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A B S T R A C T   

The seasonal dynamics of snow cover strongly affect ecosystem processes and winter habitat, making them an 
important driver of terrestrial biodiversity patterns. Snow cover data from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) Aqua and Terra satellites can capture these dynamics over large spatiotemporal 
scales, allowing for the development of indices with specific application in ecological research and predicting 
biodiversity. Here, our primary objective was to derive winter habitat indices (WHIs) from MODIS that quantify 
snow season length, snow cover variability, and the prevalence of frozen ground without snow as a proxy for 
subnivium conditions. We calculated the WHIs for the full snow year (Aug-Jul) and winter months (Dec-Feb) 
across the contiguous US from 2003/04 to 2017/18 and validated them with ground-based data from 797 
meteorological stations. To demonstrate the potential of the WHIs for biodiversity assessments, we modeled their 
relationships with winter bird species richness derived from eBird observations. The WHIs had clear spatial 
patterns reflecting both altitudinal and latitudinal gradients in snow cover. Snow season length was generally 
longer at higher latitudes and elevations, while snow cover variability and frozen ground without snow were 
highest across low elevations of the mid latitudes. Variability in the WHIs was largely driven by elevation in the 
West and by latitude in the East. Snow season length and frozen ground without snow were most accurately 
mapped, and had correlations with station data across all years of 0.91 and 0.85, respectively. Snow cover 
variability was accurately mapped for winter (r = 0.79), but not for the full snow year (r = − 0.21). The model 
containing all three WHIs used to predict winter bird species richness patterns across the contiguous US was by 
far the best, demonstrating the individual value of each index. Regions with longer snow seasons generally 
supported fewer species. Species richness increased steadily up to moderate levels of snow cover variability and 
frozen ground without snow, after which it steeply declined. Our results show that the MODIS WHIs accurately 
characterized unique gradients of snow cover dynamics and provided important information on winter habitat 
conditions for birds, highlighting their potential for ecological research and conservation planning.   

1. Introduction 

Snow cover is an important component of winter habitat across the 
mid to high latitudes. The seasonal dynamics of snow influence the 
physical and chemical processes that govern ecosystem structure and 
function. For example, snow cover dynamics regulate climatic condi-
tions in the atmosphere and soil, as well as the stability of the subnivium 

(i.e., the area between the snowpack and the ground). The low thermal 
conductivity of snow also provides insulation against harmful freezing 
temperatures for soil organisms, plants, and animals (Edwards et al., 
2007; Kreyling, 2010; Pauli et al., 2013). In temperate and polar eco-
systems characteristics of snow cover such as duration, depth, and melt 
strongly affect water and nutrient cycling, and consequently influence 
vegetation composition patterns (Brooks et al., 2011; Jones, 1999). For 

* Corresponding author. 
E-mail address: djgudexcross@wisc.edu (D. Gudex-Cross).  

Contents lists available at ScienceDirect 

Remote Sensing of Environment 

journal homepage: www.elsevier.com/locate/rse 

https://doi.org/10.1016/j.rse.2021.112309 
Received 14 July 2020; Received in revised form 12 January 2021; Accepted 15 January 2021   

mailto:djgudexcross@wisc.edu
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2021.112309
https://doi.org/10.1016/j.rse.2021.112309
https://doi.org/10.1016/j.rse.2021.112309
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2021.112309&domain=pdf


Remote Sensing of Environment 255 (2021) 112309

2

many cold-adapted animals, survival and fitness are directly linked to 
characteristics of the snowpack, which can increase or decrease ener-
getic costs associated with thermoregulation, locomotion, predator 
avoidance, and foraging (Williams et al., 2015; Zuckerberg and Pauli, 
2018). Snow cover dynamics are thus a major driver of terrestrial 
biodiversity patterns through their effects on primary productivity, 
winter habitat conditions, and species interactions (Niittynen et al., 
2018; Penczykowski et al., 2017; Spehn et al., 2002). 

Climate change is rapidly altering seasonal snow cover dynamics, 
particularly in the Northern Hemisphere. Warming temperatures during 
winter and early spring are causing shifts in snow phenology, especially 
earlier melt (Chen et al., 2015; Najafi et al., 2016; Xia et al., 2014), 
decreasing snow cover extent and duration (Brown and Robinson, 2011; 
Choi et al., 2010; Pulliainen et al., 2020), and decreasing snow depth 
(Dyer and Mote, 2006; Kunkel et al., 2016). Concomitant with snow 
cover decreases, the frequency of frozen ground without snow is 
increasing (Zhang et al., 2011; Zhu et al., 2019), meaning both the 
availability and the quality of the subnivium is in decline (Pauli et al., 
2013; Zuckerberg and Pauli, 2018). Understanding how changes in 
seasonal snow dynamics will affect terrestrial biodiversity patterns re-
quires data that accurately characterize these dynamics at varying 
temporal scales and across large areas. 

Snow cover data products derived from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) satellites are ideal for quantifying 
large-scale snow cover dynamics. These products are available globally 
(Hall et al., 2002; modis.gsfc.nasa.gov/data/dataprod/mod10.php), 
continue to undergo extensive validation (e.g., Coll and Li, 2018), and 
have been used to map dynamics like snow cover duration and extent 
around the world (e.g., Notarnicola, 2020; Salomonson and Appel, 
2004; Zhu et al., 2017). While meteorological stations offer longer and 
more detailed snow records than MODIS, their discrete locations and 
uneven distribution means they cannot sufficiently characterize spatial 
variability. Gridded datasets from data assimilation systems that incor-
porate data from satellites, stations, and climate models, e.g., SNODAS 
(Barrett, 2003), provide modeled estimates of snow cover and variables 
not directly quantifiable from MODIS (e.g., depth). However, these es-
timates come with higher uncertainties than observations from imagery, 
especially in complex terrains (Sirén et al., 2018), and have coarse 
spatial resolutions (≥ 1 km). There are challenges associated with 
MODIS (and other optical-multispectral satellite) observations as well 
such as data gaps caused by clouds – especially problematic in winter 
months and around snowfall events when cloud cover is high – and polar 
darkness, as well as spectral similarities between snow, ice, water, and 
highly reflective clouds (Dumont and Gascoin, 2016; Stillinger et al., 
2019). Yet, one of the biggest limitations of the use of MODIS snow data 
in biodiversity assessments and conservation planning is a lack of 
indices that capture ecologically important aspects of the snow season at 
spatiotemporal resolutions suitable for management decisions (Boelman 
et al., 2019). 

