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A B S T R A C T

Cropland abandonment is a widespread land-use change, but it is difficult to monitor with remote sensing
because it is often spatially dispersed, easily confused with spectrally similar land-use classes such as grasslands
and fallow fields, and because post-agricultural succession can take different forms in different biomes. Due to
these difficulties, prior assessments of cropland abandonment have largely been limited in resolution, extent, or
both. However, cropland abandonment has wide-reaching consequences for the environment, food production,
and rural livelihoods, which is why new approaches to monitor long-term cropland abandonment in different
biomes accurately are needed. Our goals were to 1) develop a new approach to map the extent and the timing of
abandoned cropland using the entire Landsat time series, and 2) test this approach in 14 study regions across the
globe that capture a wide range of environmental conditions as well as the three major causes of abandonment,
i.e., social, economic, and environmental factors. Our approach was based on annual maps of active cropland
and non-cropland areas using Landsat summary metrics for each year from 1987 to 2017. We streamlined per-
pixel classifications by generating multi-year training data that can be used for annual classification. Based on
the annual classifications, we analyzed land-use trajectories of each pixel in order to distinguish abandoned
cropland, stable cropland, non-cropland, and fallow fields. In most study regions, our new approach separated
abandoned cropland accurately from stable cropland and other classes. The classification accuracy for aban-
donment was highest in regions with industrialized agriculture (area-adjusted F1 score for Mato Grosso in Brazil:
0.8; Volgograd in Russia: 0.6), and drylands (e.g., Shaanxi in China, Nebraska in the U.S.: 0.5) where fields were
large or spectrally distinct from non-cropland. Abandonment of subsistence agriculture with small field sizes
(e.g., Nepal: 0.1) or highly variable climate (e.g., Sardinia in Italy: 0.2) was not accurately mapped. Cropland
abandonment occurred in all study regions but was especially prominent in developing countries and formerly
socialist states. In summary, we present here an approach for monitoring cropland abandonment with Landsat
imagery, which can be applied across diverse biomes and may thereby improve the understanding of the drivers
and consequences of this important land-use change process.

1. Introduction

Cropland abandonment is a common type of land-use change across
the globe and can be caused by a range of social, economic, and en-
vironmental factors (Hatna and Bakker, 2011; Li and Li, 2017;
MacDonald et al., 2000). For example, during the 20th century broad-
scale cropland abandonment has occurred in Europe (Hatna and
Bakker, 2011; Pinto Correia, 1993; Walther, 1986), North America

(Brown et al., 2005; Flinn et al., 2005; Ramankutty and Foley, 1999),
and East Asia (Osawa et al., 2016; Shoyama and Braimoh, 2011; Su
et al., 2018). In recent decades, developing regions such as China
(Ladikas et al., 2009; Wang et al., 2015), Latin America (Díaz et al.,
2011; Grau and Aide, 2008; Laue and Arima, 2016), and Southeast Asia
(Li et al., 2017; Yusoff et al., 2015) have experienced high rates of
cropland abandonment. In general, marginal croplands, for example in
mountains, afar from transportation routes or markets, and on poor
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soils are especially prone to abandonment because they tend to be less
profitable (Gellrich and Zimmermann, 2007; Mottet et al., 2006). Fac-
tors, such as land reforms (Kuemmerle et al., 2008), land degradation
(O'Hara, 1997), and armed conflicts (Yin et al., 2019) can trigger
cropland abandonment even in areas that are well suited for agri-
culture.

Cropland abandonment has wide-ranging effects on the environ-
ment, especially on biodiversity and carbon storage (Cramer et al.,
2008; Isbell et al., 2019; Munroe et al., 2013). For biodiversity con-
servation, cropland abandonment can either be a threat or an oppor-
tunity (Queiroz et al., 2014). Wildlife communities adapted to agroe-
cosystems may decline, but those favoring early-successional vegetation
typically flourish. Similarly, carbon stocks depleted by exploitative
agricultural practices may recover as succession progresses and soils are
replenished with organic matter (Vuichard et al., 2008). However, en-
vironmental outcomes depend on the time since abandonment. For
example, species richness and composition vary by successional stage
(Baba et al., 2019; Isbell et al., 2019). Similarly, carbon sequestration
rates are generally faster soon after abandonment than in later years
(Poeplau et al., 2011; Wertebach et al., 2017). Therefore it is necessary
to identify both the extent and the timing of abandonment when pre-
dicting its environmental consequences (Kolecka, 2018).

Despite the importance of cropland monitoring, cropland aban-
donment is difficult to map and not routinely monitored. One option to
assess cropland abandonment is to rely on statistics released by national
or international organizations such as the Food and Agriculture
Organization of the United Nations (FAO) that report the annual extent
of active croplands at regional, national, and subnational levels (e.g.,
FAOSTAT). However, such aggregated statistics cannot capture the
spatial pattern of changes nor the detailed change process such as
abandonment and expansion.

