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A B S T R A C T   

Over the course of a year, vegetation and temperature have strong phenological and seasonal patterns, respec-
tively, and many species have adapted to these patterns. High inter-annual variability in the phenology of 
vegetation and in the seasonality of temperature pose a threat for biodiversity. However, areas with high spatial 
variability likely have higher ecological resilience where inter-annual variability is high, because spatial vari-
ability indicates presence of a range of resources, microclimatic refugia, and habitat conditions. The integration 
of inter-annual and spatial variability is thus important for biodiversity conservation. Areas where spatial 
variability is low and inter-annual variability is high are likely to limit resilience to disturbance. In contrast, areas 
of high spatial variability may be high priority candidates for protection. Our goal was to develop spatio- 
temporal remotely sensed indices to identify hotspots of biodiversity conservation concern. We generated 
indices that capture the inter-annual and spatial variability of vegetation greenness and land surface temperature 
and integrated them to identify areas of high, medium, and low biodiversity conservation concern. We applied 
our method in Argentina (2.8 million km2), a country with a wide range of climates and biomes. To generate the 
inter-annual variability indices, we analyzed MODIS Enhanced Vegetation Index (EVI) and Land Surface Tem-
perature (LST) time series from 2001 to 2018, fitted curves to obtain annual phenological and seasonal metrics, 
and calculated their inter-annual variability. To generate the spatial variability indices, we calculated standard 
deviation image texture of Landsat 8 EVI and LST. When we integrated our inter-annual and spatial variability 
indices, areas in the northeast and parts of southern Argentina were the hotspots of highest conservation concern. 
High inter-annual variability poses a threat in these areas, because spatial variability is low. These are areas 
where management efforts could be valuable. In contrast, areas in the northwest and central-west are where 
protection should be strongly considered because the high spatial variability may confer resilience to distur-
bance, due to the variety of conditions and resources within close proximity. We developed remotely sensed 
indices to identify hotspots of high and low conservation concern at scales relevant to biodiversity conservation, 
= which can be used to target management actions in order to minimize biodiversity loss.   

1. Introduction 

Broad-scale biodiversity patterns are strongly influenced by a host of 

climatic and environmental factors (Jetz et al., 2019; Pereira et al., 
2010; Read et al., 2020; Zarnetske et al., 2019). Among them, climate 
variability affects many species (MacArthur, 1972), and increasing 
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climate variability due to climate change is a threat for biodiversity 
(Thuiller et al., 2005; Zhang et al., 2018). Changes in climate can cause 
changes in the phenology of vegetation greenness (Ma et al., 2013) and 
in the seasonality of temperature (Mann and Park, 1996). Such changes 
can lead to phenological mismatches between wildlife species and the 
resources that they rely on for food, reproduction, and habitat features 
(Harrington et al., 1999; Menzel et al., 2006; Schwartz et al., 2006). 
Mismatches result when the timing of regularly repeated phases of life 
cycles change at different rates in closely interacting species (Renner 
and Zohner, 2018). Time-sensitive relationships (i.e., availability of food 
at migration staging areas, or during the breeding period) are altered, 
modifying the rates of reproduction and survival, causing some pop-
ulations to decline (Miller-Rushing et al., 2010; Saino et al., 2011). 
While early or late vegetation phenology can negatively affect species at 
any time of year (e.g., Allstadt et al., 2015; Beresford et al., 2019; Fer-
rante et al., 2017), inter-annually unpredictable vegetation phenology is 
particularly threatening when it occurs during a species’ breeding sea-
son, which is typically early in the growing season. When species are not 
able to adjust the timing of their reproduction to track phenological 
changes (e.g., Glennon et al., 2019; González-Braojos et al., 2017; 
Socolar et al., 2017), populations decline due to temporal mismatches 
between the peak of resource needs and of vegetation phenology 
(Pearce-Higgins et al., 2015; Plard et al., 2014; Saino et al., 2011), 
posing a threat to biodiversity. 

High spatial variability in vegetation greenness and temperature can 
reduce the threat of biodiversity loss, by bolstering resilience during 
times of high inter-annual variability (Nyström and Folke, 2001). 
Resilience to adverse environmental conditions is higher where spatial 
variability of resources is higher (Peterson et al., 1998; Malika et al., 
2009). Ecosystems with high spatial variability provide a range of re-
sources, habitat conditions, and microclimatic refugia (Oliver et al., 
2010) within a small area. Such conditions can enhance species survival 
during periods of pronounced climate extremes (Thuiller et al., 2005), 
and maintain ecological processes during periods of environmental 
stress (Loreau et al., 2001; Tilman, 1999). The reason is that spatial 
variability in vegetation greenness is associated with asynchrony of both 
plants and plant-dependent resources that are in close proximity (Far-
well et al., 2020), and high spatial variability in temperature may pro-
vide thermal refugia (Elsen et al., 2020, 2021). Indeed, spatial 
variability in vegetation shapes biodiversity patterns and ecosystem 
stability at fine scales by way of vegetation species diversity and the 
associated range of nutritional and structural attributes (Levin et al., 
2007), and at broad scales through diversity of land cover types. Eco-
systems that have both high spatial variability and high biodiversity are 
more ecological resilient (Peterson et al., 1998), have higher species 
survival, and recover more quickly during adverse conditions (Oliver 
et al., 2010, 2015). Here, we adopt the definition of ecological resilience 
as a measure of the amount of change needed to change an ecosystem 
from one set of processes and structures to a different set of processes 
and structures (Angeler and Allen, 2016; Folke et al., 2004; Holling, 
1973). 