Over the past decade, substantial progress has been made in the use 
of MODIS to characterize aspects of the snow season at different 
spatiotemporal scales. The most commonly derived metrics include 
snow cover duration, spatial extent, and phenology (e.g., first and last 
snow dates), which tend to be highly accurate even when mapped over 
broad spatial extents and complex topography (Dietz et al., 2012). 
However, because of their importance in watershed hydrology, these 
characteristics have been quantified almost exclusively in mountainous 
regions (e.g., Dariane et al., 2017; Malmros et al., 2018; Notarnicola, 
2020). Indices that describe subnivium conditions, which affect a wide 
range of plant and animal species (Zuckerberg and Pauli, 2018), have 
been developed globally using a combination of MODIS snow data and 
frozen ground status derived from microwave sensors (NASA MEa-
SUREs; Zhu et al., 2017). Microwave satellite data have the advantage of 
being unaffected by clouds, but the frozen ground products are currently 
produced at spatial resolutions that are too coarse for many conservation 
applications (6 km pixels for the Northern Hemisphere and 25 km 

globally). Additionally, assuming the coarse pixels of microwave satel-
lite data have homogenous freeze/thaw status when fusing with MODIS 
snow cover data might introduce error in the resulting indices (Zhu 
et al., 2017). Thus, while snow cover dynamics have been mapped with 
MODIS in the past, there is a need for indices designed specifically for 
conservation assessments and biodiversity modeling. 

Accordingly, we developed indices that capture three characteristics 
of the snow season that are both important for biodiversity and quan-
tifiable from MODIS at appropriate spatial scales: season length, cover 
variability, and the prevalence of frozen ground without snow (i.e., lack 
of subnivium). Snow season length is similar to cover duration, 
capturing both snow cover extent (total area) and phenology (first/last 
snow dates). Within-year variability in snow cover, or the frequency 
with which an area switches from snow-covered to not and vice versa, 
quantifies freeze-thaw events and identifies ecologically critical transi-
tion zones from snow- to rain-dominated systems. This metric has many 
important applications, with some examples being monitoring potential 
winter freeze-thaw damage in forests (Charrier et al., 2017); informing 
species range boundary mapping (La Sorte and Jetz, 2012); and iden-
tifying areas of phenotypic mismatch (e.g., for species that undergo 
seasonal colour molt to winter white as camouflage against snow (Mills 
et al., 2018). We are not aware of prior remote sensing studies on within- 
season (or intra-annual) snow cover variability, but there are examples 
of inter-annual variations in snow cover duration and extent (e.g., Li 
et al., 2017; Malmros et al., 2018). Finally, frozen ground without snow 
(sensu Zhu et al., 2017) approximates the frequency with which or-
ganisms lack thermal refugia (i.e., the subnivium) and thus face func-
tionally colder climates (Fitzpatrick et al., 2019; Zhu et al., 2019). 

Here, our primary goal was to develop a set of winter habitat indices 
(WHIs) from MODIS (500 m) that quantify snow season length, cover 
variability, and frozen ground without snow and assess their accuracy 
using meteorological station data. To highlight the potential of the WHIs 
for biodiversity assessments, we examined relationships between each 
WHI and winter bird diversity. Our specific research objectives were to:  

1) calculate the WHIs for the full snow year (Aug – Jul) and winter 
months only (Dec – Feb), from 2003/04 to 2017/18, and for each 
year, across the contiguous US;  

2) validate the MODIS WHIs with WHIs derived from meteorological 
station data;  

3) evaluate errors in the WHIs geographically and by sensor (i.e., Terra 
vs. Aqua vs. Terra-Aqua combined); 

4) examine spatial patterns in the MODIS WHIs to identify major gra-
dients of snow cover dynamics and regions with distinct winter 
climate conditions; and  

5) quantify relationships between the MODIS WHIs and winter bird 
species richness. 

We predicted that areas with longer snow seasons would support 
fewer bird species compared to those with shorter ones because longer 
snow seasons have harsher winter conditions and lower food availability 
for most species (Somveille et al., 2015; Somveille et al., 2019). 
Conversely, we predicted that regions with higher snow cover vari-
ability and more frequent frozen ground without snow would support 
more bird species taking advantage of the transition zone from rain- to 
snow-dominated ecosystems, where temperatures are warmer and food 
availability is generally higher (Somveille et al., 2019). 

2. Methods 

2.1. Preprocessing of the MODIS Normalized Difference Snow Index 
(NDSI) data 

We analyzed daily MODIS NDSI data (Collection 6) from Terra 
(MOD10A1) and Aqua (MYD10A1) (Riggs et al., 2015) to calculate the 
WHIs in Google Earth Engine (Gorelick et al., 2017). MODIS NDSI data 

D. Gudex-Cross et al.                                                                                                                                                                                                                          

http://modis.gsfc.nasa.gov/data/dataprod/mod10.php


Remote Sensing of Environment 255 (2021) 112309

3

are highly accurate across all land cover types, but errors are greater in 
dense forests where snow cover on the ground is obscured, over large 
bodies of water, and at high elevations (Coll and Li, 2018; Zhu et al., 
2017). Collection 6 products have improved accuracies over those from 
Collection 5 (Da Ronco et al., 2020; Masson et al., 2018; Zhang et al., 
2019). We only analyzed pixels with the best snow cover retrievals (QA 
bit = 0) and applied an NDSI threshold ≥10 for snow presence, which 
characterize snow cover across large spatial scales and complex topog-
raphies more accurately than the commonly-used threshold of ≥40 (Coll 
and Li, 2018; Zhang et al., 2019). We initially applied a water mask 
derived from MODIS (MCD12Q1) to remove common misclassification 
errors between snow and water, yet noticeable errors persisted around 
inland lakes, so we applied a more aggressive Landsat-based mask from 
the European Commission’s Joint Research Centre (Pekel et al., 2016). 
This step effectively removed water pixels misclassified as snow, but 

unfortunately also resulted in data losses in areas with abundant per-
manent and seasonal water (e.g., northern portions of the Great Lake 
states and Dakotas). We reordered the day of year (DOY) from August 1 
(DOY 1) to July 31 (DOY 365) to analyze the full snow year and calculate 
snow season length. Finally, to focus our analyses on areas with bio-
logically relevant snow seasons, we masked any pixel that had a median 
snow season length shorter than two weeks over the 14-year study 
period. 

