt et al., 2011; Yengoh et al., 2015).

https://doi.org/10.1016/j.rse.2020.111969
Received 27 January 2020; Received in revised form 17 May 2020; Accepted 27 June 2020

⁎ Corresponding author.
E-mail address: lewinska@wisc.edu (K.E. Lewińska).

Remote Sensing of Environment 248 (2020) 111969

0034-4257/ © 2020 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2020.111969
https://doi.org/10.1016/j.rse.2020.111969
mailto:lewinska@wisc.edu
https://doi.org/10.1016/j.rse.2020.111969
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2020.111969&domain=pdf


Consequently, land degradation is often acknowledged but rarely ac-
counted for in analyses of climate change, carbon pools, biodiversity,
and food security (Balkovič et al., 2018; Barbut and Alexander, 2015;
Mitchard, 2018).

Land degradation is a global phenomenon, but its effects are the
most severe in arid, semi-arid and sub-humid regions (Cowie et al.,
2011; Gisladottir and Stocking, 2005). Grassland ecosystems in dry-
lands, i.e., rangelands, are especially prone to degradation when biotic
degradation factors (e.g., lack of precipitation) are coupled with abiotic
degradation factors (e.g., exploitative land management, such as over-
grazing; Cherlet et al., 2018; IPCC, 2019; De Leeuw et al., 2019). Alpine
meadows, and temperate grasslands also experience degradation (Gao
et al., 2010; Wen et al., 2013). Although grassland degradation outside
of dry regions is less studied and not recognized by the United Nations
Convention to Combat Desertification (UNCCD), it has become a one of
the monitoring priorities within the framework of Land Degradation
Neutrality (Cowie et al., 2018; UNCCD, 2017b).

Many land degradation definitions and mapping techniques focus
on changes in aboveground vegetation condition (e.g.,Q. Gao et al.
2006; Kuemmerle et al., 2006; Zhang et al., 2016). This simplification
neglects other important aspects of degradation, such as loss of species
diversity, altered plant species composition, soil erosion, or lower nu-
tritional value of plants (Andrade et al., 2015; Dlamini et al., 2014;
Mansour et al., 2016; Neudert et al., 2013). However, assessing land
degradation based on changes in aboveground vegetation condition and
productivity provides a straightforward approximation of land func-
tions and capacities, and allows the use of remote sensing (Dubovyk,
2017).

Remote sensing data and techniques can effectively map and
monitor land degradation in many biomes and regions (Bai et al., 2008;
Gibbs and Salmon, 2015; Main-Knorn et al., 2013; Zhou et al., 2017),
including drylands (Fensholt et al., 2013; Horion et al., 2014; Hostert
et al., 2003). Long time series of satellite observations are especially
useful (Bai et al., 2008; Song et al., 2018; Tindall et al., 2012), and
frequent intra-annual observations allow to distinguish degradation
from variability in inter-annual phenology (Horion et al., 2014;
Verbesselt et al., 2010a, 2010b). Because of the frequent observations,
MODIS data are particularly valuable for land degradation detection
(Dubovyk et al., 2013; Eckert et al., 2015).

Vegetation indices, such as NDVI, have been extensively used in
land degradation studies (de Jong et al., 2011; Fensholt and Proud,
2012), but physically-based approaches, such as Spectral Mixture
Analysis (SMA; Adams and Smith (1986)) have two distinct advantages.
First, SMA utilizes information from all spectral bands of a given sa-
tellite sensor, which improves estimates of the fraction of ground cover
of each target component (endmember), such as green vegetation, soil,
or non-photosynthetic vegetation. This is especially important where
vegetation is sparse and soil reflectance affects vegetation indices
(Elmore et al., 2000; Huete et al., 1985; Smith et al., 2019). Second,
since SMA is based on physically-meaningful endmembers, interpreta-
tion of results is straightforward and directly linked to the underlying
processes. Although early degradation studies in semi-arid regions
found marginal differences between maximum greenness vegetation
indices and SMA results (Sonnenschein et al., 2011), within-year time
series of endmember fractions can enhance degradation detection
(Suess et al., 2018; Tindall et al., 2012), and identify even subtle intra-
annual changes (Bullock et al., 2019; Schultz et al., 2016).

Land degradation is typically defined as long-term loss of pro-
ductivity and ecosystem functions, and hence is usually monitored
using long-term trend analyses (Bai et al., 2008; Song et al., 2018).
However, some degradation processes occur rapidly (e.g., water ero-
sion), or are characterized by pulses of change (e.g., recurring dry
spells, selective logging in tropical forest) (Bullock et al., 2018; de Jong
et al., 2012). Such short-term changes are easily overlooked in long-
term degradation analyses, even when they are of considerable mag-
nitude (Wessels et al., 2012). Trajectory-based change detection

algorithms, such as LandTrendr (Kennedy et al., 2010), BFAST
(Verbesselt et al., 2012; Verbesselt et al., 2010a; Verbesselt et al.,
2010b) or vegetation change tracker (VCT; Huang et al. (2010)), allow
to identify both short-term vegetation loss and decadal degradation.
The ability to detect short-term vegetation loss is particularly important
for sustainable land management and allows to better understand de-
gradation development and dynamism, providing an early warning.
Furthermore, monitoring short-term vegetation loss due to both nat-
ural, as well as anthropogenic causes supports carbon emission mon-
itoring and allows an interim evaluation of progress towards Land
Degradation Neutrality goals (Cowie et al., 2018; UNCCD, 2017b).

