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A B S T R A C T

After 1991, major events, such as the collapse of socialism and the transition to market economies, caused land
use change across the former USSR and affected forests in particular. However, major land use changes may have
occurred already during Soviet rule, but those are largely unknown and difficult to map for large areas because
30-m Landsat data is not available prior to the 1980s. Our goal was to analyze the rates and determinants of
forest cover change from 1967 to 2015 along the Latvian-Russian border, and to develop an object-based image
analysis approach to compare forest cover based on declassified Corona spy satellite images from 1967 with that
derived from Landsat 5 TM and Landsat 8 OLI images from 1989/1990 and 2014/2015. We applied Structure-
from-Motion photogrammetry to orthorectify and mosaic the scanned Corona images, and extracted forest cover
from Corona and Landsat mosaics using object-based image analysis in eCognition and expert classification. In a
sensitivity analysis, we tested how the scale parameters for the segmentation affected the accuracy of the change
maps. We analyzed forest cover and forest patterns for our full study area of 22,209 km2, and applied propensity
score matching approach to identify three Latvian-Russian pairs of 15 × 15 km cells, which we compared. We
attained overall classification accuracies of 92% (Latvia) and 93% (Russia) for the forest/non-forest change maps
of 1967–1989, and 91% (Latvia) and 93% (Russia) for 1989–2015, and our results were robust in regards to the
segmentation scale parameter. Sample-based forest cover gain from 1967 to 1989 differed notably between the
two countries (18.5% in Latvia and 23.6% in Russia), but was generally much higher prior to 1989 than from
1989 to 2015 (8.7% in Latvia and 9.7% in Russia). Furthermore, we found rapid de-fragmentation of forest
cover, where forest core area increased, and proportions of isolated patches and forest corridors decreased, and
this was particularly pronounced in Russia. Our findings highlight the need to study Soviet-time land cover and
land use change, because rural population declines and major policy decisions such as the collectivization of
agricultural production, merging of farmlands and agricultural mechanization led already during Soviet rule to
widespread abandonment and afforestation of remote farmlands. After 1991, government subsidies for farming
declined rapidly in both countries, but in Latvia, new financial aid from the EU became available after 2001. In
contrast, remoteness, lower population density, and less of a legacy of intensive cultivation resulted in higher
rates of forest gain in Russia. Including Corona imagery in our object-based image analysis workflow allowed us
to examine half a century of forest cover changes, and that resulted in surprising findings, most notably that
forest area gains on abandoned farm fields were already widespread during the Soviet era and not just a post-
socialist land use change trend as had been previously reported.

1. Introduction

After the collapse of the USSR in 1991, post-Soviet Eastern Europe
experienced dramatic land use and land cover change (Gutman and
Radeloff, 2017; Kuemmerle et al., 2016), which was predominantly

caused by the transition from planned to market economies (Mathijs
and Swinnen, 1998). One major result of this transition was widespread
farmland abandonment due to the reforms in the agricultural sector,
weaker institutions, decreased subsidies, land privatization, and loss of
guaranteed markets (Ioffe et al., 2012, 2004; Lerman et al., 2004).
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These major changes accelerated the effects of decades-long population
declines in rural Russia (Ioffe et al., 2012). Farmland abandonment, in
turn, resulted in forest area increases due to natural succession
(Kuemmerle et al., 2011; Potapov et al., 2015), albeit with considerable
time lags the length of which depended on local biophysical conditions
(Bartha et al., 2003; Ruskule et al., 2012). However, while post-Soviet
abandonment is well documented, it is largely unclear how much
abandonment occurred already during Soviet times, and if post-socialist
abandonment was novel, or merely the continuation of long-term
trends (Kuemmerle et al., 2015).

Unfortunately, there is relatively little information on land use
change in Eastern Europe during Soviet rule, largely due to the lack of
spatially explicit data. There are reports of abandonment of more re-
mote and less productive croplands and pastures already after soviet
collectivization of agricultural lands and rural populations (Nikodemus
et al., 2005). However, while collectivization in Russia occurred in the
1920s, Latvia was an independent country before WW II, with a market
economy, fast developing agricultural sector, and state-dominated for-
estry. Even after Latvia become part of the Soviet Union, it had higher
level of mechanization and agricultural yields than Russia (Lerman
et al., 2004). Across the Soviet Union though, a new wave of in-
tensification of agricultural production started in mid-1960s, making
some areas in turn marginal for agriculture, causing abandonment
(Boruks, 2003). Especially in regions where traditional rural population
structure consisted of spatially scattered farmsteads, such as Latvia's
hilly uplands, the effects of collectivization was stark (Grīne, 2009;
Penēze, 2009). Later, in the 2000s, strong outmigration and aging rural
populations contributed to the abandonment of agricultural lands (Bell
et al., 2009).

Studies of farmland abandonment in the former Soviet Union and
Eastern Europe, have largely focused on the era after the mid-1980s,
because this is when the first 30-m Landsat data became available. The
problem is that 30-m data from Landsat covers only the final years of
the Soviet Union, and are hence insufficient to assess land use change
during Soviet time, as well as legacies of socialist land use on land use
change after the collapse (Munteanu et al., 2017). Landsat MSS data is
available for the 1970s already, but spatially too coarse (60-m) to map
farmland accurately in Eastern Europe. High-resolution Corona imagery
is a unique data source, providing valuable information on land cover
in the 1960s, almost two decades prior to 30-m Landsat data. Corona
data has a great potential for detailed mapping of environmental con-
ditions, thus enabling long-term studies (McDonald, 1995; Song et al.,
2015). Designed for military reconnaissance and mapping purposes,
Corona imagery is still rarely utilized in land use and land cover change
research (Nita et al., 2018; Rigina, 2003; Song et al., 2015; Tappan
et al., 2000), despite the fact that it was already declassified in 1995.

So far, only a handful of studies have conduct change analyses based
on the combination of Corona and Landsat data. The earliest was by
Lorenz (2004), who georeferenced several KH-4A strips to a Landsat 5
TM image to digitize geological structures. Bolch et al. (2008) analyzed
four Corona KH-4A image strips, in conjunction with Landsat 5 TM and
ASTER images to study glacier changes. They geo-registered Corona
strips to a thematic map and used ASTER Digital Elevation Model
(DEM) to rectify Corona and ASTER images with a Root Mean Square
Error (RMSE) of< 20 m and<30 m, respectively. The first study to
map forest changes based on georeferenced Corona images to Landsat 7
images was performed by Song et al. (2015), who calculated texture
metrics based on the spectral heterogeneity surrounding each pixel, and
applied a Support Vector Machine (SVM) classifier to map forested area
change at the pixel-level in both the eastern US and in Brazil. Image
texture also improved land cover classifications from Corona and
Landsat MSS data in China (Shahtahmassebi et al., 2017). These studies
made important contributions, and highlighted the potential for long-
term change analyses based on Corona and Landsat data, which makes
it all the more surprising that such analyses are not more common yet.