To minimize data gaps, we combined Terra and Aqua data using the 
daily observation with the highest NDSI value. We tested both mean and 
max value compositing of the daily observations and found that the 
results were very similar. We suggest this was because 1) the morning 
(Terra) and afternoon (Aqua) observations are taken on the same day, 
and 2) we had already applied a ≥ 10 NDSI threshold for snow presence 
to both datasets (as is done in the MODIS 8-day composite products). 
Thus, in the majority of cases, this step was simply retrieving whichever 
sensor had a cloud-free observation. Snow season length was derived 
from the Terra and Terra-Aqua combined data separately (see section 
2.2). We did this because Aqua products usually have higher error rates 
due to a sensor malfunction necessitating the use of a different band in 
the NDSI calculation (Coll and Li, 2018; Zhang et al., 2019). For snow 
cover variability and frozen ground without snow, which require near- 
continuous observations of snow presence and absence, we created 8- 
day composites of snow cover (akin to a temporal filter) from the 
daily combined Terra-Aqua dataset. We used the same approach and 
compositing periods that are used to create the MODIS 8-day Maximum 
Snow Extent band in the MOD/MYD10A2 product (currently unavai-
lable in Google Earth Engine). A pixel was considered snow-covered if 
any day in the 8-day period had snow. We chose an 8-day window, even 
though a longer window would have reduced data gaps even more (Coll 
and Li, 2018), to capture more transitional observations – i.e., when a 
pixel switches from snow-covered to not and vice versa. 

Finally, because commission errors in the snow data are more 
prevalent during warmer months (namely July and August, Coll and Li, 
2018), we constrained the dates when snow could theoretically occur. 
We did this by examining the historical first and last snow dates recor-
ded in our ground-based validation dataset at different elevations (see 
section 2.3). Snow occurred year-round at high elevations (≥ 915 m or 
3000 ft) so we did not constrain these areas by date. Mid elevations 
(458-914 m or 1500–2999 ft) were constrained to September 1st-July 
31st and low elevations (≤ 457 m or 1499 ft) to October 1st-May 31st. 
We used the USGS’s GMTED2010 dataset (Danielson and Gesch, 2011) 
to delineate elevation classes. 

2.2. The MODIS WHIs 

We calculated the three WHIs – snow season length, frozen ground 
without snow, and snow cover variability – for every year from 2003/04 
to 2017/18, both for the full snow year (Aug – Jul) and for winter 
months only (Dec – Feb), except for snow season length, which is only 
meaningful for the full snow year. We included the full snow year cal-
culations to characterize areas of the contiguous US that experience 
winter conditions outside the core winter months, namely high eleva-
tions. Because first and last snow detections are less affected by data 
gaps than the other WHIs, we derived snow season length from the daily 
data. We did this for both Terra and Terra-Aqua combined data to 
quantify the degree to which including Aqua increased coverages, but 
also introduced errors. Our calculation of snow season length used the 
following formula (note DOY 1 = Aug. 1):   

For the frozen ground without snow cover WHI (sensu Zhu et al., 
2019), we combined daily minimum temperature from Daymet (1 km; 
Thornton et al., 2014) and the 8-day snow cover time-series so that each 
day’s temperature estimate lined up with its associated 8-day composite 
snow cover estimate. We considered the ground as frozen when the daily 
minimum temperature was below − 4 ◦C (~25 ◦F, Riseborough (2001)). 
Because we were interested in quantifying the proportion of the ‘frozen 
season’ when there is no snow, we only analyzed ‘frozen’ pixels (with or 
without snow) in our calculation: 

Frozen ground without snow (%) =

( ∑
Frozen days without snow
∑

Total frozen days

)

*100 

Our calculation derives a proportion rather than the absolute number 
of days of frozen ground without snow as in Zhu et al., 2019. We chose to 
calculate the proportion to put the absolute numbers into better 
ecological context. For example, five frozen days without snow in lower 
latitudes with short snow seasons is quite different from the same 
number of days in higher latitudes with longer snow seasons. 

To derive snow cover variability from the 8-day composite snow 
presence/absence data, we first calculated the absolute backward- 
difference between each observation in the time-series (i.e., |t365 – 
t364|…|t2 – t1|) to detect ‘change events’ (new snow or snowmelt = 1) 
and no change (= 0). Change and no change events separated by a 
missing observation were not included in the calculation. We then 
calculated snow cover variability as the total number of change events 
divided by the total number of valid observations: 

Snow cover variability (%) =

( ∑
Change events

∑
Change&no change events

)

*100 

Finally, we examined the relatedness of the WHIs using Pearson’s 
correlations. We then created a multiband composite image with the 
final WHIs used in our winter bird biodiversity analyses (see section 2.4) 
to identify regions/areas with unique snow cover dynamics across the 
contiguous US. 

2.3. Accuracy assessment of the WHIs 

To validate the accuracy of the MODIS WHIs, we obtained ground- 
based snow cover data from Global Historical Climatology Network 
(GHCN; Menne et al., 2012) and SNOwpack TELemetry Network 
(SNOTEL; Schaefer and Paetzold, 2001) meteorological stations and 

Snow season length (days) = DOY of last snow detection–DOY of first snow detection   
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calculated the WHIs from these data. We only included stations with 
continuous data from 2003/04 to 2017/18 (i.e., 797 stations, Fig. 1). 
However, our validation dataset was biased toward high elevations 
(~60% of stations) because SNOTEL is designed for hydrological 
monitoring in mountainous areas. We used a ≥ 3 cm snow depth (Snow 
Water Equivalent; SWE) threshold for snow presence, which is the 
lowest presence value reported in the SNOTEL data. 

We evaluated the accuracy of each MODIS-based WHI with scatter-
plots and Pearson’s correlations with the station-based WHIs for both 
the full snow year and winter months. Here, it is important to note that 
the station-based WHIs pertain to a specific location on the ground, 
whereas the MODIS WHIs are for a 500 m pixel. Correlations were 
calculated for the means across the entire study period (2003/04–2017/ 
18) and for each individual year, as well as for each elevation class. 
Finally, as a sensitivity analysis for the frozen ground without snow and 
snow cover variability WHIs, we quantified the information lost when 
downgrading daily station snow cover data to 8-day snow composites. 

2.4. Relationships between the WHIs and winter bird diversity 

We developed models to predict winter bird diversity based on three 
WHIs: snow season length (Terra) and the core winter frozen ground 
without snow and snow cover variability indices. Because we were 
interested in evaluating how winter habitat conditions captured by the 
WHIs relate to broad-scale winter biodiversity patterns, we modeled 
total bird species richness (highest number of species observed) during 
the core winter months (Dec – Feb) as our response variable (hereafter 
‘winter bird species richness’). We calculated winter bird species rich-
ness from eBird data (Sullivan et al., 2009), which were available from 
the winter of 2003 on throughout the US (Fig. S1). Raw eBird data 

consist of species counts (‘checklists’) collected in the field by citizen 
scientists. The raw data is processed with automated checks on data 
quality based on the date a given species was observed and the ob-
server’s geographic location, then vetted for accuracy by a regional 
expert (Sullivan et al., 2014). However, eBird data are unevenly 
distributed in space and time, with higher survey effort in and around 
areas of human activity and in recent years (the number of checklists has 
been increasing geometrically concomitant with smart phone and mo-
bile app usage) (Cohen et al., 2020). To address these issues, we fol-
lowed the best practices for maximizing eBird data quality detailed in 
Johnston et al., 2019 and Cohen et al., 2020. We only analyzed “com-
plete checklists” where the observer recorded every species detected and 
identified, which allowed us to infer absences of undetected species and 
thus produce more accurate measures of species richness. To account for 
imprecise checklist locations, we summarized the mean WHI values 
within 2.5 km of a given checklist location. Finally, to account for the 
increase in the number of checklists over time and mitigate the uneven 
spatial distribution of eBird data, we created a uniform grid of 25 km 
cells across the contiguous US and extracted the checklist, along with its 
associated WHI values, with the highest winter bird species richness 
across all years (2003/04–2017/18) for each grid cell. We excluded 
areas that did not experience an appreciable snow season (e.g., the 
southernmost states) by only sampling from grid cells that had valid data 
for all three WHIs, resulting in a total of 7844 checklists (Fig. S1). 