Our overarching goal was to develop a new remote sensing-based
approach to monitor both short-term vegetation loss (< 10 years) and
decadal degradation (≥10 years) in grasslands. We designed our
method to: i) be applicable to any grassland ecosystem; ii) detect both
short-term vegetation loss and decadal degradation episodes, and esti-
mate their location, timing and magnitude; and iii) quantify different
types of change, i.e., shifts among fractions of ground cover. To do so,
we combined dense (minimum monthly) satellite time series, SMA, and
pixel-based detection of temporal trajectories realized with LandTrendr
(Kennedy et al., 2010). We demonstrated the capability of our approach
mapping short-term vegetation loss and decadal degradation in grass-
lands in the Caucasus Ecoregion. Specifically, our objectives were to: i)
identify location, frequency and magnitude of short-term vegetation
loss and decadal degradation episodes; ii) compare short-term vegeta-
tion loss and decadal degradation within different natural vegetation
formations.

2. Methods

2.1. Study area

We tested our approach in the diverse grassland ecosystems of the
Caucasus Ecoregion. The Caucasus Ecoregion (580,000 km2) is centered
around the Caucasus Mountains between the Black Sea and the Caspian
Sea (Fig. 1). The complex topography results in a wide range of climatic
conditions, with the NW-SE precipitation gradient ranging from 4100 to
300mm (or below) (Volodicheva, 2002). Consequently, the Caucasus
region is characterized by a high number of landscapes (Caucasus En-
vironment Outlook, 2002; Zazanashvili et al., 2000) and is a global
hotspot of biodiversity (Marchese, 2015; Tishkov and Belonovskaya,
2012). Vegetation types range from nival to forests to desert vegetation
(Bohn et al., 2007; Bohn et al., 2004).

Geographical diversity and a long history of land use have resulted
in a great variety of grassland ecosystems present in the region
(Belonovskaya et al., 2016; Lachashvili et al., 2017; Zazanashvili et al.,
2000). Animal husbandry is an important part of the local economy and
identity (Neudert and Allahverdiyeva, 2009). High grazing pressure (De
Leeuw et al., 2019; Shatberashvili et al., 2015) combined with un-
favorable climate changes (Elizbarashvili et al., 2017; Shatberashvili
et al., 2015; Zoï Environment Network, 2011) are a threat for grass-
lands in the region, and can cause degradation (NACRES, 2013; Neudert
et al., 2013; Tepanosyan et al., 2017).

2.2. Satellite data

We analyzed the 2001–2018 time series of the 8-day 500m MODIS
surface spectral reflectance product (MOD09A1; Collection 6) available
in Google Earth Engine (GEE; (Gorelick et al., 2017); data accessed in
May 2019). The Collection 6 MOD09A1 product is atmospherically
corrected (Vermote et al., 2002) and adjusted for sensor degradation
(Lyapustin et al., 2014). We screened each scene using the inherent
‘StateQA’ (Quality Assessment) band, and excluded all pixels with low
quality, cloud or snow contamination (bits 0–1, 2–3 and 12, respec-
tively).

To identify region-specific endmembers, we analyzed five Landsat 7
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Enhanced Thematic Mapper plus (ETM+) scenes acquired for footprint
169–031 WRS-2 on 2015-01-04, 2015-04-26, 2015-07-31, 2015-08-16
and 2015-11-20. We selected this footprint because it covers a wide
elevational gradient (from 17 to 4481m a.s.l.), a variety of grassland
types including summer and winter pastures, and known degradation
hotspots in West Azerbaijan and East Georgia (NACRES, 2013). We
chose 2015 as the target year, due to dry weather conditions, which
maximized our chances to identify pure soil spectra in the imagery. All
Landsat scenes were downloaded from the U.S. Geological Survey
(USGS) service as collection 1 tier 1 surface reflectance products. We
used the QA bands to remove all pixels flagged as cloud, shadow or
snow (Zhu and Woodcock, 2012).

2.3. Ancillary data

We focused on grasslands, i.e., areas classified as ‘rangelands’,
‘sparse vegetation’ or ‘barren’ in the 2015 land cover classifications of
Buchner et al. (2020) and Bleyhl et al. (2017), and resampled the 30-m
classifications to 500-m MODIS pixels based on majority rule. Fur-
thermore, we used the Map of the Natural Vegetation of Europe (Bohn
et al., 2007) to stratify our results. We selected the subgroup level of the
classification and included 13 out of 24 formations present in the
Caucasus Ecoregion, dismissing classes smaller than 7000 km2. The
dataset covers Armenia, Azerbaijan, Georgia and the Russian Caucasus
(Fig. S1).

2.4. Cumulative endmember fractions: Concept

Conceptually, a pixel in a grassland area can comprise up to three
types of ground cover: soil (or rock), green vegetation, and non-pho-
tosynthetic vegetation, plus shade (Sonnenschein et al., 2011; Suess
et al., 2018). While the ground cover types reflect vegetation density
and composition, the shade accounts for micro-shadowing at the sub-
pixel level and illumination effects at the regional level (Elmore et al.,
2000; Kuemmerle et al., 2006). SMA aims at quantifying the share of

different components within a pixel based on their respective end-
members, assuming linear combination of the spectra:

∑= ∗ +
=

ρ f ρ ej
i

n

i i j j
0

,
(1)

where ρj is the reflectance in band j, fi is a fraction of endmember i, ρi, j
is a spectrum of endmember i in band j, and ej is an residual term for
band j. We assumed that there were no other ground cover types, and
applied a constrained non-negative SMA model, which limited end-
member fractions to positive values, and enforced they summed to 1.