We suggest that there are two main reasons why Corona data has

not seen wider use. First, the imagery is difficult to geo-rectify (Sohn
et al., 2004; Song et al., 2015), and, second, it is difficult to map land
cover automatically for large areas from Corona data. Recently, Nita
et al. (2018) developed new methods to georectify Corona imagery
accurately based on approaches that are based on Structure from Mo-
tion, and demonstrated the feasibility to accurately georectify Corona
imagery for large areas by analyzing all of Romanian Carpathian for-
ests. However, the automated mapping of land cover from Corona
imagery, and the analysis of time series of Corona and Landsat imagery
remains difficult because the spatial and radiometric resolution of the
two types of data is so different. This is the methodological challenge
that we sought to overcome here. Specifically, we opted to apply object-
based image analysis to both Corona and Landsat data to facilitate
change analyses. Object-based image analysis can extract features from
high-resolution images (Blaschke, 2010; Hossain and Chen, 2019) and
is well suited for Corona data given their limited spectral information
and inherent noise (Gheyle et al., 2011; Gurjar and Tare, 2019).

Our goal was to analyze the rates and determinants of forest cover
change from 1967 to 2015 along the Latvian-Russian border. We had
two specific objectives: (1) to map and quantify forest cover change
from 1967 to 2015 from Corona and Landsat imagery using based on
object-based imagery analysis, and (2) analyze the influence of the
segmentation scale parameter in the object-based image analysis of
Corona and Landsat imagery on the accuracy of forest cover change
maps.

2. Methods

2.1. Study area

Our study encompasses 175 km of the Latvian-Russian border
(Fig. 1) and included parts of Eastern Latvia and Russia. The total area
is 22,209 km2, the approximate size of a 150 × 150 km square (i.e.,
slightly smaller than one Landsat footprint). 35.4% of the study area
(7839 km2) is in Latvia and 64.6% (14,370 km2) in Russia's Pskov
district. Hereafter, we use the names “Latvian SSR” and “Latvia” (before
and after 1991) as well as “Russian SFSR” and “Russia” (before and
after 1991) to refer to the portions of both countries covered by our
study area.

The terrain of the study area consists of rolling glacial uplands in the
southern part and the Velikaya lowland in the central and northern
parts. Elevation ranges from 60 to 230 m a.s.l. Climate is cool temperate
with mean temperatures of −3.6 °C in January and +17.4 °C in July,
and annual precipitation is 709 mm (Nikodemus et al., 2018). Our
study area is part of the hemiboreal biome and dominated by temperate
coniferous, mixed and deciduous forests. Dominant tree species are
Silver birch Betula pendula, Norway spruce Picea abies and Scots pine
Pinus sylvestris, mostly in mixed stands. Most of the upland and hilly
areas are covered by spruce-dominated forests (Nikodemus et al.,
2018). Population density in 2015 was 7.6 people/km2 in Russia and
13.6 people/km2 in Latvia (Central Bureau of Statistics, 2018;
ROSSTAT 2015). Dominant soil types are Luvisols, Retisols, Stagnosols,
Gleysols and Podzols (Jones et al., 2005), which were formed on gla-
cial, glaciolimnic and aeolian sediments. Bogs and swamps cover large
areas at lower elevations.

Our entire study area was a part of the Soviet Union until 1991
when Latvia regained its independence. Although very similar bio-
physically, both sides of the border have different land use histories and
patterns.

The Russian part of the study area covers the south of Pskov oblast.
Pskov has long history of agriculture and forestry, mostly to supply
local markets (Angelstam and Dönz-Breuss, 2004). The agricultural
sector is dominated by dairy farming (ROSSTAT, 2015). The area is
considered sub-marginal for agriculture due to low soil fertility and
long distances to the district's center (Ioffe et al., 2006). As of 2011,
38% of Pskov oblast was covered with forests (Chabak, 2011).
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The Eastern Latvian rural landscape prior to Soviet rule consisted of
a mosaic of fields, meadows, lakes and separate farmsteads, but this
changed dramatically after WW II due to the forced collectivization of
cultivated lands under Soviet rule (Melluma, 1994). However, the first
kolkhoz in Latvia was established almost twenty years later (1946) than
in Russia (1928). During the Soviet period, eighty-five collective farms
were located inside the Latvian section of our study area (Turlajs,
1998), all of them in districts that are considered “Less favored areas for
cultivation” and which exhibit negative long-term socio-economic
trends (Cabinet of Ministers, 2006).

Within our study area, we analyzed six 15 × 15 km focal cells in
detail – three in Latvia and three in Russia and named each after the
closest populated place: in Latvia – Rugaji, Balvi and Andrupene; in
Russia – Kustovo, Ladino and Sergiye. These focal cells varied in pro-
portions and patterns of forest cover, as well as in distance to closest
town or city, representing a range of variability in terms of land cover
composition and forest patterns.

2.2. Data

We analyzed two types of satellite images: historic images from
Corona missions, and Landsat 5 and 8 images (Table 1). Corona was a
reconnaissance program that included Corona, Argon and Lanyard spy
satellites, and was operated by the U.S. from 1960 to 1972 (McDonald,
1995). Declassified in 1995, images from Corona satellites provide in-
formation on land surface conditions, including forest cover in the mid-
1960s (Fig. 2). We purchased 18 panchromatic cloudless Corona (KH-
4B) mission 1101 scanned film images recorded on September 16th
1967 from the USGS archive (https://earthexplorer.usgs.gov/). We se-
lected these images because of their superb quality. They are the ear-
liest cloudless scenes taken by the most advanced sensor from all
Corona missions (Song et al., 2015). The original resolution of the
scanned film images was 7 μm (Table 2). The images that we analyzed
were nine adjacent stereo pairs (see Fig. 1). The dimensions of each
strip (footprint) are approximately 15 × 252 km, and each strip is cut
in four segments. These images are panoramic, and so we analyzed only
the two central segments (middle half) of the strip, because they are
closer to nadir and less distorted. Corona images contain several types
of distortions, all of which are more acute at the ends of the image strip.
Oblique angle of exposure and conical projection produces image dis-
placements and increases the area captured by one pixel. Panoramic
distortion is due to rotating cameras. S-shaped distortion occurs due to