We evaluated relationships between winter bird species richness and 
the WHIs using generalized additive models (GAMs), which account for 
nonlinear relationships. To control for differences in survey effort across 
time and space detailed above, we also included the number of check-
lists within each grid cell as a covariate in our models (per Johnston 
et al., 2019). We assumed the maximum observed species richness in 

Fig. 1. The spatial distribution of 797 meteorological stations from the Global Historical Climatology Network (GHCN) and SNOwpack TELemetry (SNOTEL) 
Network used to validate the MODIS WHIs, across elevation classes. The final station list included stations that a) had a continuous snow data record from 2003/ 
04–2017/18, b) had MODIS WHI observations for each year, and c) had a median snow season length of at least two weeks per year across the 14-year period. 
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each grid cell would follow a negative binomial distribution with a log- 
link mean function that varied as additive combinations of smooth 
functions of the three WHIs and the number of checklists. To avoid 
overfitting the GAM, we restricted the flexibility of each smooth to have 
5 knots (Wood, 2017). We constructed models for all combinations of 
the covariates and chose the best model based on the sample-size 
adjusted Akaike’s Information Criterion (AICc). We used AICc instead 
of the non-adjusted AIC for model selection since their values converge 
at large sample sizes, and thus Burnham and Anderson (2002) recom-
mend the use of AICc as standard practice. Additionally, we assessed 
model fit using the total deviance explained. Finally, we used partial 
effect plots to quantify and visualize the effect of each individual WHI, 
after accounting for the effects of survey effort and the other two WHIs 
in the model. 

3. Results 

3.1. The MODIS WHIs 

3.1.1. Snow season length 
The snow season length WHI captured prominent altitudinal and 

latitudinal gradients throughout the contiguous US (Fig. 2). The longest 
snow seasons (~8–11 months) occurred in the high elevations of the 
Sierra Nevada, Cascade, and Rocky Mountain ranges in the western US. 

Other notable gradients in the West included the short seasons (< 2 
months) at lower elevations in the Four Corners (intersection of Arizona, 
New Mexico, Colorado, and Utah), Great Basin, and Pacific Northwest 
regions, but more moderate lengths (~4–7 months) with increasing 
elevation. Spatially, one of the most rapid changes in snow season length 
occurred from the border of the Front Range of the Rocky Mountains 
(longer) to the Central Plains region (shorter) in eastern Colorado 
(Fig. 2a). Most regions east of the Rocky Mountains were dominated by a 
distinct latitudinal gradient in snow season length, with very short 
seasons (< 1 month) in the southern states, slightly longer seasons (2–3 
months) at mid-latitudes from the Central Plains to the Eastern 
Seaboard, and moderate length seasons (3–4 months) in the Upper 
Midwest and lower elevation areas of New England. The longest snow 
seasons in the eastern US occurred in the mountain ranges of New En-
gland (~5–7 months; Fig. 2b), followed by northern parts of the Great 
Lakes states and Maine (4–5 months). 

The mean snow season length across all years agreed well with the 
station data, with estimates from Terra (r = 0.91) outperforming those 
from Terra-Aqua combined (r = 0.87) (Fig. 3). Terra snow season length 
had a mean difference of − 20 days compared to the station data, with 
72% of the observations falling within ±40 days. The mean differences 
for the three elevation classes showed consistent underestimations (low 
= − 34 days, mid = − 46 days, and high = − 10 days) and almost all of 
the overestimations occurred at high elevations in the western US 

Fig. 2. Mean snow season length (SSL, months) estimated from daily MODIS Terra data from 2003/04–2017/18. The areas highlighted in (A) the Front Range of the 
Rocky Mountains and Central Plains and (B) New England show clear altitudinal and latitudinal gradients. 
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(Fig. S3). Conversely, the Terra-Aqua combined index had a mean dif-
ference of +28 days and over 40% of the observations overestimated 
snow season length by >50 days. Again, these overestimations occurred 
almost exclusively at high elevations in the West (mean difference with 
the station data = +58 days; Fig. S3). Terra snow season lengths had 
higher correlations than Terra-Aqua combined at low elevations (r =
0.82 vs. 0.65) and high elevations (r = 0.67 vs. 0.60), while both per-
formed similarly at mid elevations (r = 0.63 vs. 0.64). Given their higher 
accuracies, we focused the rest of our analyses on the Terra-based esti-
mates, which also had high annual accuracies ranging from r =
0.70–0.83, with only one year having moderate-level accuracy (r = 0.59 
for 2014–2015; Table S1). 

3.1.2. Frozen ground without snow 
The frozen ground without snow indices for winter and the full snow 

year had virtually identical spatial patterns across the contiguous US, 
but estimates were higher in winter (Fig. 4). Areas with the highest 
frozen ground without snow percentages in the contiguous US occurred 
in the Central Plains region immediately east of the Front Range of the 
Rocky Mountains, with half or more of all winter observations being 
frozen without snow (Fig. 4a, c). Winter frozen ground without snow 
was also high in parts of the Colorado Plateau (Arizona and New Mexico) 
and the western Great Basin region (immediately east of the Sierra 
Nevada Mountains). Both indices had a strong latitudinal gradient east 
of the Rocky Mountains, with higher frozen ground without snow in the 
middle latitudes decreasing northward. Areas with the lowest frozen 
ground without snow percentage were those where frozen ground is 
snow-covered throughout much of the winter, including high elevation 
mountain ranges and northern parts of the Great Lakes states and New 
England, and those where frozen ground occurs less frequently, such as 
the low elevations of the Great Basin and areas with a strong lake effect 
(e.g., the Lake Champlain valley; Fig. 4b, d). 