Similarly, high spatial variability in land surface temperature offers a 
variety of microclimates in close proximity, which can provide thermal 
refugia (Keppel et al., 2012) by reducing exposure to extreme temper-
atures (Elsen et al., 2020, 2021). Especially for non-mobile species, 
spatial variability in vegetation greenness and temperature makes it 
more likely that at least some individuals can persist during extreme 
events (Keppel et al., 2012). High spatial variability only provides 
refugia when that spatial variability occurs within a given species’ 
suitable habitat. In contrast, fragmentation of naturally contiguous 
habitat can cause high spatial variability in vegetation greenness or 
temperature but that would likely have negative consequences for 
biodiversity (Fahrig, 2003; Fletcher et al., 2018). However, spatially 
variable landscapes with limited amounts of human modifications can 
enhance resilience to the threat that high inter-annual variability in 
vegetation phenology poses for biodiversity and can reduce the 

likelihood of a temporal mismatch between animal’s needs and avail-
able resources (Oliver et al., 2015; Robinson et al., 2016; Virah-sawmy 
et al., 2009). 

Inter-annual variability in the phenology of vegetation greenness and 
in the seasonality of temperature can be effectively captured from time 
series of satellite-based vegetation indices (Hmimina et al., 2013; Jin 
and Eklundh, 2014) and thermal infrared data (Albright et al., 2011; 
Hengl et al., 2012). Such time-serie s are particularly powerful when 
derived from coarse-resolution sensors such as the Moderate-Resolution 
Imaging Spectroradiometer (MODIS) because of their high temporal 
frequency. Phenology metrics, such as the start of the growing season, 
derived from time series of the Enhanced Vegetation Index (EVI) capture 
intra-annual variability of vegetation greenness (Deng et al., 2019; Hu 
et al., 2019) because EVI is correlated with the greenness of the vege-
tation canopy, which is related to photosynthetic activity and leaf area 
(Huete et al., 2002). One advantage of the EVI over other vegetation 
indices is that it is less sensitive to saturation over dense vegetation due 
to lower dependence on the red band (Huete et al., 1999). Furthermore, 
the inclusion of the blue band in EVI minimizes soil and atmospheric 
effects, resulting in better greenness estimates than the Normalized 
Difference Vegetation Index (NDVI; Matsushita et al., 2007). 

Land surface phenology captures seasonal patterns in the vegetation 
on the land surface captured by satellite sensors (de Beurs and Henebry, 
2005). The reflectance properties of vegetation vary seasonally in rela-
tion to vegetation phenology, however, because vegetation indices 
provide measures of vegetation productivity and do not directly record 
specific phenological events, such as flowering (Atkinson et al., 2012), 
they are at best proxies of vegetation phenology (Ganguly et al., 2010; 
Liu et al., 2016; Wu et al., 2014), which is a common limitation of 
phenology estimates based on remotely-sensed data (de Beurs and 
Henebry, 2005, 2010). Reasons that vegetation phenology differs from 
greenness phenology in satellite imagery include the mixing of signal 
and background, especially in coarse spatial resolution satellite images, 
limited sensitivity of vegetation indices during budburst, the saturation 
of vegetation indices at peak greenness, and others which is why 
greenness is related, but not identical, to vegetation phenology (Mori-
sette et al., 2009; White et al., 2009; White and Nemani, 2006). 

Satellite sensors also provide actual measurements of Land Surface 
Temperature (LST) at fine resolution for large areas, which is an 
advantage compared to interpolated temperature data from meteoro-
logical stations, which can introduce errors and bias (Behnke et al., 
2016). While measures of LST also contain errors and biases (Barsi et al., 
2014), the Landsat’s Thermal Infrared Sensor (TIRS) data represents the 
highest-resolution source of remotely sensed thermal data with global 
coverage. LST from satellite data indicates hotness or coldness of the 
earth surface and is based on mean effective radiative temperature of 
various canopy and soil surfaces (García-álvarez et al., 2019). MODIS 
daily LST products obtained from thermal infrared data are available 
from 2000 to the present (Lu et al., 2018), thus enabling the study of the 
seasonality of LST and its variability among years over almost two 
decades. 