the movement of satellite sensor at the moment of image capture.
Image motion compensation onboard the satellite was used to reduce S-
shaped distortion, but did not fully eliminate it. Other distortions are
related to the curvature of Earth, camera tilt and unpredictable move-
ment of the satellite (Goossens et al., 2006; Scollar et al., 2016). We
performed no atmospheric correction for the Corona images because
such correction would not affect our classifications. We also analyzed
four Landsat 5 (TM) images and four Landsat 8 (OLI) images (Table 1).
Landsat (initially – ERTS) is a program of multispectral Earth-ob-
servation satellites, that has been operated by the U.S. since 1972
(Lauer et al., 1997; Wulder et al., 2019). We selected these Landsat TM
images because they were from 1989 to 1991, i.e., roughly at the
midpoint 1967 to 2015, and right at the collapse of the Soviet Union,
and because they were cloud free. All data was downloaded as surface
reflectance Level-2 images (LEDAPS and LaSRC corrected) from the
USGS Science Research and Development (LSRD) service (https://espa.
cr.usgs.gov/index/).

Furthermore, we included forest cover data from Potapov et al.
(2015) to aid classification of forest objects, and to calculate the area
affected by forest loss (see Discussion). Lastly, we used NASA Shuttle
Radar Topography Mission 30 arc-second DEM tiles in support of the
orthorectification of the Corona images.

2.3. Preprocessing of satellite images

Because we obtained the Corona images as scanned film, they re-
quired considerable amount of preprocessing. We stitched the frag-
ments of scanned film together with Image Composite Editor and cre-
ated one file from the two central segments of each panoramic image.
To orthorectify the scanned Corona images, we applied a Structure-
from-Motion (SfM) photogrammetry workflow in Agisoft PhotoScan Pro
1.2 (following Nita et al., 2018). In this workflow, the software: (1)
finds tie points (pixels, which are identifiable in both images) auto-
matically; and (2) aligns two images, reconstructing the positions of the
satellite instrument at the moment of image recording. After successful
alignment of images, (3) the software generates a dense point cloud,
and a digital surface model. To improve the accuracy of the orthor-
ectification and fill gaps in the data, we substituted the DSMs derived
from dense point clouds with SRTM data. After this, (4) we georefer-
enced the dense point cloud with 14–16 user-provided ground control
points (GCPs), (5) orthorectified images using the SRTM surface model,
and (6) produced an orthomosaic of all the images. The spatial

Fig. 1. Location of our study area in Europe, and the locations of Corona and Landsat footprints and six selected 15 × 15 km focal cells inside the study area.
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resolution of the resulting orthomosaic for Corona was 2.53 m. Ag-
gregate horizontal (x,y) geo-registration error for the Corona ortho-
mosaic was equivalent to one Landsat image pixel (31.06 m). That level
of misregistration could have affected our subsequent change analysis,
which is why we georeferenced the final orthomosaic to the Landsat 8
mosaic (sensu Song et al., 2015) in ArcMap using a third-order poly-
nomial transformation to minimize the effects of any co-registration
differences on the change analyses. For this, we used 51 evenly dis-
tributed road crossings and buildings as GCPs, and 17 random valida-
tion points. The co-registration to the Landsat imagery reduced the final
geolocation error to 11.3 m. We chose Nearest Neighbor as our re-
sampling algorithm, because it does not introduce new values in image,
and the image was intended to use for classification.

To analyze land cover in 1989 and 2015, we mosaicked the 30-m
bands from four Landsat 5 (bands 1, 2 and 3) and four Landsat 8 (bands
2, 3 and 4) footprints with ENVI 5.2. All three image mosaics (1967,
1989, and 2015) were cropped to match our study area.

2.4. Object-based image analysis and expert classification

We mapped forest cover from both Corona and Landsat images
using Object Based Image Analysis, implemented as Multiresolution
segmentation algorithm in eCognition Developer© 9.3 (Trimble, 2018).
We chose an object-based approach, rather than a pixel-based ap-
proach, because of the high level of noise in Corona images in forms of
graininess, haze, and scanning artifacts (Dashora et al., 2007). We set
the scale parameter to 50 for the segmentation of both Corona and
Landsat mosaics. “Scale parameter” here denotes a software-specific
heterogeneity threshold used in the image object delineation (Benz
et al., 2004). We used object based image analysis to delineate forest
and non-forest objects, and did not intend to match object size with the
average size of forest stands or tracts delineated for management pur-
poses. The total number of image objects for 1967 map was 2,210,424
(837,591 in Latvia and 1,372,833 in Russia); for 1989 map it was
365,162 (150,672 in Latvia and 214,490 in Russia) and for 2015 map
the total number was 413,305 (177,097 in Latvia and 236,208 in
Russia).

We conducted a supervised classification to classify each image
object as ‘forest’ or ‘non-forest’. We assigned objects to the category
‘forest’ based on visual assessments of segments that were pre-
dominantly covered with trees. Once the Corona images were classified,
we resampled the classification to 30 m to match Landsat's resolution
using Nearest Neighbor resampling in ENVI. Furthermore, we set the
minimum mapping unit for the classified forest maps to 1 ha for both
Corona and Landsat data. Objects below this threshold were merged
with the surrounding class (i.e., forest or non-forest). Based on the
classification for 1967, 1989, and 2015, we generated maps of forest
change for 1967–1989, and for 1989–2015 based on post-classification
comparisons.

2.5. Validation and accuracy assessment

Because we classified image objects, not pixels, image objects (i.e.,
polygons with a minimum size of 1 ha) were also the sample unit of
analysis for our accuracy assessment. We performed the accuracy as-
sessment for four change maps, and for each of the four classes: ‘stable
forest’, ‘stable non-forest’, ‘forest gain’, and ‘forest loss'. For validation,
we split our wall-to-wall change maps into their Latvian and Russian
parts, in order to compare accuracy in both parts, and to estimate areas
accurately in each. For validation, we used stratified random sampling
(Olofsson et al., 2014, 2013) with 300 image objects for entire study
area: 90 for stable forest and stable non-forest classes and 60 for forest
gain and forest loss classes. We randomly selected sample polygons
from the list of polygon IDs. Since we split wall-to-wall change maps,
the number of samples in countries is different. Due to the absence of
independent reliable reference data that depicted the situation close toTa
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the investigated dates (e.g., we did not have access to aerial photo-
graphs for 1989, and Google Earth does not provide high-resolution
imagery for that date), we examined the original Landsat 5 mosaic as
our reference for 1989, combined with a Sentinel-2 10 m image mosaic
from 8/8/2015 as reference data for the 1989–2015 change map. Si-
milarly, we used the source data (Corona mosaic and the Landsat 5
mosaic) for the 1967–1989 change map. We interpreted the imagery
visually and assigned the class value to each validation polygons based
on the majority of pixels within that polygon. We calculated accuracies
and sample-based area estimates with confidence intervals at the 95%
level from confusion matrices for all classes and both countries sepa-
rately in two change maps (Table 3). For sample-based area estimation
we used the stratified estimator from Olofsson et al. (2014). We

acknowledge that, according to good practices for accuracy assessments
and area estimation (sensu Olofsson et al., 2014), the reference data
that was available to us was not ideal, because we had to visually in-
terpret for most time steps the same imagery that was used to derive the
map. This can potentially contribute to uncertainty in classification and
subsequently, accurate change analysis, for example in cases, when a
misclassified object is poorly distinguishable in the reference source.