The mean frozen ground without snow estimates across all years 
were highly accurate for both the full snow year (r = 0.85) and winter (r 
= 0.83) according to the station data. Both indices generally under-
estimated the number of days of frozen ground without snow, but 
overall patterns were similar to the station-based data (Fig. 5). The 
winter estimates were often closer to the ‘true’ station-based value than 

those for the full season, though, the latter tended to underestimate 
frozen ground without snow prevalence in parts of the Midwest and the 
Front Range of the Rocky Mountains (Fig. S4). Notably, the winter es-
timates were highly correlated with the station-based full snow year 
frozen ground without snow estimates (r = 0.84), even more so than the 
full season correlation at low (r = 0.61 vs. 0.60) and mid elevations (r =
0.81 vs. 0.79). The full snow year correlation was only slightly stronger 
at high elevations (r = 0.89 vs. 0.88). Finally, both the winter and full 
season indices exhibited moderate to high annual accuracies ranging 
from r = 0.62–0.81 (Table S1). 

3.1.3. Snow cover variability 
We present the accuracy assessment results before describing spatial 

patterns in snow cover variability, because while the mean snow cover 
variability estimates across all years had good agreement with the 
station-based data for winter (r = 0.79), they did not for the full snow 
year (r = − 0.21), making the full snow year maps unreliable. Both 
indices tended to overestimate variability by approximately 10–20% 
(Fig. 6). However, the full snow year index had much higher over-
estimations at high elevations in the West with low snow cover vari-
ability (0–5%) (Fig. S5). The full snow year data also had more uniform 
overestimations across all sites (i.e., with no discernible pattern mir-
roring the station data as in the winter index) (Fig. 6). Interestingly, the 
problematic sites featuring low variability were all the high elevation 
SNOTEL stations, resulting in the bimodal distribution of points in Fig. 6. 
Accordingly, the full snow year index performed very poorly at mid (r =
− 0.03) and high elevations (r = 0.01), and somewhat better at low el-
evations (r = 0.18). The exact opposite was true for the winter index, 
which performed best at high elevations (r = 0.82), followed by mid (r =
0.45) and low elevations (r = 0.39). The lower correlations for the latter 
two were mainly due to overestimations of variability in parts of the 
Midwest and the Front Range of the Rocky Mountains (Fig. S5). The 
winter index was also well-correlated with the station-based full snow 
year variability (r = 0.77). Annual correlations for the winter index were 
slightly lower than the correlation for the mean of all years, ranging 
from r = 0.47–0.67 (Table S1). 

The winter snow cover variability patterns showed the highest values 
in the middle latitudes from the Central Plains to the Eastern Seaboard 

Fig. 3. The accuracy of mean snow season length (SSL, days) estimates, derived from daily Terra (left) and Terra-Aqua combined (right) data, across the study period 
(2003/04–2017/18) based on meteorological stations (N = 797). The bimodal distribution of the points is a reflection of our validation dataset: most stations were 
located at high or low elevations (long and short snow seasons, respectively) and few at mid elevations with moderate-length snow seasons. Points are colored by 
density from low (purple) to high (yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(Fig. 7), where a quarter or more of all the observations during winter 
were ‘change events’ (i.e., new snow or snowmelt). Winter variability 
estimates were lowest (~0–5%) in the Rocky Mountains, the northern 
parts of the Great Lake states and Maine, and the mountain ranges of 
New England. Again, a distinct latitudinal gradient occurred east of the 
Rocky Mountains, with higher winter variability in the middle latitudes 
decreasing to the north and south, as well as a stark transitional gradient 
from the Rocky Mountains (virtually no variability) to the Central Plains 
(high variability) (Fig. 7a, c). Contrasting the snow cover variability 
indices for the winter and full season revealed overestimations in the 
latter were greatest in areas with frequent cloud cover: mountain ranges 
and northern parts of the Great Lake states and New England (Fig. 7b, d). 

3.1.4. Sensitivity of the WHIs: daily versus 8-day composite snow cover 
data 

When we converted each station’s continuous snow cover record 
from daily to 8-day composites in order to quantify how much the 
composited MODIS data affected our results, the frozen ground without 
snow estimates changed little for both the full snow year (r = 0.94) and 
winter (r = 0.93), albeit with systematic underestimations (46 vs. 365 
observations) (Fig. 8). However, snow cover variability was greatly 
affected by this change for both the full season (r = 0.80) and winter (r 

= 0.76). Virtually all of the full snow year percentages >10% (ranging 
from approximately 10–30%) estimated from the daily data fell between 
4 and 8% in the 8-day, with higher daily-derived variability estimates 
not always resulting in higher 8-day estimates. The same was true for 
winter variability, where daily-derived variability estimates ranging 
from approximately 5–30% consistently fell between 2 and 6%. Inter-
estingly, the correlation between the MODIS-based (8-day) and station- 
based (daily) winter variability index was higher (0.79) than the daily 
versus 8-day relationship of the station data (0.76). 

3.1.5. Composite patterns in the WHIs 
Correlations between the MODIS WHIs showed that while they were 

closely related, each one captured unique aspects of snow cover dy-
namics across the contiguous US. Winter frozen ground without snow 
and snow cover variability had the strongest correlation (r = 0.87), 
followed by season length and winter variability (r = − 0.78), then 
season length and winter frozen ground without snow (r = − 0.72). 
Combining the WHIs in a composite image highlighted distinct zones of 
different snow cover dynamic dominated by either one WHI or a com-
bination of them (Fig. 9). Notable examples include the high elevations 
of the Cascades and northern Rocky Mountains which are dominated by 
long snow seasons with near-continuous snow cover, and to a lesser 

Fig. 4. Mean frozen ground without snow (FWOS, %) for the full snow season (top) and winter only (bottom) from 2003/04–2017/18. The right-hand panels 
highlight FWOS gradients across the Front Range of the Rocky Mountains and Central Plains (A, C) and New England (B, D). Areas where frozen ground was not 
recorded were removed to emphasize those where FWOS equaled zero (i.e., where the ground was always frozen and snow-covered). 

D. Gudex-Cross et al.                                                                                                                                                                                                                          



Remote Sensing of Environment 255 (2021) 112309

8

degree, the same is true for the mountains of New England and northern 
parts of the Great Lakes states and Maine. Snow seasons in the Central 
Plains east of the Rocky Mountains were some of the harshest, with high 
snow cover variability and frequent frozen ground without snow. This 
pattern graded into areas in the Midwest where frozen ground without 
snow was less frequent, but snow cover variability and season length 
were higher. Correlations between all the WHIs, both MODIS- and 
station-based, are available in Table S2. 

3.2. The WHIs and winter bird diversity 

Snow season length, winter snow cover variability, and winter frozen 
ground without snow prevalence were strong predictors of winter bird 
species richness across the contiguous US. Model comparisons consis-
tently ranked the model that included all three WHIs as the best, and 
substantially so, with the next best model having a ∆AICc = 129.5 
(Table S3). The full model explained 34% of the total deviance, and of 
this 34%, the WHIs accounted for approximately 60% (20% of the total 
deviance). 