Spatial variability in vegetation greenness or land surface tempera-
ture can be captured by calculating image texture, i.e., statistical mea-
sures of the variability among pixels in a moving window (Haralick 
et al., 1973), and image textures are effective measures of habitat suit-
ability for wildlife (Bellis et al., 2008; Farwell et al., 2020; Wood et al., 
2013). Landsat imagery, with its 30-m resolution, can capture both 
spatial variability in greenness when applied to Landsat-derived vege-
tation indices (Farwell et al., 2020, 2021; Lu and Batistella, 2005), and 
spatial variability in temperature when applied to thermal bands (Elsen 
et al., 2020, 2021). Texture measures reflect both vegetation heteroge-
neity and vegetation patterns (Ge et al., 2006). For example, image 
texture is correlated with foliage-height diversity and horizontal vege-
tation structure (26-60% of the variation), and captures within-class 
variability that categorical land cover classifications miss (Wood et al., 
2012). Among the different image texture variables (Haralick et al., 
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1973), the standard deviation of pixel values within a moving window 
characterizes landscape heterogeneity well. For example, the standard 
deviation of vegetation indices explains up to 43% of the variability in 
leaf area index in northern deciduous and mixed wood forests in Canada 
(Wulder et al., 1998). The standard deviation of 30-m resolution EVI 
data has a positive relationship with overall bird species richness across 
the conterminous United States (Farwell et al., 2020). In addition, the 
standard deviation of winter land surface temperature is positively 
related with the variability of resident bird richness across the conter-
minous USA explaining 37% of the variability (Elsen et al., 2020). These 
relationships suggest that image texture provide proxy measures of 
vegetation structure and temperature patterns that are relevant for 
biodiversity. 

Identifying the spatio-temporal patterns of vegetation greenness and 
land surface temperature is both scientifically interesting and important 
for biodiversity conservation efforts. In many cases, conservation re-
quires prioritization, i.e., identification of the areas where conservation 
investments make the biggest difference (Wilson et al., 2006), where 
new protected areas are most valuable (Possingham et al., 2006; Venter 
et al., 2014), or where conservation actions should be targeted (Hmie-
lowski et al., 2015). Maps of spatio-temporal variability in vegetation 
greenness and land surface temperature can potentially inform such 
prioritizations and decision-making. For example, areas with high inter- 
annual variability in the phenology of vegetation or in the seasonality of 
temperature may require management actions that enhance spatial 
variability in vegetation greenness and land surface temperature to 

enhance resilience to biodiversity loss from high inter-annual vari-
ability. In contrast, areas where spatial variability is high may be of high 
priority for protection because this is where species are more likely to 
persist if inter-annual variability increases due to climate change. 

Our goal was to develop spatio-temporal remotely sensed indices to 
identify hotspots of biodiversity conservation concern due to threats 
from high inter-annual variability. Our objectives were to: (1) generate 
remotely sensed indices that capture inter-annual and spatial variability 
in the phenology of vegetation greenness and in the seasonality of land 
surface temperature; and (2) integrate the inter-annual and spatial 
variability indices to identify areas of high, medium, and low biodi-
versity conservation concern. 

2. Methods 

2.1. Study area 

Our study area is the country of Argentina (2.8 million km2) located 
in South America, between 20◦S and 60◦S latitudes, and 50◦W and 80◦W 
longitudes (Fig. 1a), excluding the Malvinas/Falkland archipelago and 
southern Atlantic islands. The climates of Argentina are diverse due to 
the wide latitudinal and altitudinal gradients and include tropical, arid, 
temperate, cold, and polar climates (K̈oppen et al., 2011). The northern 
part of the country is characterized by hot, humid, rainy summers and 
mild winters, while the southern part has a dry climate with warm 
summers and cold winters. Mean annual precipitation (MAP) ranges 

Fig. 1. Location of Argentina within South America (a), and bioclimatic characteristics of Argentina, including: (b) administrative provinces (black lines): 1 – 
Autonomous city of Buenos Aires, 2 – Buenos Aires, 3 – Catamarca, 4 – Chaco, 5 – Chubut, 6 – Córdoba, 7 – Corrientes, 8 – Entre Rios, 9 – Formosa, 10 – Jujuy, 11 – La 
Pampa, 12 – La Roja, 13 – Mendoza, 14 – Misiones, 15 – Neuquén, 16 – Rio Negro, 17 – Salta, 18 – San Juan, 19 – San Luis, 20 – Santa Cruz, 21 – Santa Fé, 22 – 
Santiago del Estero, 23 – Tierra del Fuego, 24 – Tucumán; and ecoregion boundaries (colored polygons): High Andes (HA), High Monte (HM), Puna (PU), Southern 
Andean Yungas (SAY), Dry Chaco (DC), Humid Chaco (HC), Ibera marshes (IM), Mesopotamian savanna (MS), Alto Parana Atlantic forests (APAF), Espinal (ES), 
Pampa (PA), Parana flooded savanna (PFS), Patagonian forests (PF), Low Monte (LM), Patagonian steppe (PS) (Burkart et al., 1999); (c) mean annual precipitation 
(MAP, mm.yr-1); and (d) mean annual temperature, (MAT, ◦C). 
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from 19 to 2,580 mm, and mean annual temperature (MAT) from -10◦C 
to 24◦C (Fig. 1c–d). Temperatures decrease from north to south and 
there is also a gradient in temperature and precipitation from west to 
east due to topographic contrast between the mountainous western and 
flat eastern parts of the country (Barros et al., 2015). 