2.6. Sensitivity analysis of the effects of the segmentation scale parameter
on change detection accuracy for Corona and Landsat data

The selection of the scale parameter has a strong effect on image
segmentation, which is why we conducted a sensitivity analysis to
identify the optimal scale parameter, and to test how robust our ap-
proach is. For this sensitivity analysis, we used a subset of the Corona
KH-4B mosaic and the Landsat 8 mosaic. Since Corona data has only
one band, we averaged pixel values in Landsat's bands 2, 3, and 4, to
match with the spectral range in Corona images (500–680 μm) as clo-
sely as possible.

We tested scale parameters of 10, 20, 50, 100, 150, 200, 250, and
300 for both Corona and Landsat data in eCognition, and held all other
parameters constant. The “scale factor” is essentially a heterogeneity
threshold in the image object delineation (Benz et al., 2004), which is
why we calculated two measures of “goodness” to evaluate image ob-
jects: intra-segment homogeneity and inter-segment heterogeneity
(Johnson and Xie, 2011). Ideally, image object should be highly
homogenous and very different from each other, i.e., intra-segment
homogeneity should be low and inter-segment heterogeneity should be
high. Intra-segment homogeneity was measured by area-weighted
variance in pixel values (Johnson and Xie, 2011), with lower variance
indicating higher internal homogeneity. Inter-segment heterogeneity

Fig. 2. Examples of Corona photographs from our study area (recorded on September 16th 1967): (A) city of Rēzekne, with the largest population inside our study
area; (B) city of Ostrov, the largest in Russian part; (C) villages and abandoned fields NE from Ostrov (Russia); (D) logging pattern in forest tract NW of Rēzekne
(Latvia).

Table 2
Properties of the Corona KH-4B images (Galiatsatos, 2009; Galiatsatos
et al., 2007; National Reconnaissance Office, 1967).

Sensor type KH-4B
Period of operation 9/15/67–5/25/72
Camera type Panoramic, panchromatic
Camera model J-1 Mural
Lens F/3.5 Petzval
Film type Petzval Type II
Film spectral range 500–680 μm
Focal length 606.9 mm
Film size 757 mm × 70 mm
Orbital altitude 150 km (lowest)
Scanning angle 71.16° (across track)
Field of view 5° (along track)
Nominal ground area 15 × 252 km
Film resolution 7 μm (scanned)
Nominal film photoscale 1: 247,500
Ground resolution 1.8–7.60 m
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was measured as the global Moran's I index values for each scale.
Moran's I is an indicator of autocorrelation and measures the similarity
of objects in relation to their neighbors (Espindola et al., 2006;
Fotheringham et al., 2000). Positive Moran's I values indicate spatial
clustering, whereas negative values indicate spatial dispersion
(Goodchild, 1986), and lower values indicate high inter-segment het-
erogeneity. We based our calculations of Moran's I on the mean pixel
values in every image object and the squared inverse distance when
considering the spatial relationships among neighboring image objects.

Once the image objects were generated for each scale factor, we
assigned forest and non-forest classes to image objects using the ap-
proach described above. After that we produced five change maps for
1967–2015 corresponding to scale parameter values of 10, 50, 100, 200
and 300 and performed accuracy assessments for each using a stratified
random sampling with 50 stand-alone validation points, which we also
visually interpreted (Table 6), which resulted in Overall, User's and
Producer's accuracies, as well as confidence intervals (at the 95% level).

2.7. Propensity score matching

In addition to comparing forest cover changes for the total area in
each country, we employed Propensity Score Matching (Butsic et al.
2017) to select focal cells for detailed analysis of forest pattern change,
in order to account for differences in average environmental conditions
and accessibility. First, we applied a 15 × 15 km square grid to divide
the study area into 98 cells, and, second, we calculated the propensity
score Sp for each cell. The score was calculated from three control
variables for each cell: Dn – distance to the nearest town (km), Em –
mean elevation (m a.s.l.), and Fi – initial forest area proportion (%) in
1967 Eq. (1), as proxies for major potential drivers of land use change.

= × ×S D E Fp n m i (1)

Last, we identified three pairs of matching cells in Latvia and Russia
that had similar propensity scores to compare their changes in forest
area and patterns in detail (Fig. 1). We selected the first cell from each
pair in Latvia by randomly choosing from the list of cell IDs. The first
pair was Balvi & Ladino (propensity scores 64,931,927 and 67,047,094,

respectively), the second pair Rugaji & Kustovo (176,790,851 and
171,672,734) and the third Andrupene & Sergiye (365,799,507 and
372,284,570).

2.8. Morphological spatial pattern analysis

In order to describe changes of forest patterns and to calculate forest
fragmentation in the entire study area and in each of the six focal cells
we applied used Morphological Spatial Pattern Analysis (Soille and
Vogt, 2009) in Guidos Toolbox 2.6 (Vogt and Riitters, 2017). Specifi-
cally, we calculated the metrics Core, Islet, Perforation, Edge, Loop,
Bridge and Branch as indicators of spatial pattern of forest cover for
each of our three dates. These metrics capture the proportions of the
area of each category of forest cover pattern relative to the total
forested area. The Core metric quantifies the proportion of forest that is
more than 60 m away from the forest perimeter, denoting forested areas
with undisturbed conditions. The Islet metric captures the proportion of
forest that occurs in small patches without core area, i.e., in structurally
isolated patches of forest. The Perforation metric denotes the area of
forest that is within 60 m of perimeter of a hole in forest, thus reflecting
forest disturbance. The Edge metric is the proportion of forest within
60 m of the outside edge of forests, and those forests are typically in-
fluenced by neighboring habitats. Lastly, there are three metrics that
reflect forest connectivity. The Loop metric is proportion of forest that
is in corridors that connect to the same core area, the Bridge metric
reflects the proportion of forest that connects two different core areas,
and the Branch metric is the proportion of forest cover of dead-end
connections to any forest cover objects. We applied a 8-neighbor rule
and set the edge depth parameter for MSPA to 60 m (2 pixels), a con-
servative estimate of the depth of edge influence in hemiboreal forest
(Moen and Jonsson, 2003; Tinker et al., 1998).