The acquisition date of the analyzed satellite image can affect
analyses greatly (Sonnenschein et al., 2011), because SMA fractions
change over the course of a year due to phenology (Kuemmerle et al.,
2006; Somers et al., 2011) and illumination effects (Elmore et al.,
2000). Alternatively, the effects of phenology and illumination condi-
tions in a dense time series (e.g., monthly observations) can be ‘nor-
malized’ by summing endmember fractions over a period of one year,
akin to common practice in vegetation productivity studies (e.g., Hobi
et al., 2017; Reed et al., 1994). The resulting annual sum captures the
full range of illumination conditions and phenology phases, reflecting
the vegetation growth for the entire season. This is why we calculate
Cumulative Endmember Fractions in order to facilitate a straightfor-
ward year-to-year comparison of land cover conditions (Fig. 2). The
inherent range of Cumulative Endmember Fractions is from 0 to 1*n,
where n is the number of datasets used for unmixing fractions within
one year. For better interpretability, we rescaled the Cumulative End-
member Fraction values from 0 to 1.

The relative changes between the shade and non-photosynthetic
vegetation fractions are particularly interesting for shrublands (Suess
et al., 2018) and can be indicative of shrub encroachment (Kuemmerle
et al., 2006). However, the shade fraction is typically less important in
grassland ecosystems, where it varies cyclically with phenology (ve-
getation micro-shadowing) and illumination conditions (topographic
shading). Conversion to shrubland is not common in the region, and our
grassland mask (see section 2.3.) included only herbaceous vegetation.

Fig. 1. Location and shade relief of the Caucasus Ecoregion, with regions marked that are discussed in the text.
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Fig. 2. Cumulative Endmember Fraction values versus yearly maximum and late-summer fractions. The different trajectories in the two bottom graphs highlight the
limitations of basing analyses on only one observation per year.

Fig. 3. Grassland land cover composition approximated by soil, green vegetation and non-photosynthetic vegetation fractions. Example points: P1 (soil: 13%, gv:
67%, npv 20%), and P2 (soil: 24%, gv: 36%, npv 40%). Change pathways are labeled on the sides of the graph. For example, the change from P1 to P2 (ΔP soil: 11%,
gv: −31%, npv: 20%) means a combination of green vegetation loss and desiccation, with the latter being the dominant change pathway. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Consequently, we simplified the model and summed the non-photo-
synthetic vegetation and shade Cumulative Endmember Fractions into
one cumulative fraction (hereafter ‘non-photosynthetic vegetation’).
The resulting three-dimensional Cumulative Endmember Fractions
space approximates any grassland area in terms of its soil, green ve-
getation and non-photosynthetic vegetation fractions (Fig. 3).

Changes in Cumulative Endmember Fractions over time capture
different types of vegetation loss or vegetation recovery (e.g., Song
et al., 2018; Tindall et al., 2012) and we refer to these as pathways
hereafter. Shifts among the endmember fractions are symptomatic, not
process-based, e.g., we labeled a shift from green vegetation to soil as
green vegetation loss, not overgrazing or erosion (Fig. 3). In grassland
ecosystems, green vegetation loss, desiccation and dry vegetation loss
are different pathways of negative changes in vegetation cover, whereas
revegetation green fraction, greening, and revegetation dry fraction
represent positive changes in vegetation cover and condition.

A change in Cumulative Endmember Fractions between two time
steps (t1 and t2) can be quantified by a change vector
Δ=[Δsoil,Δgv,Δnpv], where Δsoil= soilt2− soilt1, Δgv= gvt2− gvt1
and Δnpv= npvt2− npvt1. Since we use the constrained non-negative
SMA model, this means Δsoil+ Δgv+ Δnpv=0. The Δ vector can be
shown in a trihedral coordinate system (Fig. 4A and B). The origin of
the coordinate system is the common point in the center, the positive
half-axes go outwards along the corners between faces, and the nega-
tive half-axes are bisectors of trihedral faces' corner angles and normal
to the respective positive half-axes (Fig. 4A). Each change has inter-
related trajectories, i.e., a decrease in green vegetation Cumulative
Endmember Fractions leads to an increase in soil and non-photo-
synthetic vegetation fractions, with one of the pathways dominating
over the other. The direction and length of the Δ vector indicate the

dominant change pathway and its magnitude, respectively (Fig. 4C).

2.5. Endmember selection

For our SMA, we estimated four endmember fractions: soil, green
vegetation, non-photosynthetic vegetation and shade (Sonnenschein
et al., 2011; Suess et al., 2018). Lacking reference spectra from the
Caucasus, we used image endmembers. The 500-m resolution of the
MODIS data makes it difficult to identify spectrally pure pixels, which is
why we used Landsat ETM+ data instead (Gao et al., 2006; Hilker
et al., 2009; Zhu et al., 2010). Based on eigenvector values from the
Minimum Noise Fraction results for five ETM+ datasets we used only
the first five Minimum Noise Fraction bands to calculate the Pixel
Purity Index for each selected Landsat scene. We visually inspected
spectra of all spectrally pure pixels, and identified green vegetation and
soil candidate endmembers, making sure all selected endmembers were
located at the boundary of the pixel cloud (Sonnenschein et al., 2011).
Since the Pixel Purity Index did not identify any non-photosynthetic
vegetation spectrum, we selected this endmember from the Ecological
Spectral Information System (ECOsis) Spectral Library (https://ecosis.
org; accessed on 5th May 2019) and chose spectra from the Daughtry
and Hunt (2008).