Argentina has eighteen ecoregions (Burkart et al., 1999) comprising 
mountains, lowlands, cold and warm regions, and dry and wet forests 
(Barros et al., 2015); fifteen ecoregions are continental, two are marine, 
and one is Antarctic. We performed the analysis at a nation-wide scale 
(country of Argentina) and at two finer scales, i.e., for each of the con-
tinental ecoregions (15) and provinces (23) of Argentina (Fig. 1b). We 
intersected boundaries of ecoregions and provinces, which resulted in 
96 polygons and helped us to identify hotspots of high and low con-
servation concern in greater detail. We chose Argentina’s ecoregions as a 
scale of analysis because they are relatively homogeneous in terms of 
geomorphological, hydrological, soil, vegetation and climate charac-
teristics (Burkart et al., 1999). The ecoregions are also important for 
environmental assessments and management, and allow comparison of 
different areas (Loveland and Merchant, 2004). Provinces are adminis-
trative regions, and many land use and conservation decisions, including 
delineation of forest land use zones, are made at the province level. 
While ecoregional analyses are more ecologically relevant, provinces are 
the unit at which the government conducts conservation and manage-
ment, and thus, intersecting ecoregions and provinces provides valuable 
information that is both ecologically relevant and suitable for defining 
conservation and management priorities. 

In 2007, Argentina implemented the ‘Forest Law’ (N. 26 331) to 
promote more sustainable forest management (Martinuzzi et al., 2018; 
Seghezzo et al., 2011). Unfortunately, the resulting land use plans did 
not incorporate biodiversity information explicitly. However, these 
plans are updated every five years, and inclusion of biodiversity and 
habitat data can greatly improve the plans (Martinuzzi et al., 2018). 
Thus, knowledge of patterns of inter-annual and spatial variability of 
vegetation greenness and land surface temperature can help to identify 
those areas where many species may have difficulty persisting if climate 
becomes more extreme, as well as areas where climate extremes would 
likely have less of an effect, and thus where biodiversity is more likely to 
persist. 

2.2. Assumptions and definitions 

We based our analyses on three assumptions (Table 1). First, we 
assumed that high inter-annual variability in the phenology of vegeta-
tion greenness and in the seasonality of land surface temperature is a 
threat for biodiversity. If inter-annual variability is high, then there is a 
higher likelihood that physiological tolerances of species are exceeded 
and that there are mismatches between animal requirements and 
resource availability. Many plants and animals have phenological re-
lationships, that is they synchronize their seasonal timing of life events. 
Mismatches in the timing of such events, can entail, for example, food 
limitations when wildlife species miss the annual peak in food abun-
dance, which may affect reproduction or survival (Menzel et al., 2006; 
Reed et al., 2013). Thus, high inter-annual variability in the phenology 
of vegetation greenness or in the seasonality of land surface temperature 
can exceed the rate at which organisms are able to adapt, disrupting the 
synchrony of ecological interactions, and pose a threat for biodiversity 
(Harrington et al., 1999; Menzel et al., 2006; Thackeray et al., 2010). 

Second, we assumed that high spatial variability in vegetation 
greenness and land surface temperature enhance resilience to high inter- 
annual variability. In general, ecological communities and species’ 
populations differ in how they respond to perturbations based on how 
resilient they are (Angeler and Allen, 2016). High spatial variability 
increases resilience (Malika et al., 2009), because areas with higher 
spatial variability have higher species’ survival rates during rapid cli-
matic changes than areas with low spatial variability. In addition, higher 
biodiversity can improve ecological resilience and resistance because it 
allows the community to either withstand or recover faster from dis-
turbances (Oliver et al., 2015; Angeler and Allen, 2016). Thus, high 
spatial variability of biotic and abiotic conditions can bolster resilience 
(Thuiller et al., 2005; Nyström and Folke, 2001), is associated with 
higher species richness (Elsen et al., 2020; Farwell et al., 2020), and 
increases the likelihood for renewal and reorganization after distur-
bance (Folke et al., 2004). This is why we assume that biodiversity 
benefits from high spatial variability in vegetation greenness and land 
surface temperature in areas that are fairly natural, because such spatial 
variability provides a variety of resources in close proximity, and in-
creases the likelihood that suitable conditions are available during times 
of extremes. Accordingly, we assumed that such conditions enhances the 
resilience to high inter-annual variability. 

Third, the areas of highest conservation concern due to the spatio- 
temporal patterns are those where inter-annual variability in 
phenology is high, which poses a high level of threat, and spatial vari-
ability of vegetation greenness and land surface temperature is low, 
which means that ecological resilience is likely lower (Table 1). A me-
dium level of conservation concern occurs when both types of variability 
are high or both are low. The lowest level of conservation concern occurs 
where inter-annual variability is low, and spatial variability is high, i.e., 
where threat is low, and resilience is likely high. 

2.3. Inter-annual variability analysis 

We characterized inter-annual variability in the phenology of vege-
tation greenness and in the seasonality of land surface temperature 
based on EVI and LST time series from 2001 to 2018 as captured by the 
MODIS sensor on board of Terra. For inter-annual variability in the 
phenology of vegetation greenness, we analyzed MODIS 16-days Vege-
tation Indices (MOD13Q1-collection 6; 250-m resolution). For inter- 
annual variability in the seasonality of land surface temperature, we 
analyzed MODIS 8-day LST (MOD11A2-Collection 6; 1-km resolution). 
We acquired images from Google Earth Engine, and selected only cloud- 
free data of optimal quality according to the MODIS Quality Assurance 
flags. Using TIMESAT 3.3 software (Jönsson and Eklundh, 2004), we 
modeled the 18-year EVI and LST time series using an iterative median 
filter followed by an adaptive Savitzky-Golay filter, which uses local 
polynomial functions in the fitting (Savitzky and Golay, 1964). Based on 

Table 1 
Potential integrations of inter-annual and spatial variability in vegetation 
greenness and land surface temperature, and the level of conservation concern 
for each integration.   