3. Results

3.1. The accuracy of forest cover mapping

We produced two pairs of change maps for Latvia and Russia, one

Table 3
Error matrix for the forested area change maps from 1967 to 1989 (above) and 1989 to2015 (below). Accuracy measures are presented with a 95% confidence
interval.

Stable forest Stable non-forest Forest gain Forest loss Total Users's accuracy Producer's accuracy Overall accuracy

Latvia 1967–1989 Reference

Map Stable forest 0.187 0.008 0.017 0.000 0.212 0.88 ± 0.13 0.88 ± 0.13 0.92 ± 0.05
Stable non-forest 0.013 0.519 0.000 0.013 0.546 0.95 ± 0.07 0.95 ± 0.05
Forest gain 0.008 0.017 0.168 0.000 0.193 0.87 ± 0.14 0.91 ± 0.11
Forest loss 0.003 0.003 0.000 0.042 0.048 0.88 ± 0.17 0.76 ± 0.36
Total 0.212 0.548 0.185 0.056 1

Russia 1967–1989 Reference
Map Stable forest 0.297 0.010 0.005 0.005 0.317 0.94 ± 0.06 0.94 ± 0.06 0.93 ± 0.04

Stable non-forest 0.008 0.383 0.017 0.000 0.408 0.94 ± 0.07 0.94 ± 0.05
Forest gain 0.006 0.013 0.214 0.000 0.233 0.92 ± 0.09 0.91 ± 0.10
Forest loss 0.003 0.001 0.000 0.038 0.042 0.91 ± 0.09 0.89 ± 0.20
Total 0.315 0.406 0.236 0.043 1

Latvia 1989–2015 Reference
Map Stable forest 0.268 0.015 0.015 0.015 0.312 0.86 ± 0.15 0.92 ± 0.09 0.91 ± 0.06

Stable non-forest 0.012 0.493 0.000 0.012 0.518 0.95 ± 0.07 0.96 ± 0.06
Forest gain 0.004 0.004 0.069 0.000 0.076 0.90 ± 0.13 0.79 ± 0.27
Forest loss 0.006 0.003 0.003 0.080 0.093 0.86 ± 0.13 0.75 ± 0.26
Total 0.290 0.515 0.087 0.108 1

Russia 1989–2015 Reference
Map Stable forest 0.459 0.014 0.000 0.007 0.480 0.96 ± 0.05 0.97 ± 0.03 0.93 ± 0.04

Stable non-forest 0.008 0.331 0.015 0.008 0.362 0.92 ± 0.08 0.94 ± 0.06
Forest gain 0.002 0.007 0.077 0.002 0.088 0.88 ± 0.10 0.80 ± 0.18
Forest loss 0.002 0.002 0.004 0.061 0.070 0.87 ± 0.12 0.78 ± 0.21
Total 0.471 0.354 0.097 0.077 1
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for 1967–1989 and one for 1989–2015 (Fig. 3), and all four had high
levels of accuracy (Table 3). For the 1976–1989 change maps, the
overall accuracy was 92% for Latvia and 93% for Russia. In Latvia user's
accuracies for the change map classes ranged from 88 to 95%, and
producer's accuracies from 76 to 95%. In Russia user's accuracy reached
91–94% and producer's accuracy was from 89 to 94%. Stable non-forest
class had the lowest commission errors in both countries, with only
2.5–2.6% of the study area classified incorrectly. Forest loss class in
Latvia had the lowest user's accuracy (76%) due to higher commission
errors, when stable non-forest and stable forest areas were classified as
forest loss (these errors occurred on 0.6% of our study area). Forest gain
and forest loss classes in Russian part of study area had higher accuracy
compared to Latvian part with commission errors of 0.4% to 1.9%
(respectively) of the study area.

For 1989–2015 the overall accuracy was also high (91% in Latvia
and 93% in Russia). User's accuracies were similar between countries,
ranging from 86 to 95% in Latvia, and from 87 to 96% in Russia.
Producer's accuracies ranged from 75 to 96% in Latvia and from 78 to
97% in Russia (Table 3). Stable land cover classes had higher user's
accuracies in both countries (92–95% for stable non-forest, and 92% for
stable forest in Russia) than the change classes (86%–90% in Latvia and
87–88% in Russia), with the exception of stable forest class in Latvia
(86%). Relatively low commission errors for stable forest in Russia re-
sulted in 2.4% of the study area being misclassified as stable forest even
though it was in fact stable non-forest or forest loss. The forest loss class
had a relatively high omission error, in that 1.7% of actual Forest loss
area was misclassified as other classes.

3.2. General changes in forest cover and forest patterns

Sample-based forest area differed considerably between the two
countries, and between the two periods. During 1967–1989, stable
forest area was 21.2% (±8.4 pp) in Latvia and 31.5% (±7.5 pp) in
Russia (95% confidence level) (Table 4). The majority of the forest area
increase took place during this period when forest gain reached im-
pressive 18.5% (± 7.8 pp) in Latvia and 23.6% (±7.5 pp) in Russia.
Forest loss was only 5.6% (± 3.5 pp) in Latvia and 4.3% (± 1.5 pp) in
Russia. The rate of forest gain for 1967–1989 was 0.84% per year in
Latvia and 1.1% per year in Russia.

During the 1989–2015 period, forest gain proportion decreased
considerably, to just 8.7% (±4.4 pp) in Latvia and 9.7% (±3.4 pp) in
Russia. However, during this period forest loss almost balanced forest

gain and reached 10.8% (± 5 pp) in Latvia and 7.7% (± 3.1 pp) in
Russia.

From 1989 to 2015, stable forest proportion increased in both
countries (Table 4, Fig. 5), reaching 29% (±12.4 pp) in Latvia and
47.1% (±10 pp) in Russia. Consequently, stable non-forest area
shrunk during 1989–2015 compared to 1967–1989 to 51.5%
(±13.7 pp) in Latvia and 35.4% (±9.5 pp) in Russia.