Mapping cropland change from satellite imagery is better suited to
capture the spatial patterns of changes, but it is difficult because of the
complexity of cropland abandonment. Taking advantage of all available
satellite imagery, several time series algorithms, such as Landsat-based
detection of trends in disturbance and recovery (LandTrendr, Kennedy
et al., 2010), Breaks For Additive Season and Trend (BFAST, Verbesselt
et al., 2010), and Continuous Change Detection and Classification
(CCDC, Zhu and Woodcock, 2014) have been developed and applied to
monitor land surface change at frequent time intervals. These trajec-
tory-based methods are typically applied to indices derived from a
certain number of spectral bands, such as Normalized Difference Ve-
getation Index (NDVI), Normalized Burn Ratio (NBR) or Tasseled Cap
(TC) components to monitor changes within a certain land cover class
(e.g. forest change). However, one challenge for these algorithms is to
capture land cover conversions accurately when the land cover class at
either time point varies greatly in spectral reflectance. In the case of
cropland abandonment, the changes in spectral reflectance stemming
from abandonment can differ greatly depending on the crop types prior
to abandonment and the successional pathways thereafter. Moreover,
mapping abandonment is confounded by different definitions of
“abandonment”. Abandoned cropland is often defined as cropland that
has not been cultivated for at least two to 5 years (FAO, 2016;
Pointereau et al., 2008), but if the period without cultivation is short,
then abandoned cropland is easily confused with crop rotations that
include fallow periods. Furthermore, prior attempts to map abandon-
ment have largely relied on pairs of multi-date satellite imagery (Liu
et al., 2014; Prishchepov et al., 2012; Witmer, 2008) that do not fully
capture the temporal dynamics that define abandonment (Estel et al.,
2015). As a result, often only areas where succession had already pro-
gressed to the stage of woody vegetation were deemed abandoned.
Ideally, abandonment maps should be based on long-term time series of
satellite imagery with frequent observations.

Sensor limitations, especially coarse resolution, further complicate
cropland abandonment mapping. Coarse resolution (> 250 m) satellite
data acquired by AVHRR, SPOT-Vegetation or MODIS sensors are

important for cropland mapping because of their high temporal re-
solution and global coverage (DeFries et al., 1998; Friedl et al., 2002).
However, coarse-resolution imagery is problematic when mapping
small agricultural fields (Fritz et al., 2015). Medium-resolution ima-
gery, e.g., from Landsat and Sentinel-2, allows to monitor of croplands
at a finer spatial scale (Defourny et al., 2019; Thenkabail et al., 2012).
Prior maps of cropland abandonment based on medium-resolution data
mostly focus on small extents and limited time periods (Grădinaru
et al., 2016; Parés-Ramos et al., 2008) due to the challenge of proces-
sing medium-resolution data for large areas efficiently. Cloud based
geo-processing platforms, such as Google Earth Engine (Gorelick et al.,
2017), may alleviate some of these limitations and improve cropland
abandonment mapping based on medium-resolution imagery.

The challenge of obtaining good training data for classifying sa-
tellite image also hampers cropland abandonment mapping. To sepa-
rate cropland abandonment from crop rotations that include fallow
periods, a consistent time series of cropland maps is necessary, but such
maps are rarely available. This is largely due to the lack of ground re-
ference data that can be used to train classifiers (Fritz et al., 2012;
Gómez et al., 2016). Training data relates the response (i.e., land-cover
class assignment) to the spectral reflectance in corresponding satellite
images. However, the spectral reflectance of agricultural land use often
differs from year to year, e.g., because of changes in crop types, making
it challenging to build a generalized classifier (Laborte et al., 2010; Xu
et al., 2018). Baring other approaches, it would be necessary to collect a
unique set of training data for each year that is to be classified, but that
is very labor intensive, and prohibitive for mapping large spatial ex-
tents.

Signature extension (also referred to as signature generalization)
can overcome the need for annual training data when producing con-
sistent time series of land cover. Signature extension applies a pre-
dictive model built from training data obtained from one domain (e.g.,
in space, time, or by sensor) to another (Chittineni, 1980; Olthof et al.,
2005; Woodcock et al., 2001). Two groups of signature extension ap-
proaches exist and have been used to produce temporally consistent
land-cover maps: 1) normalizing the imagery across time so that a
classifier can be generalized to different years (Pax-Lenney et al., 2001);
or 2) generating classifiers for individual years based on time-invariant
classes (Fraser et al., 2009; Gray and Song, 2013). For cropland map-
ping, the first approach is not viable due to both strong phenological
variation among years, and high within-class variance stemming from
management, crop rotation, or intensification. The second approach,
i.e., to parametrize a classifier for each year, does not require normal-
izing imagery to account for phenological difference, but requires stable
land cover as training samples for annual classification (Dannenberg
et al., 2016). It is this latter approach that shows the most promise for
annual cropland mapping, and that we employed here.