Spatial variability 

High Low 

Inter-annual 
variability 

High Medium conservation 
concern from phenological 
and seasonal variations 
because high inter-annual 
variability poses a high 
level of threat, but high 
spatial variability of 
vegetation greenness and 
temperature means that 
resilience is high 

Highest conservation concern 
from phenological and 
seasonal variations because 
high inter-annual 
variability poses a high 
level of threat, and low 
spatial variability of 
vegetation greenness and 
temperature means that 
resilience is low 

Low Lowest conservation concern 
from phenological and 
seasonal variations because 
low inter-annual variability 
entails a low level of threat, 
and high spatial variability 
in vegetation greenness and 
temperature means that 
resilience is high 

Medium conservation 
concern from phenological 
and seasonal variations 
because low inter-annual 
variability entails a low 
level of threat, but low 
spatial variability in 
vegetation greenness and 
temperature means that 
resilience is low  
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the resulting curves, we calculated three phenology (when referring to 
vegetation greenness) and three seasonal (when referring to land surface 
temperature) metrics for each year of analysis, i.e. the start date, end 
date, and length of the growing season for EVI and LST (Table 2). Start of 
the growing season, in spring, was defined as the day of the year when 
EVI is >25% of the annual maximum, and end of the growing season, in 
autumn, when EVI is <25% of the annual maximum (Blundo et al., 
2018; Ren et al., 2017; Van Leeuwen et al., 2013). 

To quantify inter-annual variability, we computed the coefficient of 
variation (CV) among years for each of the six metrics (Table 2). Because 
CV is a measure of variability over time, the index reflects phenological 
timing differences at the pixel level for any land cover type. However, 
within land cover classes some areas are more uniform in start of the 
growing season (SOS) among years, due, for example, to low topo-
graphic variation and low canopy species richness, while in other areas 
the CV of SOS may be higher due to, for example, to interactions among 
canopy species numbers, temperature conditions, and topography 
(Misra et al., 2018; Xia et al., 2019). We calculated the CVs only for 
pixels for which we could obtain the phenological or seasonal metrics for 
at least 15 of the 18 years of our analysis. No-data values represent 
missing data or areas where we had less than 15 years of metrics. 

We suspected that the phenological and seasonal metrics would be 
correlated, and calculated Pearson’s correlation coefficients (r) among 
the three greenness and the three land surface temperature temporal 
variability indices, respectively, to decide if it was meaningful to retain 
all indices for further analyses. We performed the Pearson’s correlation 
analysis based on 5,000 points randomly distributed over the study area. 
Because correlations were strong, we conducted a principal component 
analysis (PCA) for greenness and one for temperature (Jolliffe and 
Cadima, 2016). The first principal component of the PCA captures the 
greatest variance, the second component captures the maximum amount 
of variance not described by the first, and so forth. However, principal 
components are by definition derived from multiple variables, and that 

can make it difficult to interpret their values, which is why we selected 
the seasonal metric that was most strongly correlated with the first 
principal component for further analysis rather than the first principal 
component itself. 

2.4. Spatial analysis 

We characterized spatial variability in vegetation greenness and in 
land surface temperature by calculating the standard deviation image 
texture (Haralick et al., 1973) of EVI and LST images from Landsat im-
agery, which we processed in Google Earth Engine. We chose standard 
deviation, rather than a measure that accounts for differences in the 
mean, such as the coefficient of variation, because the EVI can have a 
very low mean in areas with sparse vegetation, and when that occurs, 
the values for the coefficient of variation become extremely high. 

We calculated spatial variability in vegetation greenness based on 
the EVI from Landsat 8 Surface Reflectance Tier 1 bands 2, 3 and 4. First, 
we masked pixels covered by clouds, shadows, or water based on the 
Quality Assurance flags and a static water mask derived from Landsat 
imagery (Hansen et al., 2013). Second, we generated a composite image 
by calculating the 90th percentiles of EVI values from all years from 2013 
to 2018 during all seasons. This way, we characterized peak of vegeta-
tion greenness while excluding erroneously high EVI values (Farwell 
et al., 2020). Third, to obtain our vegetation greenness spatial variability 
index, we applied an 11 × 11 pixel moving window to calculate the 
standard deviation of the composite EVI 90th percentile image. Thus, the 
central pixel within the moving window was assigned a standard devi-
ation value based on the EVI 90th percentile of the neighboring pixels. 

For land surface temperature spatial variability, we assessed LST 
from Band 10 of the thermal infrared sensor (TIRS) of Landsat 8, which 
USGS provides statistically downscaled at 30-m resolution. We analyzed 
only data from Band 10 because Landsat 8’s band 11 has a larger bias 
and more scatter (Barsi et al., 2014). We first selected all the images 
collected from 2013 to 2018 during the warmest third of the year (i.e., 
from November to February, hereafter ‘summer’) and the coldest third 
of the year (i.e., from May to August, hereafter, ‘winter’). Summer was 
composed of median values from November to February, and winter was 
composed of median values from May to August, from all the years 
combined (2013, 2014, 2015, 2016, 2017 and 2018). By analyzing 
median values instead of the mean, we minimized the effects of extremes 
and spuriously high/low values in the temperature data, and minimized 
gaps due to cloud contamination (Elsen et al., 2020). We calculated 
standard deviation within an 11 × 11 pixel moving window for summer 
and winter based on the median composite images for summer and 
winter separately. We measured the standard deviation for summer and 
winter separately to capture thermal variability of extremes during these 
seasons because both hot and cold temperatures extremes can influence 
biodiversity patterns (Clarke and Gaston, 2006; Elsen et al., 2020). 