Our forest pattern analysis showed that concomitant to the general
increase in forest cover there was a decrease in forest fragmentation.
For example, from 1967 to 1989 forest core areas increased by 131% in
Latvia and 134.5% in Russia (Table 5). The rapid increase in forested
areas from 1967 to 1989 contributed the most to the overall increase in
core forest area, while 1989–2015 core forest area unexpectedly de-
clined (Fig. 6). Edge area increased in Latvia (by 28.3%) but slightly
decreased in Russia (by 5%). The proportion of islet (isolated forest
patch) area decreased considerably from 1967 to 1989 (−23.2% in
Latvia and − 34.2% in Russia) but increased from 1989 to 2015 (by
252% and 5.2%, respectively). Overall, the increase of forest cover
resulted in a strong increase of core forest areas and hence a de-frag-
mentation of forest cover.

3.3. Forest pattern change in focal cells

Comparisons of forest changes of the fully study area on both sides
of the border are confounded by the fact that Latvia and Russia differ

Fig. 3. Change maps of study area for periods of 1967–1989 and 1989–2015.

Table 4
Sample-based area estimates for the change map classes for Latvia and Russia.

Area
(1000 ha)

Proportion (%) Area
(1000 ha)

Proportion (%)

Latvia 1967–1989 Russia 1967–1989
Stable forest 165.5 21.2% 452.3 31.5%
Stable non-

forest
428.1 54.8% 583.5 40.6%

Forest gain 144.7 18.5% 338.5 23.6%
Forest loss 43.5 5.6% 62.0 4.3%

Latvia 1989–2015 Russia 1989–2015
Stable forest 227.1 29.0% 677.2 47.1%
Stable non-

forest
403.0 51.5% 508.9 35.4%

Forest gain 67.8 8.7% 139.2 9.7%
Forest loss 84.2 10.8% 111.0 7.7%
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somewhat in terms of elevation, distance to the nearest city, and initial
forest cover. That is why we also made comparisons for our focal cells,
where we controlled for those differences (Fig. 4). The trends in our
focal cells generally confirmed our study-area wide comparison, and
our forest pattern metrics indicated similar trends in all three pairs of
focal cells (Fig. 6). Forest spatial pattern was more similar for cells
within the same countries than for matching cells across the border. For
instance, core forest area increased in all focal areas before 1989, but

after 1989 core forest area decreased only in those in Latvia. Sergiye
and Ladino areas (both in Russia) had the most rapid increase in core
forest areas (Fig. 6), and the increase in core forest areas was more
rapid on the Russian side, mirroring the overall forest area increase.
Areas of both islets (patches) and landscape bridges (corridors) declined
from 1967 to 1989 but remained largely unchanged thereafter.

We found the biggest differences between Andrupene (Latvia) and
Sergiye (Russia) cells. Rapid increase in core area in Sergiye from 1967
to 1989 was the most striking difference: during this period core forest
area increased by 118.6% and continued to grow thereafter by 6.7%.
Meanwhile in Andrupene core forest area increased by 151% from 1967
to 1989, but declined by −36.1% thereafter. Rugaji (Latvia) and
Kustovo (Russia) were the most similar pair in terms of trends and
magnitudes of change in functional landscape elements. Again, the
main difference occurred after 1989, when core forest area continued to
increase in Kustovo (+19.2%), while experiencing a notable decrease
in Rugaji (−41.3%). The growth of core forest area and the decrease of
islet area in almost all focal cells from 1967 to 2015 showed that the
expansion of forest cover resulted consistently in the defragmentation
of forest cover.

3.4. Analysis of change detection errors for Corona and Landsat data

Our sensitivity analysis of the effects of the scale parameter for the
object-based image analysis found that the segmentation was quite
sensitive to the scale parameters, but the change analyses were not, and
similar scale parameters were ideal for both Corona and Landsat data.
In general, a higher scale parameter results in higher intra-segment
heterogeneity, and lower inter-segment heterogeneity, as would be

Table 5
Changes in spatial pattern metric values for forest cover during 1967–1989 and
1989–2015.

Latvia Russia

Spatial pattern class 1967–1989 1989–2015 1967–1989 1989–2015

Core 131.0% −56.8% 134.5% −4.0%
Islet −23.2% 252.0% −34.2% 5.2%
Edge 28.3% 23.6% −5.0% 18.7%
Perforation 114.2% −77.1% 185.8% 14.8%
Bridge −46.6% 293.5% −65.3% 18.2%
Branch 16.4% 65.4% −3.4% 31.5%
Loop −34.6% 106.7% −20.5% −15.2%

MSPA metrics: Core – the area proportion of forest cover objects excluding 60 m
buffer; Islet – area proportion of forest cover patches without Core area;
Perforation – area proportion of 60 m buffers along the perimeter of a hole in
forest cover; Edge – area proportion of forest cover inside 60 m buffers of all
objects; Loop – area proportion of forest cover connections to the same Core
area; Bridge - area proportion of forest cover connections to the different Core
area; Branch – area proportion of dead-end connections to any forest cover
objects.

Fig. 4. Change maps of six focal areas for periods of 1967–1989 and 1989–2015.
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expected (Fig. 7). The optimal balance of relatively high intra-segment
homogeneity (low weighted spectral variance) and relatively high inter-
segment heterogeneity (low Moran's I value), occurred for Corona at a
scale parameter of 50 and for Landsat at 100, but a scale parameter of
100 was also quite good for Corona. Ultimately though, the question is
how sensitive our change analyses were to the scale parameter.

To measure the effects of the scale parameters, we estimated the
accuracy of resulting forest change maps for scale factors 10, 50, 100,
200, and 300 (Table 6). We attained the highest overall accuracy using
scale factors of 50 and 100 (90% and 92%, respectively). Scale-100
maps had user's accuracies ranging from 83% to 92%, with the highest
commission errors for forest gain and loss classes. Producer's accuracy
reached 95% for stable non-forest and forest gain classes. Second-best
overall accuracy was for the scale-50 maps with an overall accuracy of
90% and similar levels of commission and omission errors, except for
stable forest class with 15% omission error. Scale-300 maps had the
lowest overall accuracy of 82%, their stable forest and stable non-forest
classes had commission errors of 15–23%, while the forest gain and
forest loss classes had high accuracy with only 8% commission error.
These maps also had the highest omission error of 57% for forest loss
class. For the scale-10 maps the overall accuracy was 86% and there
were high commission errors for stable forest and stable non-forest
classes (15%) and for forest loss class (17%). Forest loss class had very
high omission error (51%).

In summary, the scale parameter had strong effects on the image
segmentation, but our forest change analyses were less affected, as in-
dicated by the fact that classification accuracy was high for a large
range of scale parameters. Furthermore, calculating intra- and inter-
segment heterogeneity for a range of scale parameters can quickly
identify the optimal scale parameter, which was 100 for our data.