Partial effects plots showed non-linear relationships between species 

Fig. 5. The accuracy of mean frozen ground without snow (FWOS, %) estimates across the study period (2003/04–2017/18) based on meteorological stations (N =
797). Points are colored by density from low (purple) to high (yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 6. The accuracy of mean snow cover variability (SCV, %) estimates across the study period (2003/04–2017/18) based on meteorological stations (N = 797). The 
grouping of points on the left-hand side of the graph (at low station-based SCV values) are all from high elevation SNOTEL stations, while those on the right-hand side 
are nearly all from low elevation GHCN stations. Points are colored by density from low (purple) to high (yellow). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

D. Gudex-Cross et al.                                                                                                                                                                                                                          



Remote Sensing of Environment 255 (2021) 112309

9

richness and the model covariates (Fig. 10). Species richness had a 
strong unimodal relationship with survey effort, with maximum species 
counts occurring around 3000 checklists per grid. As expected, bird 
species richness was lower in regions with longer snow seasons 
(Fig. 10b). Species richness also had unimodal relationships with snow 
cover variability and frozen ground without snow. Richness was higher 
in regions where up to 25% of all the winter observations were ‘change 
events’ (i.e., new snow or snowmelt) and 40% of observations were of 
frozen ground without snow, but declined sharply in regions of greater 
variability (Fig. 10c, d). 

4. Discussion 

We derived the winter habitat indices (WHIs) from MODIS that 
characterize patterns of snow season length, snow cover variability, and 
frozen ground without snow across the contiguous US from 2003/04 to 
2017/18. Accuracy assessment with data from 797 meteorological sta-
tions showed that the WHIs accurately captured snow cover dynamics, 
both across the 14-year study period and annually. The season length 
and frozen ground without snow indices were most accurate, followed 
by winter snow cover variability. For frozen ground without snow and 
for snow cover variability, the core winter indices were also highly 

correlated with the full snow year station data, and sometimes even 
more so than their full snow year counterparts. Thus, estimating these 
two WHIs for the core winter only appears to be an accurate portrayal of 
conditions over the entire snow year, and adding non-winter observa-
tions increases error. The ability of each WHI to capture winter habitat 
conditions that are important to wildlife was underscored by their in-
dividual importance in models predicting winter bird diversity across 
the contiguous US. 

Though each MODIS WHI exhibited some degree of bias, only one – 
snow cover variability for the full snow year – showed poor agreement 
with the station data. Snow season length bias included un-
derestimations at lower elevations with shorter seasons and over-
estimations at higher elevations with longer seasons, though most 
estimates were within 40 days of the station-based estimate. Frozen 
ground without snow was typically underestimated for both the full 
snow year and core winter indices, but more so in the former. Snow 
cover variability was mostly slightly overestimated in the core winter 
index, but this tendency was exacerbated in the full snow year index, 
where most of the MODIS WHI estimates were ~ 5–30% higher than the 
station-based ones (with greater differences at high elevation sites). The 
sources of error that may have biased our MODIS WHIs included: (1) 
incorrect snow detections, (2) data gaps due to cloud cover, (3) 

Fig. 7. Mean snow cover variability (SCV), in percent (number of change events/total valid observations), for the full snow season (top) and winter only (bottom) 
from 2003/04–2017/18. The right-hand panels show contrasting SCV estimations for the two time periods, and highlight important SCV gradients captured by the 
much more accurate winter index across the Front Range of the Rocky Mountains and the Central Plains (A, C) and New England (B, D). 

D. Gudex-Cross et al.                                                                                                                                                                                                                          



Remote Sensing of Environment 255 (2021) 112309

10

compositing of the snow cover data from daily to 8-day periods for the 
frozen ground without snow and snow cover variability WHIs, and (4) 
scale mismatch between meteorological stations (point-level) and 
MODIS (500 m) data. Incorrect snow detection in MODIS snow cover 
products is largely due to spectral similarities between certain cloud and 
snow conditions, which produce false positives (high NDSI values for 
clouds), and dampening of the spectral signal due to cloud and mountain 
shadows or patchy snow cover within a pixel, which produce false 
negatives (low NDSI values when they should be high) (Hall and Riggs, 
2007; Rittger et al., 2013; Stillinger et al., 2019). Error rates in both the 
Terra and Aqua products are generally highest during the warmer 
shoulder season months when bright cirrus clouds and patchy snow 
cover are more common, and they are higher in the Aqua product than in 
the Terra products due to Aqua’s sensor malfunction (Coll and Li, 2018; 
Hall and Riggs, 2007). Thus, while each WHI suffered from more than 
one of these errors, those that were both calculated for the full snow year 
and used combined Terra-Aqua data – i.e., the snow cover variability for 
the full snow year and combined Terra-Aqua snow season length and 

indices – performed worse relative to their counterparts (i.e., snow cover 
variability for winter only and snow season length from Terra only). 

Biases in our MODIS-based estimates of snow season length, which 
are based on daily data, were caused by data gaps and incorrect snow 
detections. Because we constrained the period when snow could occur 
by elevation class (low = Oct. 1st – May 31st, mid = Sep. 1st – June 31st, 
high = no date constraint), the lower elevations were less affected by 
false positives during warmer months. Thus season length was largely 
underestimated in these areas due to missed snow cover days from 
clouds or shadows, and overestimated in higher elevation areas where 
false positives were more common. Unsurprisingly, season length esti-
mates derived from the daily Terra data outperformed those from Terra- 
Aqua combined, especially at higher elevations, because the latter 
contained the aforementioned snow detection errors that are most 
prevalent in the Aqua data. Other studies that have mapped and vali-
dated snow cover duration, which is closely related to our season length 
metric, using MODIS products have found similar results in Europe 
(Dietz et al., 2012; Foppa and Seiz, 2012), China (Xu et al., 2017), the 

Fig. 8. Correlations between the station-based WHIs derived from daily versus 8-day snow cover data for frozen ground without snow (FWOS, %; top) and snow 
cover variability (SCV, %; bottom) from 2003/04–2017/18. 

D. Gudex-Cross et al.                                                                                                                                                                                                                          



Remote Sensing of Environment 255 (2021) 112309

11

Pacific Northwest in the US (Gao et al., 2011), and across mountain 
ranges globally (Notarnicola, 2020). 