Ultimately, to identify spatial variability in land surface temperature 
for both hot and cold temperatures, we generated one land surface 
temperature variability index by combining data from summer and 
winter (Fig. S1). To do so, we classified the summer and winter standard 
deviation images into five quantile classes, ranging from 1 (low standard 
deviation values, low variability) to 5 (high standard deviation values, 
high variability) (Fig. S1, 2a,b). We combined the two classified images 
into all possible combinations, resulting in 25 classes. We summarized 
the values of each combination resulting in values from 2 to 10 (Fig. S1, 
3). In a final step, we classified areas where spatial variability in both 
summer and winter are high as high spatial variability (sum ≥7) while 
low spatial variability represents areas where spatial variability in both 
summer and winter was low (sum ranging from 2 to 6; Fig. S1, 4). 

We chose our window size for both ecological and methodological 
reasons. Ecologically, a 330-m window, given Landsat’s 30-m window 
size is small enough to assume that most species can reach a refugia 
within that area. Methodologically, first, we opted for a window size of 
uneven pixels to have a clear central pixel to which assign the standard 

Table 2 
Phenology and seasonality metrics and inter-annual variability indices of 
vegetation greenness and land surface temperature calculated from the 
enhanced vegetation index (EVI) and land surface temperature (LST) MODIS 
time series from 2001 to 2018.  

Phenology and 
seasonality 
metrics 

Description Inter-annual 
variability 
Index 

Description 

EVI_SOS Start of the growing 
Season (SOS) calculated 
from the EVI time series 
defined as the first day of 
year (DOY) in spring 
when EVI is >25% of the 
annual maximum. 

CV_EVI_SOS Coefficient of 
variation of 
EVI_SOS 

EVI_EOS End of the growing 
Season (EOS) calculated 
from the EVI time series 
defined as the first DOY 
in autumn when EVI is 
<25% of the annual 
maximum. 

CV_EVI_EOS Coefficient of 
variation 
EVI_EOS 

EVI_LOS Length of the growing 
Season (LOS) defined as 
the number of days 
between the start and 
end dates. 

CV_EVI_LOS Coefficient of 
variation of the 
EVI_LOS 

LST_SOS The DOY in spring when 
LST is >25% of the 
annual maximum. 

CV_LST_SOS Coefficient of 
variation of 
LST_SOS 

LST_EOS The DOY in autumn 
when LST is <25% of the 
annual maximum. 

CV_LST_EOS Coefficient of 
variation of 
LST_EOS 

LST_LOS The number of days 
between LST_SOS and 
LST_EOS. 

CV_LST_LOS Coefficient of 
variation of 
LST_LOS  
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deviation values. Second, we wanted to ensure for our calculations of 
land surface temperatures that our windows included at least 3 × 3 
pixels of the original Landsat TIRS data, which has an original resolution 
of 100 m, prior to the downscaling by the USGS (Elsen et al., 2020) to 
ensure robust calculations even if some pixels were missing due to 
clouds contamination. Third, a window size of 11 × 11 pixels is a me-
dium size in the range of 3x3 to 101 × 101 pixels for which first-order 
texture measures are highly correlated (Culbert et al., 2012; St-Louis 
et al., 2006), which is why we assumed that it was not necessary to 
conduct our analyses for multiple window sizes. 

2.5. Spatio-temporal patterns of vegetation greenness and land surface 
temperature 

To obtain the spatio-temporal patterns of vegetation greenness and 
land surface temperature, we integrated the inter-annual and spatial 
variability indices. First, we classified the pixels of each index (CV_E-
VI_SOS, CV_LST_SOS, standard deviation texture of EVI and standard 
deviation texture of LST) into high and low values based on the quantile 
method. Second, we integrated the following maps: (a) inter-annual 
variability in the phenology of vegetation greenness (250-m resolu-
tion) versus spatial variability of vegetation greenness (30-m resolution 
summarized in 330-m windows), and (b) inter-annual variability in the 
seasonality of land surface temperature (1-km resolution) versus spatial 
variability of land surface temperature (30-m resolution summarized in 
330-m windows). Prior to integration, we resampled the input datasets 
with nearest neighbor resampling to match the resolution of our coarsest 
dataset. We thus produced two maps of spatio-temporal variability, one 
for vegetation greenness at 250-m resolution, and one for land surface 
temperature at 1-km resolution (See Fig. 2, step 3). 