We identified the final set of endmembers from the pool of candi-
date endmembers (soil, green vegetation and non-photosynthetic ve-
getation), ensuring the lowest correlation between the final set of
spectra (Meer and Jia, 2012). Finally, we added the shade endmember
(Fig. 5, Table S1) (Bullock et al., 2018; Smith et al., 1990; Sonnenschein
et al., 2011). We defined the shade endmember as 0.0001, i.e., a
spectrum with reflectance close to zero (an application of the tradi-
tionally used 0 reflectance definition of shade was impossible due to

Fig. 4. Trihedral feature-space of a Δ vector quantifying changes in Cumulative Endmembers Fractions between two time steps. A: A trihedral coordinate system of
the Δ vector, with the origin of the coordinate system in the common point in the center, the positive half-axes going outwards along the corners between faces, and
the negative half-axes being bisectors of trihedral faces' corner angles and normal to the respective positive half-axes. B: location of positive and negative change
areas of each fraction. C: Diagram introducing zones in the Δ feature-space associated with each change pathway. ΔP represents the change from P1 to P2 in Fig. 3.
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computational limitations of GEE's unmixing function). We evaluated
the performance of the identified endmembers during a field visit in
early July 2019 (Supplement S1).

2.6. Endmembers time series

We ran the SMA for every MOD09A1 scene available for our study
site in Google Earth Engine as of May 2019. We excluded MODIS band
5, because there is no equivalent TM/ETM+ band. We aggregated the
resulting time series to monthly observations (Fig. 6). When multiple
observations were available for a pixel in a given month, we selected
the set of endmember fractions with the highest green vegetation value.
We calculated the Cumulative Endmember Fractions for each year from
2001 to 2018 based on the monthly endmember fraction values (Fig. 6;
compare section 2.4). Pixels with missing observations for a given year
were masked out for that year only. Grasslands at high elevations, such
as summer pastures and alpine meadows, were largely omitted due to
snow cover in winter months (an area of approximately 40,970 km2).

2.7. LandTrendr analysis and vegetation loss in grasslands

In order to estimate the onset, duration, and magnitude of both
short-term vegetation loss and decadal degradation episodes, we ran
LandTrendr in GEE on the 2001–2018 time series of the green vegeta-
tion Cumulative Endmember Fraction. LandTrendr identifies for each
pixel piecewise linear trend segments in spectral time series (Kennedy
et al., 2018; Kennedy et al., 2010). The trends are fitted based on a
selection of user defined criteria including the minimum number of
observations in the time series, maximum number of allowed segments
to be fitted to the time series, criteria for outlier detection, minimum
recovery period after detected disturbance, and the p-value of the
overall model fit. We used default LandTrendr control parameters
(Kennedy et al., 2018, Kennedy et al., 2010), and allowed a maximum
of 8 segments, a one-year recovery period, and a minimum of 15 ob-
servations in the time series. We also decided to preserve all spikes in
the time series, assuming that data preprocessing and aggregation
eliminated erroneous values.

We analyzed the magnitude of each vegetation loss episode in the
LandTrendr results based on the real values, not the values fitted by
LandTrendr. We thereby preserved the constraints of the SMA model
inherited by the Cumulative Endmember Fractions, which are essential
to recognize change pathways calculated as shifts among fractions
(Section 2.4). We calculated magnitude of each trend segment as the
absolute change in green vegetation Cumulative Endmember Fraction
between its first and the last year. Since the LandTrendr algorithm
identifies a trend segment on a vertex-to-vertex basis, the first year of
each identified segment represents a ‘pre change’ state. To account for
this, we reported the timing of our vegetation loss results starting from
the second year of each trend segment, which corresponds to the first
year we observed decline in green vegetation Cumulative Endmember
Fraction.

We defined a vegetation loss episode as being at least three years
long and having a magnitude of at least 10% of the per-pixel maximum
green vegetation Cumulative Endmember Fraction in the entire time
series. We classified the vegetation loss episodes identified by
LandTrendr into two classes: i) short-term vegetation loss episodes
lasting from 3 to 9 years, and ii) decadal degradation episodes lasting
10 years or more. For each vegetation loss episode, we recorded its

Fig. 5. Reflectance of soil, green vegetation (gv), non-photosynthetic vegeta-
tion (npv) and shade endmembers for the Landsat ETM+ bands. Spectra values
in Table S1. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. Monthly soil, green vegetation (gv) and non-photosynthetic vegetation (npv) fraction time series, as well as the corresponding Cumulative Endmember
Fractions. The bottom row shows selected soil-gv-npv composites of the annual Cumulative Endmember Fractions for the area surrounding the pixel (yellow dot) for
which temporal variability is shown above. Endmember fraction and Cumulative Endmember Fraction are scaled between 0 and 1. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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magnitude and identified the dominant change pathway. We used
ANOVA to test for significance in the differences in green vegetation
loss magnitude of short-term vegetation loss and decadal degradation
episodes. Finally we compared the dominant vegetation loss change
pathways for different Natural Vegetation formations (Bohn et al.,
2007). We reported areas with a precision of 25 km2, which corre-
sponds to 0.5% of the total area of the Natural Vegetation formations.
This accounted for the uncertainty in the SMA and LandTrendr ana-
lyses.

3. Results

3.1. Short-term vegetation loss and decadal degradation in grasslands in the
Caucasus ecoregion

We found that approximately 49,825 km2 of grasslands (16.9% of
all grasslands and 8.5% of the ecoregion) experienced at least one ve-
getation loss episode (short-term vegetation loss or decadal degrada-
tion) between 2001 and 2018 (Fig. 7). Most of the vegetation loss oc-
curred in the eastern Caucasus, with hotspots in the Caspian lowland,
Gobustan, Elburz Mountains, and around the Mingachevir Reservoir.
The majority of areas (approximately 37,550 km2) experienced only a
single vegetation loss episode, but there were also regions with two,
three or even four consecutive vegetation loss episodes, which affected
approximately 11,075 km2, 1175 km2 and 50 km2, respectively.