4. Discussion

4.1. Cross-border comparison of forest cover change

Our study showed that the majority of the forest cover increase in
the Latvian-Russian border area occurred already during Soviet rule,
i.e., from 1967 to 1989, which surprised us. During this time the af-
forestation rate was much higher than from 1989 to 2015, i.e., the time
of the post-Soviet transition. The beginning of our study period coin-
cided with the beginning of new Soviet agricultural policy, which
started in 1965 when capital investments in agriculture increased
greatly (Boruks, 2003; Lerman et al., 2004). In 1950 many of smaller
kolkhozes in Latvia were merged in an effort to increase their pro-
ductivity (Boruks, 2003), which led to the shift of economic centers to
larger rural settlements and the abandonment of smaller ones. This was
accompanied by depopulation in certain areas (Melluma, 1994). Sev-
eral phases of kolkhoz unification followed in subsequent decades. In-
tensified cultivation focused mostly on lands that were drained and
readily accessible by roads, in turn causing the abandonment of more
remote lands that were previously cultivated by individual private

farms before land nationalization in 1940 (Boruks, 2003). From 1967 to
1989 we found higher rates of Forest gain in Russia (1% annually) than
in Latvia (0.78% annually). Likely reasons are that population density
in Latvia was double that in Russia, and that in Latvia land use legacies
of intensive cultivation persisted throughout Soviet time.

The majority of the overall forest cover increase occurred in Russia,
which surprised us because forest cover in 1967 was already higher
there (32.5%) than in Latvia (20.7%). A reason for the higher initial
forest cover may be that the collectivization of agricultural production
and merging of cultivated lands occurred two decades earlier in Russia
than in Latvia (Ioffe et al., 2006; Ioffe and Nefedova, 2004), and that
meant that the marginalization of the most remote lands probably
happened already before WW II. Another reason for more widespread
forest cover increase after 1967 may have been the displacement of
population due to war, and repressions, and that hardships of rural life
decreased the number of people working in the agricultural sector
caused the depopulation of the already sparsely populated region be-
fore 1989 (Solanko and Tekoniemi, 1999), plus the decrease in gov-
ernment subsidies for farming during the 1990s (Prishchepov et al.,
2013). Both sections of the study area depopulated considerably during
the timespan of our study, but while in Latvian section the number of
inhabitants decreased by 32.6% (1979–2015), it declined in the Russian
section by 46.3% (1970–2015). These rates of population declines are
among the highest in European Russia (Central Bureau of Statistics,
n.d.; Ioffe et al., 2006; ROSSTAT 2015; Vsesojuznaya Perepis'
Naseleniya, 1970). The lack of human capital and low productivity soils
are major reasons of land abandonment for the border regions of Russia
(Kolosov et al., 2017). We suggest that both population and policy
factors were important factors, which interactively caused agricultural
land abandonment.

During the post-socialist era, we found that land use change rates
were lower and quite similar in both countries. This surprised us, given
that Latvia has been part of the EU since 2004. However, abandonment
of agricultural lands was high in both countries during the 1990s, when
cultivated area declined by 39% in Russia and 38% in Latvia
(Prishchepov et al., 2012), even though there were quite different land
policies in both countries. Wide-scale land restitution and rapid land
reforms in Latvia during 1990s created large number of small private
land and forest owners, half of all forests remained property of the state.
In contrast, land holdings that were privatized in Russia were limited in
size and all forests remained in the ownership of the state (Lerman
et al., 2004). However, land abandonment after 1989 may not have
resulted in large forest area increase yet because succession and natural
afforestation of abandoned farmlands in hemiboreal Europe happens
relatively slowly (Ruskule et al., 2016), and further increases in forest
area may occur in the future.

Latvia's accession to the European Union in 2004 may have helped
to slow the rate of agricultural abandonment, even though EU subsidies
had limited effect in maintaining rural landscapes (Nikodemus et al.,
2010), especially in more remote, hilly areas of the country. However,
subsidies were important for agriculture in flat, fertile areas, which

Fig. 5. Forested area dynamics in entire study area (left) and focal areas (right).
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Fig. 6. Changes in forest cover pattern metrics in Latvian and Russian parts of study area (upper part) and in selected focal cells (lower part) between 1967 and 2015.
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were intensively cultivated during the Soviet time, and there the new
subsides slowed forest regrowth (Vanwambeke et al., 2012). However,
the EU also provided subsidies to support the conversion of unused
farmland to forest, and Latvia's Forest policy supports afforestation of
abandoned lands (Cabinet of Ministers, 1998).

Two other studies in Latvia, roughly covering our study period of
1989–2015, reported much higher rates of agricultural abandonment
(Vanwambeke et al., 2012) and afforestation (Fonji and Taff, 2014) but
for other regions of Latvia. This demonstrates the spatial variability of
forest area increase even in a relatively small country. Interestingly, the
area of forest loss after 1989 in our study areas was larger than that of
forest gain, mainly due to intensified logging, and infrastructure de-
velopment. For example, multiple highways were built in Russia at that
time causing some forest cover loss. Similarly, logging was more
widespread in Latvian section of study area, accounting for the majority
of 7.9% net forest loss. Since 2000 logging and forest management in
Latvia have intensified (Rendenieks et al., 2015). Indeed, according to
an analysis of annual Landsat satellite data since 2000 (Hansen et al.,
2013), logging rates were five times higher in Latvia compared to
Russia. A study by Potapov et al. (2015) mapped forest cover change in
Eastern Europe for 1985–2012. They found an area of stable forest area
that was larger (38.7% in Latvian section and 55.8% in Russian section)

to what we found for 1989–2015 (31.9% and 47.3%, respectively).
Furthermore, they reported less forest gain and more forest loss than we
found. For example, until 1989 the forest loss area proportion was
identical in Latvia and Russia (0.4%) in the dataset by Potapov et al.
(2015), but after 1989 it was double in Latvia compared to Russia
(3.2% vs. 1.4%). However, because the timespan of their analysis does
not match ours exactly, some of these differences, especially in the case
of forest gain, may be due to the temporal mismatch. Furthermore, it is
important to note that change in the spatial pattern of forests alone is
not a direct measure of forest loss. For example, deforestation can
manifest itself in a range of MSPA metrics depending on the spatial
distribution of clearcuts. This means that spatial pattern metrics must
be interpreted in the context of estimated changes in forest area.