2.6. Hotspots of biodiversity conservation concern 

Our second objective was to identify where both phenological and 
seasonal variability was of high, low, or medium conservation concern 
(Table 1). We based these analyses on the upper and lower quantiles in 
our maps of the spatio-temporal variability of vegetation greenness and 
land surface temperatures. We mapped hotspots by identifying clusters 
of pixels in either the high and low conservation concern category, using 
the Getis-Ord Gi* statistic (Getis and Ord, 1992) as follows: 

G*
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∑n

j=1
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wi,j

S
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√
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√

(1)  

where xj is the attribute value for feature j, wi, j is the spatial weight 
between feature i and j, and n is the total number of features. The Gi* 
statistic returns for each feature in the dataset a z-score. Large positive z- 
scores values (>2.58, confidence value of 99%) indicate hotspots. 

To perform the hotspot analysis, we based the analyses only on 
forests, shrublands and grasslands, avoiding capturing variability in 
crops and fragmented areas that could increase heterogeneity and could 
be negatively related with biodiversity. To do so, we masked the maps of 
spatio-temporal variability based on a landcover map of Argentina 
(INTA, 2009) and we removed all croplands, bare soil, roads, and urbans 
areas from further analyses. 

We also identified hotspots of high and low conservation concern 
based on the variability of both greenness and land surface temperature 
together. To do so, we mapped the areas where both the greenness and 
the temperature hotspot maps indicated either high conservation 
concern or low conservation concern, and calculate for each ecoregion 
and province the percentage of the areas in either category. 

3. Results 

3.1. Inter-annual variability in the phenology of vegetation greenness and 
in the seasonality of land surface temperature 

We assessed the inter-annual variability in the phenology of vege-
tation greenness based on three indices (Table 2; Fig. S2). These three 
indices were moderately correlated, with Pearson’s correlation indices 
ranging from 0.56 to 0.66 (Fig. S3). Our principal component analysis of 
the three phenological metrics showed that most of the variance in the 
first principal component (Eigenvalues = 77.4%) was related to CV_E-
VI_SOS (r = 0.78; Table S1), which is why we selected this index for 
further analyses of the inter-annual variability of the phenology in 
vegetation greenness. 

The coefficient of variation of the start of the growing season 
exhibited a wide range of values across Argentina, reaching > 40% in 
some areas (Fig. S2a). In particular, CV_EVI_SOS was low (mean CV <
15%) in the Patagonian forests, Dry Chaco, Alto Parana Atlantic forests, 
and Southern Andean Yungas ecoregions, and also in Tucumán and 
Misiones provinces, which are dominated by native forests. However, 
CV_EVI_SOS was high (mean CV >25%) in the Pampa, Parana flooded 
savanna, Espinal, southern Patagonian steppe, northern High Andes and 
southern Puna ecoregions, and in Entre Rios, Buenos Aires, Santa Fe, 
Santa Cruz, La Pampa and Cordoba provinces, all of which are charac-
terized by shrublands and grasslands (Fig. S4-1a,b). In contrast to strong 
inter-annual variability for the start of the growing season, we found 
little inter-annual variability at the end of the season and values of 
CV_EVI_EOS (Fig. S2b) were low across the country (maximum CV of 
12%). The inter-annual variation in the length of the growing season 
(CV_EVI_LOS, Fig. S2c) was also generally low, and the highest values 
occurred in the Pampa and Espinal, and in small, dispersed areas of the 
Dry Chaco ecoregions. 

Similarly, we assessed inter-annual variability in the seasonality of 
land surface temperature based on three indices (Table 2; Fig. S5). The 
three land surface temperature indices were more strongly correlated 
than those for vegetation greenness, with Pearson’s correlation indices 
ranging from 0.69 to 0.90 (Fig. S3). In the PCA, the first component PC1 
explained 95.2% of the variability and was highly correlated with the 
index CV_LST_SOS (r = 0.93; Table S2), which is why we chose it as our 
index of inter-annual variability in the seasonality of land surface 
temperature. 

The Alto Parana Atlantic forests, Dry Chaco, and Humid Chaco 
ecoregions in the north of the country had the highest inter-annual 
variations in temperature at the start and end of the growing season 
(CV_LST_SOS and CV_LST_EOS), and between the two, CV_LST_SOS was 
substantially higher (up to 20-40%) than CV_LST_EOS (<20%; Fig. S5a, 
b). The Alto Parana Atlantic forests, Southern Andean Yungas, and 
Humid Chaco ecoregions had the highest variability in CV_LST_SOS 
(mean >22%), as had Chaco, Formosa and Misiones provinces, while the 
High Monte, Patagonian steppe, and Low Monte regions had lowest 
variability, as well as Rio Negro, Chubut and Neuquén provinces 
(Fig. S4-2a,b). The length of the growing season (CV_LST_LOS) did not 
vary markedly across the country (max <10%; Fig. S5c). 