On average, 27,400 km2 (9.3% of all grasslands and 4.7% of the
ecoregion area) was subjected to vegetation loss (short-term vegetation
loss or decadal degradation) in a given year (Fig. 8). The greatest
number of new short-term vegetation loss episodes started in 2011 and
2016. Especially in 2011, many very strong short-term vegetation loss
episodes initiated near the Mingachevir Reservoir, Karabakh, and in the
Eastern part of Dagestan (Fig. S2).

3.2. Vegetation loss dynamism: Short-term vegetation loss vs. decadal
degradation

We found that approximately 14,075 km2 (4.8% of grasslands and
2.4% of the ecoregion) experienced decadal (≥10 year-long) degrada-
tion between 2001 and 2018 (Fig. 9A), the magnitudes of which ranged

from −0.01 to −0.31. Major decadal degradation occurred in Gobu-
stan, the Caspian lowland, Karabakh and Dagestan, and most of the
episodes started in 2002 (Fig. 9B). In the Caspian lowland region,
decadal degradation episodes started mainly between 2002 and 2007,
and in NE-Dagestan in 2009.

We mapped four different symptomatic change pathways in the
areas that experienced decadal degradation (Fig. 10A). Desiccation was
the most prevalent dominant pathway (approximately 9200 km2,
65.7% of the area of decadal degradation), and was especially frequent
in the Caspian Lowlands, Dagestan, Gobustan, the Iori Plateau, and the
Elburz mountains. This change pathway had the biggest overall mag-
nitude. Green vegetation loss was the second most common dominant
change pathway (approximately 2300 km2, 16.5%), and occurred
mainly along the coastline of the Caspian Lowlands, and in Karabakh,
Gobustan and the Absheron Peninsula. We found that approximately
2050 km2 (14.7%) of all grasslands underwent revegetation dry frac-
tion, especially in the Caspian Lowlands, Gobustan, Jeyranchol and
NW- Nakhchivan.

Short-term vegetation loss (< 10 year-long) occurred on approxi-
mately 40,075 km2 (13.6% of grasslands and 6.9% of the ecoregion)
and some places experienced multiple short-term vegetation loss epi-
sodes (Fig. 11). Five regions were short-term vegetation loss hotspots:
the area surrounding the Mingachevir Reservoir, Gobustan, Degrada-
tion, the Caspian Lowlands, and Karabakh including the Elburz
Mountains. The strongest and most frequent short-term vegetation loss
episodes occurred near Mingachevir Reservoir, where we detected up to
four episodes starting in 2002, 2007, 2011, and 2016, respectively. In
Gobustan moderately strong short-term vegetation loss episodes were
initiated mainly in 2002, 2007, and 2016. Degradation in Dagestan
started predominantly in 2002, 2007, 2011, and 2015–2016. In the
Caspian Lowlands, and in northern Dagestan short-term vegetation loss
started as late as 2011–2012, with second episodes initiated in 2016.
We observed up to three subsequent short-term vegetation loss episodes
starting in 2002, 2010–2011 and 2016 in Karabakh and northern
fringes of the Elburz Mountains.

Desiccation was the most common dominant short-term vegetation
loss pathway, representing 71.3% of all cases (Fig. 10A and B, Fig. S3),
whereas 18.7% reflected the green vegetation loss pathway. Dry ve-
getation loss occurred only in 2% of the area, but this pathway had the

Fig. 7. Number of vegetation loss episodes (short-term vegetation loss and decadal degradation together) between 2001 and 2018. The right panel shows examples of
linear trend segments corresponding to short-term vegetation loss and decadal degradation changes in the green vegetation Cumulative Endmember Fraction (CEF).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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greatest change magnitude. The area dominated by revegetation of dry
fraction was equivalent to 7.8% of all areas affected by short-term de-
gradation.

3.3. Short-term vegetation loss and decadal degradation within natural
vegetation formations

Short-term vegetation loss was most widespread in the rangelands
of the Caucasus Ecoregion and particularly common in areas where the
potential natural vegetation is sub-shrub deserts, halophytic vegetation,
and alluvial and wet lowland forests (Table 1). Within those forma-
tions> 40% of the grasslands had at least one vegetation loss episode
between 2001 and 2018. Short-term vegetation loss was also very fre-
quent in areas characterized by hygrophilous mixed forests, reed ve-
getation, Caucasian mixed hornbeam-oak forests, and true steppe.
Decadal degradation trends affected>19% of grasslands in reed and
halophytic natural vegetation formations. In alluvial and wet lowland
forest and sub-shrub deserts decadal degradation was less common, yet
still we detected it in> 9% of grasslands there. Vegetation loss (both,
short-term vegetation loss or decadal degradation) in grasslands in al-
pine, subalpine, and montane to altimontane zones was very low
(mostly below 25 km2).

In all potential natural vegetation types, short-term vegetation loss

episodes had greater change magnitude than decadal trends (Fig. 12).
The effect of vegetation loss episode length on magnitude of green
vegetation loss was strong and highly significant (ANOVA, F=20,930,
p < .001). Differences in magnitude of green vegetation loss were also
highly significant among vegetation types (F= 716, p < .001). Steppe
vegetation formations had the greatest difference in green vegetation
loss magnitude between short-term vegetation loss and decadal de-
gradation episodes (Fig. 12).