Our forest pattern analysis showed de-fragmentation on both sides
of the border, but especially in Russia, resulting in the expansion of
forest core area (MSPA's Core metric) and decrease of forest corridors
(Bridge metric). Edge area increased, in conjunction with far fewer
forest “islets”, because forests regrew mostly adjacent to existing forest
tracts, thus contributing to the overall de-fragmentation of forest cover.
This confirmed prior research in Latvia, which showed that linear and
continuous afforestation from the forest edge results in more uniform
stands and faster canopy closure compared to mosaic-type afforestation

Fig. 7. Sensitivity analysis of object-based image analysis scale factor on the accuracy of object delineation measured by area-weighted variance and global Moran's I
index.

Table 6
Accuracies of the forested area change maps from 1967 to 2015 for different segmentation scale factors. Accuracy measures are presented with a 95% confidence
interval.

Stable Forest Stable Non-forest Forest gain Forest loss

Scale 10
Overall accuracy 0.86 ± 0.12
User's accuracy 0.85 ± 0.20 0.85 ± 0.20 0.92 ± 0.16 0.83 ± 0.22
Producer's accuracy 0.74 ± 0.28 0.96 ± 0.20 0.92 ± 0.15 0.49 ± 0.49

Scale 50
Overall accuracy 0.90 ± 0.10
User's accuracy 0.85 ± 0.20 0.92 ± 0.15 0.92 ± 0.16 0.83 ± 0.22
Producer's accuracy 0.74 ± 0.28 0.96 ± 0.06 1 0.71 ± 0.41

Scale 100
Overall accuracy 0.92 ± 0.05
User's accuracy 0.91 ± 0.12 0.95 ± 0.07 0.87 ± 0.14 0.88 ± 0.17
Producer's accuracy 0.87 ± 0.13 0.95 ± 0.05 0.95 ± 0.10 0.76 ± 0.36

Scale 200
Overall accuracy 0.87 ± 0.12
User's accuracy 0.92 ± 0.15 0.85 ± 0.20 0.85 ± 0.20 0.92 ± 0.16
Producer's accuracy 0.76 ± 0.26 0.97 ± 0.07 0.80 ± 0.32 0.75 ± 0.37

Scale 300
Overall accuracy 0.82 ± 0.14
User's accuracy 0.85 ± 0.20 0.77 ± 0.24 0.92 ± 0.16 0.92 ± 0.16
Producer's accuracy 0.68 ± 0.29 0.95 ± 0.07 0.92 ± 0.15 0.43 ± 0.38
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(Ruskule et al., 2012). Because the majority of study area's forests are
managed, the increase in the Perforation metric is mainly explained by
intensified logging, as well as some infrastructure development and
natural disturbances.

The forest area increase, and the defragementation of forest cover is
likely positive for forest biodiversity, but there is also controversy in
Latvia about the afforestation of abandoned croplands and grasslands,
because afforestation reduces farmland biodiversity, and aesthetic
value of landscapes when semi-natural grasslands vanish and forested
patches merge (Bremer and Farley, 2010). For land managers, ongoing
natural afforestation of abandoned agricultural lands generally presents
three choices: intensification, extensification, or afforestation of these
lands. Despite lower financial gains, local residents generally prefer
natural afforestation over plantations, which could yield higher quality
timber (Ruskule et al., 2013). However, because the availability of
capital, subsidies, and willingness to maintain normative land use is
limited in our study area, there are few options for rural landowners
and government agencies.

4.2. Combining Corona and Landsat data for forest change mapping

We tested here the use of object-based image analysis for forest
change analyses that utilize both Corona and Landsat data. Combining
these two types of data is non-trivial given the strong differences in
image characteristics such as spatial resolution, spectral detail, and
number of bands. That raised the question which scale factor would be
best for each type of data given that the scale factor directly influences
the count, size and shape of resulting image objects (Darwish et al.,
2003). Interestingly, we found that fairly similar scale factors were
optimal for Corona and Landsat data (50 and 100, respectively). A scale
factor of 100 for both datasets resulted in the highest overall accuracy
of the forest change maps (92%). However, a scale factor of 50 was also
very good (accuracy of 90%), and even for a scale factor of 200, the
change maps were quite accurate (87%). These results suggest that
when analyzing forest changes from Corona and Landsat data, object
based image analyses are fairly robust in terms of the scale parameter,
but we nevertheless recommend to select the optimal scale parameter
based on an analyses of inter- and intra-segment heterogeneity, as we
demonstrate in our results.

To the best of our knowledge, our study was the first to utilize ob-
ject-based image analysis to assess forest change from Corona and
Landsat data. As such, our approach differed from prior studies of
change that were pixel-based or employed image texture in moving
windows to identify land cover classes (Shahtahmassebi et al. 2017;
Song et al., 2015). Those studies resulted also in high classification
accuracies, and it would be interesting to compare approaches, but that
was beyond the scope of our study. Originally, Corona images were
only visually interpreted, often by leveraging its stereoscopical abilities.
Our approach, which uses automated feature recognition from Corona
images and camera alignment reconstruction for the image rectifica-
tion, enables fast and efficient land use change analyses over broad
areas. Object-based image analysis worked well, is generally advanta-
geous for panchromatic imagery, and our results suggest that it is a
promising approach for long-term change analyses that integrate
Corona and Landsat data.

5. Conclusions

Land use and land cover change studies rarely use Corona images
for large-area mapping (Song et al., 2015; Tappan et al., 2000). Our
results demonstrated that these historical, pre-digital era satellite
images can be successfully used for land cover classifications and
change detection of large areas. Harnessing the stereo capabilities of
Corona imagery with Structure-from-Motion photogrammetry (Ullman,
1979), in conjunction with object-based image analysis, allowed us to
extend the timeline of our analysis by almost twenty years prior to the

advent of 30-m Landsat data. The workflow by (Nita et al., 2018),
which we used for the orthorectification of the Corona images, was
efficient in terms of time and computational power and resulted in
orthomosaics with high geolocational accuracy. Our object-based ap-
proach was well-suited for analyzing Corona images, which have a
considerable amount of noise and scanning errors (Gheyle et al., 2011),
and also was robust to the internal spectral heterogeneity of forested
areas.

For land use science it is important to devise a robust and efficient
methodology to integrate pre-Landsat imagery with the Landsat archive
to expand the length of time series that document and analyze land
cover and land use change and forest disturbance mapping (sensu.
Huang et al., 2009). Given that our study produced surprising results,
most notably widespread agricultural abandonment prior to the col-
lapse of the Soviet Union, we suggest that long-term analyses of forest
area change, and of other land cover types, can benefit greatly from
Corona imagery.
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