While data gaps and incorrect snow detections also affected the 
MODIS-based estimates of frozen ground without snow and snow cover 
variability, our 8-day compositing introduced additional bias by 
reducing the number of valid observations available for the WHI cal-
culations, e.g., from 94 possible observations in the daily data to 12 in 
the 8-day data for the core winter calculations. Our sensitivity analysis 
based on the continuous data from meteorological stations (representing 
‘true’ conditions) showed that condensing the data record from daily 
observations to 8-day composites led to consistent underestimations in 
the estimates of frozen ground without snow and snow cover variability 
(refer to Section 3.1.4 and Fig. 8). Compositing the snow record over-
estimated the amount of time the ground is frozen with snow and hence 
underestimated the prevalence of frozen ground without snow. Simi-
larly, extending snow presence or absence to 8-day periods removed the 
variability within those periods, leading to underestimations in areas 
where snow cover is more variable versus those that remain snow- 
covered for long periods of time (e.g., high elevations). However, 
because frozen ground without snow and snow cover variability require 
a near-continuous data record (whereas snow season length only re-
quires a first and last observation), we found that creating 8-day com-
posites with the MODIS data was necessary to produce them at an 
annual timescale. Using only the daily data resulted in substantial data 
gaps in parts of the country where cloud cover is especially prevalent in 
winter (e.g., the Upper Midwest and Northeast). Even after compositing 
data from two sensors (Terra and Aqua), having a valid MODIS obser-
vation for each 8-day period in a given year was rare. 

That data gaps remained in our 8-day composite snow product is the 

reason our accuracy assessment results for the MODIS-based estimates 
differ from those of the station-based sensitivity analysis (Figs. 5 and 6 
vs. Fig. 8), since the MODIS calculations were based on fewer observa-
tions. This was particularly true for the snow cover variability indices, 
which were biased toward overestimation in the MODIS estimates (data 
gaps) and underestimation in the station-based sensitivity analysis (no 
data gaps). Because we only counted a ‘change event’ (new snow or 
snowmelt) as valid if it occurred between two clear, adjacent observa-
tions – if a pixel had snow the first period, was masked due to cloud 
cover the next, then had no snow cover on the following period, no 
change event was recorded – reducing the number of valid observations 
progressively increases the impact of one change event on the variability 
estimate (increases it). Nevertheless, three of the four MODIS WHIs 
derived from 8-day composites were still highly correlated with the 
‘true’ conditions represented by the station data. The exception to this 
was the snow cover variability for the full snow year index, which was 
almost universally overestimated due to a combination of false positive 
snow detections in warmer shoulder season months and fewer valid 
observations, inflating the variability estimate. We suspect the false 
positive during warmer months issue was drastically reduced in the 
frozen ground without snow for the full snow year index, because valid 
observations for this index also require the minimum temperature to be 
below − 4 ◦C (~25 ◦F). 

Despite the known shortcomings of Aqua snow cover data, we 
decided to test if they could provide supplemental information to the 
Terra data for the WHI calculations. Our question was whether the in-
crease in spatiotemporal coverage due to more frequent snow observa-
tions, particularly in the core winter months and for annual estimates, 
outweighed the resulting decrease in accuracy. Maximizing 

Fig. 9. Composite spatial patterns in the MODIS WHIs from 2003/04–2017/18, highlighting zones with distinct snow cover dynamic across the contiguous US. The 
winter snow cover variability (%) WHI is in red, the snow season length (days) WHI in green, and the winter frozen ground without snow (%) WHI in blue. Thus, for 
example, bright green areas represent long snow seasons with little snow cover variability and rarely any frozen ground without snow. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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spatiotemporal coverage and resolution of the WHIs is important for 
many conservation and biodiversity applications, such as species dis-
tribution modeling, identifying areas of phenotypic mismatch (e.g., for 
species that rely on snow cover for cryptic coloration, like snowshoe 
hare), and for management decisions at local or regional scales over 
relatively short timeframes (e.g., 10-year management plans). The core 
winter indices are of particular importance because snow and frozen 
ground conditions affect wildlife especially during colder months. We 
found that the daily Terra data alone was sufficient to characterize snow 
season length without substantial gaps in spatial coverage for most 
years. Yet, even after creating 8-day composites from the daily data, 
Terra data alone was insufficient to calculate frozen ground without 
snow and snow cover variability. Further, we found that the Aqua errors 
mainly occurred during the shoulder seasons and not in the core winter 
months, which was reflected in the high accuracies of the winter frozen 
ground without snow and snow cover variability indices derived from 
the combined Terra-Aqua data, similar to what others have found (e.g., 
Wang et al., 2009). Ultimately, the answer to the question if Aqua data 
adds useful information depends which index is of interest, for which 
parts of the US the WHIs are calculated, and whether the core winter 
months or full snow year is more appropriate. Based on our results, we 
recommend that users do not include the Aqua data in 1) calculations of 
snow season length for the western US, and 2) calculations of snow cover 
variability and frequency of frozen ground without snow for the full 
snow year regardless of location. 

The accuracies of our WHIs compare favorably with other studies 
that have developed and extensively validated similar MODIS-derived 
snow cover metrics across broad spatiotemporal scales. For example, 

87% of snow cover duration estimates (pixels) across Europe 
(2000− 2011) using a combined Terra-Aqua fall within ±36 days of 
ground-based duration estimates (Dietz et al., 2012). This result is 
slightly more accurate than our season length index (72% of pixels 
within ±40 days), and we suggest that more complex topography in the 
US may be the cause. Mean snow cover duration (2000–2018) has also 
been mapped across major mountain ranges of the world, with high 
accuracy in North America based on station data (r = 0.80) (Notarnicola, 
2020). While our overall season length accuracy was higher (r = 0.91), 
our correlation for the high elevation class was quite a bit lower (r =
0.67). We suspect this is due to the use of fewer validation stations by 
Notarnicola (2020) and their focus on the Rocky Mountains in the US, 
which have less frequent cloud cover than mountain ranges in the 
Northeast and Pacific Northwest. These two differences in our validation 
dataset, which included 489 high elevation sites spanning several major 
mountain ranges, may have made the Notarnicola (2020) high elevation 
estimates likely more accurate than ours, but less precise. In a global 
study that was the inspiration for our frozen ground without snow 
indices, Zhu et al. (2017) mapped the duration of frozen ground with 
and without snow (akin to our frozen ground without snow WHI, but 
expressed in days rather than as a percentage) using a combination of 
MODIS 8-day snow cover and microwave sensing-based freeze/thaw 
status data and had higher overall accuracies (r = 0.91 vs. our 0.85), but 
with important caveats. First, their frozen ground estimation was limited 
by the coarse resolution of the microwave data (25 km). We improved 
upon this by using 1-km data from Daymet and achieved similar results 
at a much finer spatial resolution. Second, their validation of frozen 
ground status was not independent of the data used to calculate their 

Fig. 10. Partial effects plots showing the modeled predictions of winter bird species richness as a function of the number of eBird checklists per grid cell (A), snow 
season length (SSL, days; B), winter snow cover variability (SCV, %; C), and winter frozen ground without snow (FWOS, %; D). Solid black lines show the predicted 
relationship between species richness and each WHI when all other variables are held constant. Dashed lines represent 95% confidence intervals. 
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metrics, as they extracted the microwave data for each station (rather 
than using minimum temperature-based thresholds), and thus overall 
accuracy is only capturing snow cover duration accuracy. Caveats aside, 
the spatial patterns in their frozen ground without snow metric (see 
Figs. 3b and 4c in Zhu et al., 2017) largely matched those of ours. The 
main difference was their index had higher estimates of frozen ground 
without snow in the southcentral and southeastern portions of the US, 
most likely due to differences in the spatial resolution of our frozen 
ground status data. 