Desiccation was by far the most common change pathway within all
natural vegetation formations for both short-term vegetation loss and
decadal degradation (Table 2). Grasslands in semiarid and arid climate
(L.1, M.1, M.2, O.2, and P.2) had the highest variation in short-term
vegetation loss and degradation change pathways. Decadal degradation
was typically related to green vegetation loss and revegetation of dry
fraction. Within areas of halophytic and sub-shrub deserts potential
vegetation, green vegetation loss represented between 24% and 38% of
all detected short-term vegetation loss and decadal degradation, re-
spectively. Grasslands in sub-alpine vegetation types had relatively high
dry revegetation, especially for decadal degradation.

Fig. 8. The total area of continuing and newly initiated short-term vegetation loss and decadal degradation episodes for each year from 2001 through 2018. Since we
required a short-term vegetation loss episode to be at least 3 years long, we did not identify any new short-term vegetation loss onset for the last two years of the time
series, and no new decadal degradation after 2009. For a map of the continuing degradation for each year see Fig. S2.

Fig. 9. Magnitude (A) and year of onset (B) of the decadal (≥10 years) degradation episodes. We defined magnitude as the change in green vegetation Cumulative
Endmember Fraction between the first and the last year of each trend segment. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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4. Discussion

4.1. Cumulative endmember fractions

We developed a new approach to monitor both short-term vegeta-
tion loss and decadal degradation in grasslands that integrates SMA of
dense satellite data time series and temporal segmentation for change
detection. Our method is physically based and suitable for all grassland
ecosystems. A major strength of our approach is that it identifies the
spatio-temporal pattern of changes and detects the onset timing and
magnitude of vegetation loss episodes of various length. Furthermore,
changes among the annual cumulative endmember fractions determine
symptomatic pathways of vegetation loss, which helps identifying un-
derlying vegetation loss mechanisms.

Our method can be implemented for any time series of remotely
sensed data as long as at least monthly observations are available. The
relative temporal change detection does not require ‘normal’ conditions
to train an algorithm, making the approach suited for monitoring of

new or continuing degradation processes alike. Moreover, precise
identification of endmembers spectra is less critical for change trajec-
tories compared with single-date SMA, which means that Cumulative
Endmember Fractions could be applied widely and are suitable for
different grassland ecosystems. Importantly, the annual Cumulative
Endmember Fractions normalize topographic effects and inter-annual
variability of phenology, and allow for direct comparison among years
even in complex and diverse regions (for reference see the variation in
phenology patterns across the Caucasus Ecoregion approximated by the
date of green peak in Fig. S5). This is advantageous compared to ana-
lyzing single observations per year (Hostert et al., 2003), or annual
composites (Sonnenschein et al., 2011; Suess et al., 2018). Finally,
Cumulative Endmember Fractions will capture shifts in phenology
patterns, such as change in growing season length, which, among
others, can be indicative of long-term trends caused by climate change
(Ivits et al., 2012).

The overall accuracy of our approach reflects uncertainty and errors
originating from both the SMA and the temporal segmentation. The

Fig. 10. A: Dominant change pathways for decadal (≥ 10 year-long) grassland degradation between 2001 and 2018. B and C: Dominant change pathways for short-
term (< 10 year-long) vegetation loss episodes in grasslands between 2001 and 2018 for the first and second vegetation loss episode, respectively. Values represent a
pathway-specific per-pixel magnitude, i.e., change in green vegetation Cumulative Endmember Fraction between the first and the last year of each trend segment.
Colour ramps are the same for short-term and decadal episodes. For short-term vegetation loss episodes 3 and 4 see Fig. S3. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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SMA results rely on regional and temporal representativeness of the
endmembers. The method can potentially be less accurate for areas
undergoing extensive change in vegetation composition, or soils prop-
erties, which could lead to substantial alternation in regional green
vegetation, non-photosynthetic vegetation or soil spectra during the

analyzed time period. However, our findings suggest that our method is
robust to changes in endmember sets (Supplement S2). We observed
very limited inter- and intra-annual variability in soil and green vege-
tation endmembers, and all candidate image endmembers identified
across different years and seasons had very similar spectra. Moreover,

Fig. 11. Magnitude (A, C) and year of onset (B, D) of short-term (< 10 year-long) vegetation loss episodes. Episodes 1 and 2 are presented in the top and bottom row,
respectively. Episodes 3 and 4 in Fig. S4. We defined magnitude as the change in green vegetation Cumulative Endmember Fraction between the first and the last year
of each trend segment. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Area of short-term vegetation loss and decadal degradation within the most abundant Natural Vegetation zones (stratification after Bohn et al., 2004).

Vegetation description Area [km2] Grassland [%] Vegetation loss [km2] Vegetation loss [%]

Decadal Short-term Decadal Short-term

B.2 Alpine vegetation 14,300 77.3 < 25 < 25 0.0 0.0
C.3 Subalpine vegetation 38,050 72.8 125 425 0.5 1.5
D.4 Montane and altimontane 10,200 22.8 < 25 < 25 0.0 0.0
F.6 Oriental beech forest 33,200 32.7 225 825 2.1 7.6
F.7 Caucasian mixed oak forests 68,925 28.1 1375 5400 7.1 27.8
H Hygrophilous mixed forests 7825 22.7 75 400 4.2 22.5
L.1 Subcontinental meadow steppe 25,125 15.1 175 375 4.6 9.9
M.1 True steppe 149,550 24.4 2650 10,525 7.3 28.9
M.2 Desert steppe 34,825 74.7 2300 4625 8.8 17.8
O.2 Sub-shrub deserts 37,350 66.8 2425 11,900 9.7 47.7
P.2 Halophytic vegetation 8000 74.1 1150 2625 19.4 44.3
R Reed vegetation 21,950 11.0 525 625 21.6 25.8
U.3 Wet lowland forests 12,425 22.7 400 1425 14.2 50.4

For full names of vegetation formations, see Table S2, and for their distribution Fig. S1. Area reported with precision of 25 km2.
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the SMA RMSE of monthly composites was also, in general, low (Fig.
S6). This lends support to the monthly SMA results, and the derived
Cumulative Endmember Fractions. However, we caution that spectral
stability observed in the Caucasus may not be representative for other
grassland areas.