Our goals were to develop an approach to map the extent and the
timing of abandoned cropland using the entire Landsat time series and
test this approach in 14 study regions across the globe that capture a
wide range of environmental conditions as well as the three major
causes of abandonment, i.e., social, economic, and environmental fac-
tors. To do so, we

a) developed an approach for generating a set of training samples for
annual classifiers with minimal a priori information;

b) produced annual cropland maps based on summary metrics derived
from Landsat time series;

c) mapped patterns and timing of cropland abandonment by differ-
entiating abandonment from stable cropland, stable non-cropland,
and short-term fallow land.
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2. Methods

2.1. Study areas

We mapped cropland abandonment in 14 study regions (Fig. 1,
Table 1), ranging from drylands (Iraq, Nebraska, Shannxi, Orenburg,
Uganda), to temperate regions (Belarus, Bosnia and Herzegovina, Sar-
dinia, Volgograd, Wisconsin), to the sub-tropic and wet tropics
(Chongqing, Goias, Mato Grosso, Nepal). We selected these test regions
also because of their documented histories of cropland abandonment in
the past three decades (Suppl. A). Our study regions captured a diverse
mix of three potential abandonment drivers including social (e.g.,
Shannxi, Bosnia and Herzegovina), economic (e.g., Chongqing, Sar-
dinia), and environmental change (e.g., Iraq, Nepal). For detailed de-
scriptions of each study region, please see the Supplementary files
(Suppl. A).

2.2. Class definition

We based our method for mapping cropland abandonment on an-
nual land-cover maps. We defined ‘active cropland’ as areas that are

used to grow row crops and are typically tilled, resulting in a clear soil
signal at some point during the year. Accordingly, our cropland defi-
nition did not include some croplands that are used to produce per-
ennial crops and those that are not tilled. We expect this potential
omission to be relatively small as most crops are annually harvested
(Monfreda et al., 2008) and tilled (Porwollik et al., 2019). ‘Herbaceous
vegetation’ was defined as any unplowed area that is not dominated by
shrubs or trees. ‘Woody vegetation’ was defined as areas where shrubs
and trees were dominant. ‘Non-vegetated’ included water, barren land,
urban areas, and other areas devoid of vegetation.

The annual maps allowed us to identify cropland abandonment by
assessing land-cover trajectories through time. We defined cropland as
abandoned if the land was not cultivated for at least five consecutive
years, which is a conservative definition employed by the United
Nations' Food and Agriculture Organization (FAO, 2016). We defined
fallow as croplands not cultivated for< 5 consecutive years after a
period of consistent cultivation (FAO, 2016). Our approach can be ea-
sily adapted to accommodate alternative definitions of abandonment
that use shorter thresholds.

Fig. 1. Study regions: 1. Shaanxi (China), 2. Chongqing (China), 3. Nepal, 4. Orenburg (Russia), 5. Iraq, 6. Volgograd (Russia), 7. Uganda, 8. Belarus, 9. Bosnia and
Herzegovina, 10. Sardinia (Italy), 11. Goias (Brazil), 12. Mato Grosso (Brazil), 13. Wisconsin (USA), 14. Nebraska (USA).

Table 1
The study regions that we selected, the biome that they are part of, and the major causes for abandonment in each region.

No. Location Biome Major causes of abandonment

1 Shaanxi (China) Semi-arid Grain for Green program; Rural out-migration
2 Chongqing (China) Subtropics Urbanization; Rural out-migration
3 Nepal Alpine-subtropics Climate change; Rural out-migration; Off-farm employment
4 Orenburg (Russia) Semi-arid Collapse of socialism (economic crises)
5 Iraq Arid Armed conflicts; Soil salinization
6 Volgograd (Russia) Semi-arid Collapse of socialism (economic crises)
7 Uganda Tropical Savana Armed conflicts
8 Belarus Temperate Collapse of socialism (institutional change)
9 Bosnia and Herzegovina Temperate Collapse of socialism; Armed conflicts
10 Sardinia (Italy) Mediterranean Economy transition; Rural-outmigration
11 Goias (Brazil) Tropics Farm consolidation; Commodity price; Land mismanagement
12 Mato Grosso (Brazil) Tropics Forest conservation policies
13 Wisconsin (USA) Temperate Farm consolidation
14 Nebraska (USA) Semi-arid Conservation Reserve Program; Commodity price

H. Yin, et al. Remote Sensing of Environment 246 (2020) 111873

3



2.3. Data analysis

Our abandonment mapping approach consisted of five steps (Fig. 2).
In the first step, we created annual summary metrics from the Landsat
imagery (Section 2.3.1). Second, we collected a small set of calibration
samples by visually interpreting Landsat and Sentinel-2 time series and
high-resolution satellite imagery in Google Earth. The calibration
samples were stable in terms of their land cover, i.e., always cropland or
always woody vegetation from 1986 to 2018 (Section 2.3.2). Using the
calibration samples, we pre-classified annual summary metrics using a
random forest classifier and identified pixels with stable land cover
across the annual classifications. As part of this step, we conducted a
sensitivity analysis to test how many calibration samples were neces-
sary for accurate classifications. We then generated training data from
these stable areas. Third, we used these training data to train final
random forest classifiers for each region and each year to produce an-
nual land-cover maps (Section 2.3.3). We validated the annual land-
cover maps for all study regions by assessing accuracy of regional maps
produced for the year 2015. For Nebraska and Wisconsin, we also used
the Cropland Data Layer (CDL) (Boryan et al., 2011) for validation.
Moreover, using Shaanxi study region as an example, we tested how
Landsat data density influenced mapping accuracy. Fourth, we dis-
tinguished cropland abandonment from stable cropland, fallow, and
non-cropland based on the temporal trajectory of the land cover of each
pixel (Section 2.3.4). Finally, in step five, we estimated the mapping
accuracy of the cropland abandonment map based on an error-adjusted
stratified estimator (Section 2.3.5). We performed all data analyses in
Google's Earth Engine (Gorelick et al., 2017).