Our WHIs identified distinct spatial patterns in snow cover dynamics 
across the contiguous US. These spatial patterns summarize dynamic 
winter conditions that are of potential importance for many winter- 
adapted species and ecosystems by capturing interactions between 
ground status (frozen or not, snow-covered or not) and gradients of 
temperature (latitude, elevation) and precipitation (longitude, eleva-
tion, near large bodies of water). Unsurprisingly, snow season length is 
longer in high elevation areas nationwide and, in general, the highest 
elevation mountain ranges experience long snow seasons with little 
variability in snow cover. One exception to this is the Allegheny 
Mountains in the eastern US, which have snow seasons of moderate 
length (~3–5 months) characterized by high variability. This mountain 
range is in the transition zone from rain- to snow-dominated winters, 
and we suspect rainfall on warmer days during the core winter months 
causes the high rates of snow cover variability, and also of frozen ground 
without snow, since minimum temperatures at night remain low. East of 
the Mississippi River, there is a strong latitudinal gradient in snow cover 
dynamics, where the percentage of frozen ground without snow is high 
in the southernmost latitudes, snow cover variability high in mid- 
latitudes, and snow season length in the north. Snow cover variability 
is also higher near large bodies of water, such as Lake Champlain in New 
England and the Great Lakes. Finally, the WHIs highlighted the Central 
Plains region east of the Rocky Mountains as having arguably the 
harshest winters, where frozen ground without snow is highest reflect-
ing cold, dry winters. 

The ecological relevance of the WHIs was underscored by our 
assessment of winter bird species richness, where we found that each 
WHI had a significant, independent contribution in explaining variation 
in patterns of winter bird species richness across the contiguous US. The 
large percentage of total deviance explained by the WHIs (~60%) sug-
gests that snow cover dynamics strongly influence the spatial distribu-
tion of winter bird diversity in the mid to northern latitudes. As far as we 
know, our study is the first to explicitly examine relationships between 
broad-scale snow cover dynamics and winter bird diversity. Most related 
studies to date have focused on quantifying relationships between 
winter bird assemblages and measures of temperature, total precipita-
tion, and productivity (e.g., Elsen et al., 2020; Evans et al., 2006; H- 
Acevedo and Currie, 2003; Meehan et al., 2004). 

Overall, regions with longer snow seasons supported fewer bird 
species. This is unsurprising given longer snow seasons occur at higher 
elevations and latitudes where winter minimum temperatures are lower, 
snow depths are typically greater, and food availability is limited, 
resulting in high energetic demands for endotherms (Evans et al., 2006; 
Kawamura et al., 2019; Williams et al., 2015). Indeed, the majority of 
bird species that breed in North America have evolved migratory stra-
tegies to escape such harsh winter conditions (Somveille et al., 2019; 
Somveille et al., 2015). However, species richness did not increase lin-
early with the snow cover variability WHI. Variability tends to peak in 
middle latitude and coastal areas of the country where rain occurs in 
winter and freeze/thaw events occur more frequently, and higher winter 
temperatures can result in more bird species (Elsen et al., 2020; Evans 
et al., 2006). We found that while initial increases in snow cover vari-
ability and frozen ground without snow were associated with increased 
species richness, once these indices cross a certain threshold (~40% and 
25%, respectively), species richness declines precipitously. These re-
lationships suggest a geographic optimum may exist for wintering birds 
between long, harsh snow seasons and those characterized by high 

temperature and precipitation fluctuations, where short-distance mi-
grants may still find resources and resident birds benefit from reduced 
competition. Similarly, intermediate levels of temporal heterogeneity in 
snow cover may facilitate coexistence of species that utilize aspects of 
snow cover (e.g., for foraging) and those that do not, effectively 
increasing species richness (Adler and Drake, 2008; White et al., 2010). 
In regions of high variability, a possible explanation for lower species 
richness is the costs associated with highly variable temperatures, 
leading to unpredictable environmental conditions (H-Acevedo and 
Currie, 2003). For birds, climatic stability in winter can be a major 
determinant of winter species richness patterns across North America, 
with more species preferring areas where temperature is relatively sta-
ble but precipitation varies (H-Acevedo and Currie, 2003). Diminished 
species richness in extremely cold, dry conditions (higher frozen ground 
without snow) may be due to the lack of a subnivium or other thermal 
refugia (Pauli et al., 2013; Petty et al., 2015) for birds themselves (e.g., 
roosting habitat; Shipley et al., 2019; Shipley et al., 2020) and for the 
resources they depend on (e.g., low productivity, food availability; 
Antor, 1995). However, land cover may mediate species responses to 
winter weather. For example, we would expect fewer species in grass-
lands where extremely cold, dry conditions are harder to escape, which 
raises energetic costs and requires higher cold tolerance compared to 
land cover types such as forest. That said, birds utilize overwintering 
habitat more dynamically than breeding habitat, moving to and from 
different land cover types in response to fluctuating weather conditions 
and resource availability (Latimer and Zuckerberg, 2020). Thus, winter 
habitat conditions may be more important for mediating winter bird 
diversity than land cover types per se, and the MODIS WHIs can support 
future comparisons of the relationships of snow and species richness 
among and within different land cover types. 

In summary, the MODIS WHIs that we derived for the contiguous US 
offer a novel dataset to examine relationships between winter habitat 
conditions and biodiversity patterns. Their 500-m resolution allows for 
investigations that span from single species (e.g., snowshoe hares) to 
functional guilds (e.g., snow-adapted species) to entire taxa (e.g., birds) 
at regional or nationwide scales. As climate change continues to affect 
seasonally snow-covered ecosystems across the mid to high latitudes, 
the WHIs are essential to understanding the potential effects of these 
changes on the abundance, distribution, and fitness of species. To 
facilitate such studies, the WHIs are available for download on the 
University of Wisconsin-Madison SILVIS Lab’s website (silvis.forest.wis 
c.edu/data/whis). 
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