The second source of uncertainty in our method originates from
LandTrendr temporal segmentation. The RMSE of the LandTrendr fit
showed overall good performance (Fig. S7). To avoid false vegetation
loss episodes of small magnitude (Kennedy et al., 2010), we im-
plemented a minimum magnitude threshold of 10% of the per-pixel
maximum green vegetation Cumulative Endmember Fraction. This
threshold ensured high sensitivity of vegetation-loss detection, but was

clearly higher than the MODIS signal to noise ratio (Xiong et al., 2008).
The pixel-specific definition of degradation combined with relative
change detection in the LandTrendr resulted in non-homogeneous
sensitivity of our method to vegetation loss. We overcame this short-
coming by narrowing our analyzes to vegetation loss episodes lasting at
least three years, which limited potential false positive responses, and
better reflected physical processes we were interested in.

To make our results more interpretable, we combined shade and
non-photosynthetic vegetation Cumulative Endmember Fractions into
one cumulative fraction. Due to the expected cyclic variability of the
shade fraction in grassland ecosystems (arising from phenology-related
micro-shading and regional-level change in illumination conditions),
this step should not affect accuracy of our method in the Caucasus
because shrub coverage is low. However, when applying the method to
grassland ecosystems characterized by considerable shrub coverage, or
shrub encroachment, we recommend analyzing all four endmembers
separately.

A lack of ground truth data precluded an independent validation of
our method in the Caucasus. Instead we compared green vegetation
Cumulative Endmember Fraction with annual NDVI (Fig. S9) to better
understand the differences and similarities between a widely-used ve-
getation index and our approach. As expected, we observed strong si-
milarity between both time series. However, endmember-based fraction
analyses create a linear relationship to vegetation cover, and show
higher sensitivity to vegetation fractions and the changes therein when
vegetation cover is sparse (Camacho-De Coca et al., 2004). Ultimately,
the low RMSE of our spectral unmixing approach, as well as the proven
applicability of LandTrendr for time series analyses in grasslands (Dara
et al., 2020) support the reliability of our results.

4.2. Short-term vegetation loss and decadal degradation in grasslands in the
Caucasus

We implemented our short-term vegetation loss and decadal de-
gradation monitoring approach for the Caucasus Ecoregion, analyzed
MODIS 8-day reflectance data for 2001 through 2018 and showed that
on average, 9.3% of grasslands in the region were affected by

Fig. 12. Box-charts of the per-pixel summed green vegetation loss magnitude of each short-term vegetation loss and decadal degradation episode in each natural
vegetation classes. For short class names, see Table 1, or Table S2 for full names, and for a map of natural vegetation view Fig. S1. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Share of dominant vegetation loss change pathways within short-term vegeta-
tion loss and decadal degradation areas in the most abundant natural vegeta-
tion formations.

Vegetation type Decadal degradation [% of
degraded area]

Short-term vegetation loss [%
of degraded area]

GVL D DVL DR GVL D DVL DR

B.2 0.0 0.0a 0.0 0.0a 0.0a 0.0a 0.0a 0.0a

C.3 0.0a 75.0 0.0a 25.0 11.8 76.5 0.0a 11.8
D.4 0.0 0.0a 0.0 0.0 0.0a 0.0a 0.0a 0.0a

F.6 10.0 80.0 0.0a 10.0 6.1 90.9 0.0a 3.0
F.7 11.1 81.5 0.0a 7.4 9.8 86.5 0.5 3.3
H 0.0a 100.0 0.0a 0.0a 5.9 94.1 0.0a 0.0a

L.1 14.3 71.4 0.0a 14.3 6.7 80.0 0.0a 13.3
M.1 10.5 78.1 1.0 10.5 12.1 78.6 0.7 8.6
M.2 12.0 71.7 1.1 15.2 8.6 88.6 0.5 2.2
O.2 30.9 45.4 8.2 15.5 30.0 55.1 4.4 10.5
P.2 23.9 54.3 2.2 19.6 38.5 49.0 2.9 9.6
R 4.8 85.7 0.0a 9.5 12.5 83.3 0.0a 4.2
U.3 12.5 81.3 0.0a 6.3 17.2 72.4 1.7 8.6

For full names of vegetation formations, see Table S2. Abbreviations: GVL –
green vegetation loss; D – desiccation; DVL – dry vegetation loss; DR – re-
vegetation dry fraction.

a Area < 25 km2.

K.E. Lewińska, et al. Remote Sensing of Environment 248 (2020) 111969

11



vegetation loss each year. Vegetation loss was the most widespread in
the eastern Caucasus, i.e., in Azerbaijan, Iran, and Dagestan. Those are
the driest parts of the Caucasus (Volodicheva, 2002), with annual
precipitation often below 400mm and the potential natural vegetation
represented by halophytic, desert- and semi-desert natural vegetation
formations. Many of those vegetation loss areas are winter pastures that
have been overgrazed (NACRES, 2013; Neudert et al., 2013;
Shatberashvili et al., 2015). Surprisingly, our results showed that reed
and alluvial vegetation formations also experienced considerable de-
gradation. This may be due to reduced water availability, salinization
or increasing land-use pressure (UNEP, 2011).