2.3.1. Landsat imagery processing
We analyzed all available Landsat Tier 1 surface reflectance imagery

from 1986 to 2018 that was available for each of our study regions in
Google Earth Engine as of April 2019. These data were atmospherically
corrected by the USGS using LEDAPS (Masek et al., 2006) and LaSRC
(Vermote et al., 2016), and masked to exclude clouds, cloud shadows,
and snow/ice using the accompanying quality assessment band. Due to
differences in the spectral reflectance of OLI relative to the previous
sensors, we applied the coefficients from Roy et al. (2016) to normalize
OLI reflectance to that of TM and ETM+. With the exception of
Uganda, all study regions had at least one cloud-free image in each year
since 1985. Because of the limited data availability for our Uganda
study region, we were only able to examine imagery 1998 to 2017
there.

We calculated annual summary metrics from the full Landsat data
record as input variables for our classifications. Summary statistics that
describe the distribution of the data over time can improve land cover
mapping (Potapov et al., 2012; Yin et al., 2017). Moreover, calculating
metrics based on imagery from multiple years improves the mapping of
dynamic classes such as cropland (Pflugmacher et al., 2019), which is
why we included imagery from±1 year to calculate metrics for each
target year. For instance, we included all available images from 1986 to
1988 when generating metrics for the target year 1987. The observation
density in the study regions suggested that by using a three-year
window we were able to calculate summary metrics at annual intervals
even for periods that had relatively few observations (e.g., 1990s)
(Suppl. B, Fig. S1).

We calculated the following summary metrics: maximum,
minimum, mean, median, standard deviation, and the 20th and 80th
percent quantile for each spectral band and for six indices. The indices
were: Bare Soil Index (BSI), Normalized Burn Ratio (NBR), Normalized
Difference Vegetation Index (NDVI), Brightness, Greenness, and
Wetness from a Tasseled Cap Transformation. BSI was originally

Fig. 2. Flowchart of the data analysis.
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developed for forestry applications to differentiate bare soil from other
land-cover classes (Rikimaru et al., 2002). We included BSI to capture
the soil signal when croplands were tilled or harvested (Diek et al.,
2017). BSI values range from −1 to 1, where a higher value indicates
higher soil bareness.

=
+ − −

+ + −

BSI (SWIR2 red) (NIR blue)
(SWIR2 red) (NIR blue)

We calculated NDVI based on the normalized difference between
the red and near infrared bands. NBR was calculated based on the
normalized difference between the near infrared and short-wave bands
(SWIR2). We used the coefficients provided by Crist (1985) for the
Tasseled Cap Transformation (Table 2). While Crist's coefficients were
original designed for Landsat TM, to the best of our knowledge, there
are no existing coefficients available for calculating Tasseled Cap
coefficients from OLI surface reflectance, only for OLI top of atmo-
sphere radiance (Baig et al., 2014). Thus, we normalized OLI re-
flectance so that it matched TM and ETM+ data using the coefficients
from Roy et al. (2016) before we applied Crist's coefficients.

2.3.2. Training data generation
In order to generate training samples, we developed an approach for

identifying pixels that were stable in terms of their land cover over the
entire Landsat image record. We applied our approach separately in
each study region, and ultimately parameterized a unique classifier for
each year in each study region.

Our first step was to collect a small set of calibration samples based
on the visual interpretation of imagery time series. These calibration
samples were Landsat pixels that had the same land-cover class in all
years. To identify and label these samples, we developed a Time Series
Viewer tool on Google Earth Engine (available at https://github.com/
hyinhe/GEE-codes). Our samples were selected based on visual ex-
amination of time series of the BSI, NBR, NDVI, Brightness, Greenness,
Wetness, cloud-free Landsat 4–8 and Sentinel 2 imagery composites
(RGB: NIR, SWIR1, red), plus high-resolution imagery available in
Google Earth. We manually selected pixels in which visual interpreta-
tion suggested that the land cover was consistent throughout our study
period. We excluded pixels where land cover changed, but retained
cropland samples crop types changed (e.g., rotations) or productivity
varied (see Suppl. B, Fig. S2). To identify the necessary sample size, we
tested different sizes of calibration samples from 10 to 50 per land cover
class in our test site in Shaanxi. The result showed that using>40
samples increased mapping accuracy by< 1% (Suppl. B, Fig. S3). Thus,
we decided to collect 50 calibration samples for each of the four land-
cover classes.