We detected very limited short-term vegetation loss and degrada-
tion in grassland in alpine, subalpine, and montane areas (mostly<
25 km2 per vegetation class). This may be due to higher natural resi-
lience of those ecosystems or more favorable climate. However,
mountain pasture in the region are frequently overgrazed
(Belonovskaya, 1995; De Leeuw et al., 2019; Shatberashvili et al.,
2015). We speculate that three factors could have influenced our re-
sults. First, the resolution and geometric accuracy of the MOD09A1
product may not be sufficient to assess mountain grasslands in the re-
gion. Second, our minimum length of vegetation loss episode (3 years)
may have been too long to capture localized overgrazing, which may be
abrupt (i.e., a single grazing season) and followed by gradual re-
vegetation. Third, some grasslands at high elevations were excluded
from the Cumulative Endmember Fractions time series because of snow
cover in winter. For mountain meadows, it may be advantageous to
calculate Cumulative Endmember Fractions during the growing season
only, given that grazing or other forms of land use occur only during the
snow-free period.

We identified several hotspots of vegetation loss in grasslands in the
Caucasus. The greatest, and at the same time the most dynamic changes
were detected along the borderline between western Azerbaijan and
eastern Georgia, namely in the surroundings of the Mingachevir
Reservoir, on the Iori Plateau, and in Jeyranchol. In these areas, we
detected decadal degradation, as well as up to four consecutive short-
term vegetation loss episodes, some of which had high magnitude.
Green vegetation loss and desiccation were two dominant change
pathways in the region, which is in line with the local dry climate
(Volodicheva, 2002), and grazing pressure (NACRES, 2013;
Shatberashvili et al., 2015; UNFCCC, 2010). Short-term vegetation loss
onsets observed in 2011 in the surroundings of the Mingachevir Re-
servoir corresponded with regional drought conditions, captured in the
TerraClim Palmer Drought Severity Index dataset (Abatzoglou et al.,
2018) (Fig. S8). We observed a similar pattern in 2016 in Dagestan –
another region known for its winter pastures. Since our method pro-
vides symptomatic changes only, which, although, to some extent can
provide an explanation on the mechanisms related to the observed
changes, the exact link between drivers and changes is not possible in
the current implementation of the method. Desiccation was the domi-
nant change pathway in the Caucasus Ecoregion, which corresponds
well with the increasing dryness of the local climate (Elizbarashvili
et al., 2017; Shatberashvili et al., 2015; Zoï Environment Network,
2011), and regional precipitation variability (Fig. S8). Furthermore,
brittle environment aids accumulation of vegetation litter that may
delay biological decay processes. At the same time, intensive and ex-
tensive grazing is expected to reduce green and dry vegetation cover.
High frequency of localized reoccurring short-term vegetation loss
episodes indicates elevated vegetation stress conditions that, if persis-
tent, may lead to long-term degradation, or even desertification. Con-
sequently, monitoring short-term vegetation loss is of high importance
in the region.

Overall, short-term vegetation loss episodes were more frequent and
had higher magnitudes than decadal degradation, which is typical for
dry regions across the Northern Hemisphere (de Jong et al., 2012).
Short-term vegetation loss was spatially and temporally clustered and
the obtained spatial pattern better corresponded with known locations

of winter pastures than those for decadal degradation. This implies
short-term vegetation loss could be more associated with land use and
management, in particular, intensive and extensive grazing under arid
conditions.

5. Conclusions

Degradation affects one-third of the global land area (FAO, 2015)
and is spreading rapidly. Efficient and accurate mapping of short-term
vegetation loss and decadal degradation is crucial to improve the un-
derstanding of degradation phenomena, to support sustainable land
management, and to meet the Land Degradation Neutrality goals
(Cowie et al., 2018; UNCCD, 2017b; Vogt et al., 2011). We developed a
new approach to monitor both short-term vegetation loss and decadal
degradation in grasslands, and applied it to a 2001–2018 MODIS 8-day
reflectance data time series of the Caucasus Ecoregion. Our resulting
maps showed widespread vegetation loss in the Caucasus and we found
that short-term vegetation loss was more frequent and related to greater
green vegetation loss magnitudes than decadal degradation. This
highlights the importance of monitoring both long- and short-term
vegetation trajectories. Timely identification of short-term vegetation
loss, is crucial for achieving Land Degradation Neutrality goals, to op-
timizing grazing pressure, and it provides the information needed to
prevent long-term degradation processes, or desertification.

To the best of our knowledge, our analysis is the first wall-to-wall
study of short-term vegetation loss and decadal degradation in grass-
land in the Caucasus. As such, our results contribute to discussions
about land degradation in the region, and can inform local land man-
agement activities, supporting, among others, stock allocation. Our
approach advances the state-of-the-art in short-term vegetation loss and
land degradation mapping, specifically for grasslands under grazing
regimes, and thereby provides valuable information for carbon stock
analyses, sustainable land management, and biodiversity conservation.

Last but not least, annual Cumulative Endmember Fractions can be
calculated for any vegetation type, not just grasslands, and can capture
the regeneration of vegetation just as easily as degradation. Its physi-
cally-based foundation makes our approach easily adaptable to other
ecosystems and change processes, but it was beyond the scope of our
study to test this.
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