Our second step was to use these calibration samples to classify
annual sets of summary metrics for every third year (i.e., 1987, 1990,
1993, etc.) using a random forest classifier. From these classified land-
cover maps, we identified areas that retained the same land-cover class
across all years. We grouped neighboring pixels in the same land-cover
class into polygons and omitted small polygon (< 1 ha, ≈ 11 Landsat
pixels) to avoid spatial uncertainties due to mixed pixels and errors in
image co-registration. From these stable areas we randomly selected
2000 Landsat pixels per class as training samples for the final annual
classification for each region in each year.

2.3.3. Annual land-cover classification
We produced annual land-cover maps for each study region using a

random forest classifier (Breiman, 2001). We trained the classifier se-
parately for each test region and each year using the generated training
samples. We set the number of variables that were randomly sampled as
candidates at each split (mtry) to 9, which is the square root of the
number of input variables, and the minimum size of the terminal nodes
to 10.

2.3.4. Multi-year abandonment mapping
Based on our time series of annual land-cover maps with four land-

cover classes (active cropland, herbaceous vegetation, woody vegeta-
tion, and non-vegetated), we identified stable cropland, fallow crop-
land, cropland abandonment, and others. First, we generated a map of
stable cropland prior to 1990 (i.e., pixels classified as cropland in all
years between 1987 and 1990). Within this cropland mask, we identi-
fied croplands as abandonment if a pixel was classified as non-cropland
for at least five consecutive years. When abandonment occurred, we
labeled its timing as the first year in which cropland was no longer
active (starting from 1991 to 2013).

We mapped the cropland that was not actively managed con-
secutively for< 5 years as fallow, following the definition of FAO
(2016). Also, we were conservative and included only those croplands
as abandoned that converted to natural cover, not those that converted
to urban or to water (e.g., due to new reservoirs). To do so, we masked
out cropland conversions to urban based on the Joint Research Centre's
Global Human Settlement Dataset (Pesaresi et al., 2015), and conver-
sion to water based on the Global Surface Water Map (Pekel et al.,
2016), both of which are available on Google Earth Engine.

2.3.5. Accuracy assessment
We quantified the accuracies of both our annual land-cover maps,

and our abandonment maps. In order to assess the accuracy of our
annual land-cover maps, we evaluated the maps for 2015 for each study
region. We selected this year because of the widespread availability of
high-resolution imagery on Google Earth for all of our study regions.
We randomly selected a sample of 100 pixels for both cropland and
non-cropland areas (i.e., herbaceous vegetation, woody vegetation, and
non-veetated were considered collectively). Our sample size decision
here was based on the recommendation from Congalton and Green
(2009). We recorded the land-cover class of each sample by visually
interpreting a) time series of Landsat-derived indices, b) multi-seasonal
imagery from both Landsat, and c) high-resolution images available on
Google Earth, which were acquired between 2014 and 2016. Our va-
lidation samples were labeled separately by 12 experts who had ex-
periences with remote sensing data analysis. We instituted multiple
training sessions with these 12 experts to ensure that the same criteria
of sample labeling were followed. When a decision was difficult, a
second opinion was obtained, and the sample was labeled collabora-
tively. Based on these assessed samples, we created confusion matrices
for each study region and calculated producer's (PA), user's (UA), and
overall accuracies (OA). We also calculated the F1 score
(F1 = 2× UA× PA/(UA+ PA)) for the cropland class. The F1 score, a
harmonic mean of user's and producer's accuracy, is advantageous
when learning from imbalanced data (He and Ma, 2013; Powers, 2011).
F1 score ranges from 0 to 1 with higher score indicating better classi-
fication performance.

We conducted additional tests to ensure the robustness of our an-
nual classification approach. In order to understand the effect that the
number of input Landsat images had on mapping accuracy, we ran-
domly drew 10, 20, 30, 40, 50, 60, 70, 80 and 90% of all available
imagery in 2015 for Shaanxi and calculated summary metrics for each
set of imagery. We selected Shaanxi because its dense Landsat ob-
servations allowed us to test a wide range of imagery subsets (Suppl. B,
Fig. S1). We then performed classification for each set of summary
metrics using the same training data. We validated each land cover map

Table 2
Coefficients for the Tasseled Cap Transformation for the Landsat TM, ETM+
and the normalized OLI (Crist, 1985).

Feature Blue Green Red NIR SWIR1 SWIR2

Brightness 0.2043 0.4158 0.5524 0.5741 0.3124 0.2303
Greenness −0.1603 −0.2819 −0.4934 0.7940 −0.0002 −0.1446
Wetness 0.0315 0.2021 0.3102 0.1594 −0.6806 −0.6109
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using the same validation samples and compared their mapping ac-
curacies. The results of this exercise suggested that even when using
only 10% of the imagery, we were able to achieve reliable classifica-
tions (Suppl. B, Fig. S4).

For our test regions in Nebraska and Wisconsin, we compared our
cropland map with the U.S. Department of Agriculture's Cropland Data
Layer (CDL) (Boryan et al., 2011). We used the binary cultivation layer
from the CDL to validate our maps because of its high accuracy (PA:
93.9–98.8%, UA: 97.6–99.1%) (USDA NASS, 2018). The cultivation
layers were available from 2013 to present, so we limited comparisons
to our maps from 2013 to 2017. For each CDL cultivation layer, we
randomly selected 100,000 pixels and used them to validate our crop-
land maps produced for Nebraska and Wisconsin. We reported the PA,
UA and F1 score for each state and each year based on the error matrix
built from 100,000 validation samples.

In order to validate our cropland abandonment maps, we applied
disproportionate stratified sampling to assess small classes, such as
cropland abandonment (Olofsson et al., 2014). In order to reduce the
amount of validation samples needed, we aggregated abandonment
classes into 3-year intervals so that a pixel in which abandonment oc-
curred in either 1991, 1992, or 1993 was assigned to the aggregated
abandonment class “1991–1993”. To assess the accuracy of our aban-
donment maps, we randomly selected 150 pixels within each stable
cropland, fallow, and non-cropland, as well as 50 pixels within each of
the aggregated abandonment classes. While there are alternative re-
commendations in regards to appropriate size of validation samples
(e.g. Olofsson et al., 2014), we used a stratified sampling strategy to
reduce the efforts of sample collection that would be needed for the
large number of change classes (Congalton and Green, 2009). More-
over, 50 validation samples for each abandonment class avoids the risk
of small sample sizes for rare classes such as cropland abandonment
that is inherent in simple random sampling. We visually interpreted
these reference samples with the help of Landsat, Google Earth imagery,
and time series of indices (i.e., NDVI, BSI, Tasseled-Cap Brightness,
Greenness, and Wetness) in our Time Series Viewer, but without
knowledge of the mapped class label. We created confusion matrices
and calculated producer's and user's accuracies for both occurrence and
timing of abandonment, as well as the F1 score for both the cropland
abandonment class and overall accuracy, while accounting for possible
sampling bias (Card, 1982).

3. Results

3.1. Annual cropland mapping

Our annual land-cover maps had overall accuracies ranging from

0.63 to 0.91 (Fig. 3) with the lowest in Uganda (overall accuracy:
0.63 ± 0.06, error bar represents a 95% confidence level) where land
use was highly heterogeneous and many fields were smaller than the
30-m Landsat pixels. F1 scores for the other regions ranged from 0.52 to
0.94 (Fig. 4). The highest cropland mapping accuracies were found in
Iraq (F1 score of cropland: 0.94), Mato Grosso (0.91), Belarus (0.91),
Orenburg (0.91), and Nebraska (0.91), while cropland was less accu-
rately mapped in Goias (0.65), Sardinia (0.65), Uganda (0.60), and
Nepal (0.52). When comparing our cropland maps and the CDL culti-
vation layer, we found that our maps agreed well with the CDL data in
Nebraska (average F1 score from 2013 to 2017 for cropland: 0.83) and
Wisconsin (0.79) (Suppl. B, Fig. S5).

Visually, the annual land-cover maps, which were based on pixel-
level classifications, had clear patterns of fields that corresponded to
local terrain, climate, and socio-economic conditions (Fig. 4). For ex-
ample, small cropland fields (< 1 ha) dominated the mountainous areas
(e.g., Chongqing, Nepal) and areas where subsistence agriculture was
common (e.g. Uganda). Conversely, large fields (> 100 ha) were
dominant in areas with little topography and industrialized agriculture
(e.g., Mato Grosso, Orenburg, and Nebraska).

3.2. Cropland abandonment mapping accuracy

Our approach for mapping cropland abandonment accurately se-
parated cropland abandonment from other classes (Fig. 5). Most of the
study regions had an overall accuracy ≥0.75, the exception being
Uganda (0.23 ± 0.04).

For most study regions, the cropland abandonment maps were also
accurate in assigning the year in which abandonment occurred, but
accuracies varied depending on the environment, the type of agri-
culture, and the year (Fig. 6). In general, accuracies were the highest in
regions with industrialized agriculture (average F1 score of abandon-
ment year: Mato Groso: 0.8, Volgograd, and Belarus: 0.6) and drylands
(e.g., Nebraska, and Shaanxi: 0.5). In contrast, accuracies were lowest
where field sizes were small, for example, in mountains (e.g., Nepal:
0.1), and where agricultural land use varied greatly among years (e.g.,
Sardinia: 0.2).

3.3. Spatial and temporal pattern of cropland abandonment

The highly variable spatial patterns of abandonment that we ob-
served among our study regions highlight the diverse nature of the
abandonment process (Fig. 7; Suppl. B, Fig. S6-S8). Similarly, the
temporal patterns of abandonment were different among study regions
(Fig. 8; Suppl. B, Fig. S6-S8). In developing regions such as Shaanxi,
Chongqing, and Nepal, abandonment rates generally increased through
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Fig. 3. Overall mapping accuracy and the F1 score for the cropland class in 2015. Error bars indicate 95% confidence intervals.
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Fig. 4. Subsets of the 2015 land-cover maps showing the cropland in each study region with high-resolution imagery from Bing aerial in the background.
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time but with large temporal fluctuations. Cropland abandonment rates
in Shaanxi, for example, spiked between 2000 and 2005, declined be-
tween 2006 and 2008, and increased again after 2009. In contrast, in
former socialist states in Eastern Europe, such as Belarus, Bosnia and
Herzegovina, and Russia (Orenburg and Volgograd), abandonment
rates were highest during the 1990s and declined gradually thereafter.
In Brazil (Goias, Mato Grosso) and the US (Wisconsin, Nebraska),
cropland abandonment rates were generally much lower. The highest
temporal variations in abandonment occurred in Iraq, Uganda, and
Sardinia where climate variability is high and affects the persistence of
agriculture.

4. Discussion

We present here a new method to map cropland abandonment
patterns, including the year when abandonment occurred based on the
full Landsat record, as well as the implementation of this method in 14
study regions across the globe. Our detection of cropland abandonment
was based on annual land-cover classifications that we generated from
all available Landsat imagery. To classify cropland annually, we de-
veloped an approach that generates training data for each year based on
a small set of stable ground reference samples. Our approach does not
assume that reflectance and phenology remains similar among years.
The problem with the assumption of inter-annual similarity is that
croplands may differ among years because of variations in phenology,

crop type, climate, water availability, land-use intensity, and the dates
for which satellite data are available. Our method overcomes these
obstacles by generating a new random forest classifier for each year
based on time-stable reference samples and therefore does not require
spectral reflectance to be comparable among years. That makes our
approach highly adaptive and it avoids erroneous change detection. As
a result, we were able to generate consistent, annual maps of highly
dynamic land-use classes such as cropland, without having to select
training data for each year.

Our method allowed us to produce annual cropland maps for most
of our study regions (cropland F1 score: 0.52–0.94). Mato Grosso,
Belarus, Orenburg, and Nebraska had the highest mapping accuracy.
However, in the study regions with small field sizes and low-intensive
farms (e.g., Chongqing, Nepal, and Uganda), mapping accuracies were
lower. For instance, Uganda has an average farm size of< 1 ha, and
most fields are considerably smaller than that (Ker, 1995). Moreover,
trees are common in agricultural fields because tilling is done by hand,
and trees are planted or left for fruit, shade, firewood, and as wind-
breaks (Miller et al., 2017). As a result, the majority of Landsat pixels in
this region are mixtures of cropland, herbaceous land, and woody ve-
getation. Consequently, we were not able to map cropland accurately
here and our mapping accuracy for Uganda (cropland F1 score: 0.6) was
similarly low as that of other cropland maps for Africa (e.g., Feng et al.,
2018; Xu et al., 2018). In mountainous areas such as Nepal or
Chongqing, small fields on terraces were difficult to map, and
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topographic effects confounded our classifications (Vicente-Serrano
et al., 2008). Mapping errors in cropland may also originate from the
spectral similarly between cropland and herbaceous land such as
grassland and wetland. While we did not explicitly investigate

confusions between these two classes, previous studies suggested such
possibility (Friedl et al., 2010; Wickham et al., 2013). Despite these
limitations, our results generally demonstrated the potential of our
approach for operational cropland mapping across large areas at annual

Fig. 7. The spatial pattern and the timing of cropland abandonment in the study regions.
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intervals.
We mapped cropland abandonment based on land-cover trajectories

derived from our annual land-cover maps. The higher abandonment
mapping accuracy in large and intensively managed croplands (e.g.,
Belarus and Volgograd) and drylands (e.g., Shaanxi, Nebraska) may be
due to large spectral differences between active and non-active crop-
lands, which facilitate better class separation. Conversely, mapping
accuracy was lower in the study regions where cropland and non-
cropland had similar spectral characteristics during the growing season.
In Goias, for example, cropland and tilled-pasture are combined in
agricultural rotations making it difficult to differentiate them (Carvalho
et al., 2014; Mueller et al., 2015). Lastly, we observed some mapping
errors due to the conversion from cropland to orchards, vineyards, and
horticultural fields because our approach did not distinguish woody
vegetation for production purposes from post-abandonment natural
succession.

We found widespread cropland abandonment in most study regions,
but the timing and area of abandoned croplands varying greatly. While
we did not investigate the causes for abandonment directly, prior stu-
dies point to different causes of abandonment in the different regions.
In Nepal, for example, urbanization and off-farm employment has
caused rural outmigration and subsequent abandonment (Khanal and
Watanabe, 2009). Similarly, in Chongqing, gradual cropland aban-
donment is due to decreases in rural populations and hence labor (Yan
et al., 2016; Zhang et al., 2011). However, in Shaanxi land-use policy
may have played a more important cause for abandonment (Lü et al.,
2012; Zhou et al., 2012). For example in 2000, the Chinese government
launched a series of programs aiming to restore vegetation cover by
converting croplands in mountains and drylands to forests or grass-
lands. However, restoration efforts were reduced after 2004 due to
concerns about China's food security (Yin et al., 2018a) and our maps
show a subsequent decline in abandonment rates (Fig. 8). Similarly, the
Conservation Reserve Program (CRP) in the U.S. rents cropland from
farmers in 10–15 year contracts to cease cultivation of environmentally

sensitive land (Hendricks and Er, 2018). CRP enrollment may thus ex-
plain some of the cropland abandonment we observed in Nebraska
where CRP participation is high (Hiller et al., 2009). Finally, abrupt
socio-economic changes can trigger cropland abandonment as did the
breakdown of the Soviet Union in 1991 followed by the transition from
a planned to a market-oriented economy (Prishchepov et al., 2013).
Indeed, we observed high rates of abandonment in former socialist
states in the 1990s.

Our approach may facilitate improved mapping of abandonment
across diverse biomes and drivers. Prior to our study, we are aware of
only two trajectory-based studies that mapped the timing of abandon-
ment using Landsat data (Dara et al., 2018; Yin et al., 2018b), and our
abandonment mapping accuracy was comparable to both. However, our
approach does not require a specific threshold of change magnitude
that separates abandonment from other classes. This has implication for
mapping abandonment across a large range of biomes and agricultural
systems where changes in spectral reflectance due to abandonment can
differ greatly among regions (e.g., Suppl. B, Fig. S6-S8). Other prior
efforts to map abandonment have limitations in that they either relied
on coarse satellite data (Estel et al., 2015), analyzed only a few time
points (Nguyen et al., 2018), or mapped early-successional woody ve-
getation and assumed that its presence reflected abandonment
(Alcántara et al., 2013; Kolecka, 2018). The drawback of coarser spatial
resolution is that it obscures many cropland changes when field sizes
are less than pixel size (Ozdogan and Woodcock, 2006). Even with 30-
m Landsat pixels, we encountered this issue, for example, in our Uganda
study site. The drawback of mapping land abandonment based on only
a few time points is that agricultural land use is much more dynamic,
than, for example, forest use or urbanization, and abandonment phases
are easily missed when analyzing decadal time steps. Finally, inferring
abandonment from the presence of early successional woody vegetation
is overly conservative because 5–10 years may pass before woody en-
croachment occurs (Potapov et al., 2015; Ruskule et al., 2012), and
because it misses abandonment in drylands without a successional

Goias Mato Grosso Wisconsin Nebraska

0

5

10

15

20

Aa
nd

on
m

en
t r

at
e 

(%
)

Orenburg Volgograd Belarus Bosnia

Iraq Uganda Sardinia

0

5

10

15

20

Aa
nd

on
m

en
t r

at
e 

(%
)

Shaanxi Chongqing Nepal
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trajectory towards woody vegetation (Löw et al., 2015). To overcome
all of these shortcomings, our approach mapped land cover through
time, making it suitable for both drylands and forested biomes.

Despite these strengths, our abandonment mapping approach has
limitations that may limit its use for some applications. First, our
abandonment mapping relies on high quality annual land cover maps
that in turn required sufficient amount of imagery. We had at least eight
observations per year in each of our 14 test regions (Suppl. B, Fig. S1),
but that may not be the case elsewhere. Second, our approach relies
upon a relatively small set of manually selected calibration samples,
thus make our results vulnerable to the potential effects of mis-labeling.
Errors in our calibration samples can propagate through classifications
for all years and could reduce accuracy of mapped abandonment.
Furthermore, it may be difficult to find stable samples if land cover
change dominates in the region. Finally, we did not explicitly test our
approach for mapping all types of cropland. While tilled croplands are
widespread (Monfreda et al., 2008; Porwollik et al., 2019), there also
exist perennial and no-till cropping systems, as well as systems that
employ cover crops, and for all of these and there, the accuracy of our
method for mapping abandonment may be lower. In regions where such
systems are common, additional land cover classes, indices, or metrics
should be considered. Ultimately, there may not be a one-size-fits-all
method, but the flexibility of our approach makes it adaptable to a wide
range of conditions.

5. Conclusion

Accurate maps of cropland abandonment are needed to understand
the causes of agricultural land-use change and to mitigate the ecological
and social-economic consequences of these changes. Unfortunately,
there is a lack of approaches to reliably monitor cropland abandonment
for large areas and across disparate biomes. Here, we present an ap-
proach for detecting where and when cropland abandonment has oc-
curred based on annual classification of the entire Landsat record. We
streamlined classifications with the generation of annual training
samples. We tested our approach in 14 study regions representing a
wide range of environmental conditions and land-use histories and
different types of agriculture. Our results generally supported the re-
liability of our approach for detecting cropland abandonment, which
resulted in accurate maps in most but not all study regions. Our ap-
proach does not assume that reflectance and phenology remain similar
among years, thus is adaptive to each year and avoids erroneous change
detection. However, small-scale farms and landscape heterogeneity
pose challenges to abandonment mapping using medium resolution
data such as Landsat. Ultimately, a global map of cropland abandon-
ment is needed, and our work here demonstrates the potential for such
a map and highlights the challenges to derive it.
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