Comparing the inter-annual variability in the phenology of vegeta-
tion greenness with the seasonality of land surface temperature, we were 
surprised to find that their correlation was generally weak, and often 
negative, i.e., that the areas where inter-annual variability in greenness 
was high were not the same areas where inter-annual variability in 
temperature was high. Specifically, CV_EVI_SOS and CV_LST_SOS were 
weakly negatively correlated across Argentina (r = -0.19; Fig. 3a, b), but 
the relationship varied within our different ecoregions (Fig. 3c) and 
provinces. For example, in the Southern Andean Yungas (Fig. 3-1a,b) 
and Humid Chaco (Fig. 3-2a,b), the correlation was moderately negative 
(r = -0.38 and r = -0.22, respectively). Among the provinces, Rio Negro 
and Salta provinces had the highest negative correlation (r = -0.30). In 
contrast, within the High Andes (Fig. 3-3a, b) and Mesopotamian 
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Fig. 2. Flowchart of the steps that we took to calculate our indices and identify potential areas of biodiversity conservation concern: (1) image processing of 
MOD13Q1 (MODIS 16-day Vegetation Indices), MOD11A2 (MODIS 8-day Land Surface Temperature), Landsat OLI (Operational Land Imager), and Landsat TIRS 
(Thermal Infrared Sensor); (2) inter-annual variability indices (t) based on the coefficient of variation (CV) of phenological and seasonality metrics from EVI 
(Enhanced Vegetation Indices) and LST (Land Surface Temperature), including the start (SOS), the end (EOS), and the length of the growing season (LOS); and spatial 
variability indices (s) based on the standard deviation (STD) of EVI and B10-LST; (3) integrating inter-annual and spatial variability to identify areas of high, medium, 
and low conservation concern due to inter-annual variability in phenology and temperature seasonality. 
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savanna ecoregions (Fig. 3-4a, b), CV_EVI_SOS and CV_LST_SOS were 
moderately positively correlated (r = 0.25 and r = 0.58, respectively). At 
province level, San Ruan had the maximum positive correlation (r =
0.23). 

3.2. Spatial variability in vegetation greenness and land surface 
temperature 

We assessed spatial variability of vegetation greenness by calculating 
the standard deviation of Landsat 8 EVI values in an 11 × 11 pixel 
moving window. The highest spatial variability in vegetation greenness 
across Argentina occurred in ecoregions covered by forests (i.e., the 
Southern Andean Yungas, Alto Parana Atlantic forests, Patagonian for-
ests, Dry Chaco, Humid Chaco, and Parana flooded savanna) and crop-
lands (Pampa; Fig. 4a,b). We wondered if the high spatial variability in 
forests might be due to a higher mean EVI there. In general, it is likely 
that spatial variability in EVI differs among land cover types, due to 
differences in the range of reflectance values of dominant plants (e.g., 
trees vs. grasses). However, among the natural land cover classes, for-
ests, grasslands and wetlands had very similar means and ranges of 
standard deviations (Fig. S6), and while the mean for shrubland was 
lower, there was still a considerable range of standard deviations within 
that class, suggesting that the EVI data was sensitive enough to capture 
spatial variability in all land cover classes across Argentina. Forests and 
grasslands had very similar means and ranges of variability and even 
though the mean of the standard deviation was lower for shrublands, 
there was still a considerable range of standard deviations within that 
class. The only class that had a clearly higher mean of standard de-
viations was cropland, which may be due to more fragmented land cover 
where croplands are common. In addition, we calculated the correla-
tions between mean and standard deviation of EVI for each land cover 
type, and found only weak to moderate correlations, ranging from r =
0.12 to r =0.55 (Fig. S7). 

Spatial variability in vegetation greenness, both within and between 
land cover classes, varied considerably within our ecoregions. For 
example, in the Alto Parana Atlantic forests, we found high spatial 
variability in vegetation greenness in drainage areas (Fig. 4-1a,b,c). In 
the Southern Andean Yungas ecoregion, we found high spatial vari-
ability in greenness in areas dominated by closed forests (Fig. 4-2a,b,c). 
As we expected, in areas dominated by croplands (Pampa), spatial 
variability in vegetation greenness was high where crops and tilled 
ground with no cover were in close proximity (Fig. 4-3a,b,c). Within 
Patagonian forests (Fig. 4-4a,c,d), the index captured variability in ho-
mogeneous land cover classes, highlighting texture’s ability to charac-
terize fine scale variability. Among the ecoregions, Patagonian forest, 
Parana flooded savanna and Pampa had the highest spatial variability of 
vegetation greenness (standard deviation > 0.06), while Puna, Low 
Monte and High Andes had the lowest values (standard deviation <
0.01, Fig. S8a). Among the provinces, Terra Del Fuego and Buenos Aires 
had the highest spatial variability, while Rio Negro, Santa Cruz and 
Catamarca had the lowest spatial variability in vegetation greenness 
(Fig. S8b). 

Land surface temperatures during summer and winter were moder-
ately positive correlated (r = 0.46). During summer, the highest LST 
values were concentrated in northwestern Argentina while during 
winter, LST increased from south to north (Fig. 5a, b). High Andean and 
Puna ecoregions, and San Ruan and Catamarca provinces, had the 
highest LST values in both summer and winter (Fig. S8c-f). The spatial 
variability in land surface temperature (i.e., the standard deviation of 

LST in a moving window of 11 × 11 pixels) during summer and winter 
was also moderately positively correlated (r = 0.60) (Fig. 5c, d), high-
lighting the importance of using the variability in both summer and 
winter together to guarantee that the extremes variability in both sea-
sons are considered. When we combined the spatial variability of land 
surface temperature in both summer and winter, we found that it was 
highest in areas of strong topographic relief (e.g., in the Andes Moun-
tains and Puna ecoregions), and lowest in parts of the Dry Chaco, Low 
Monte, Humid Chaco, Espinal and Patagonian steppe ecoregions 
(Fig. 5e). 

Finally, the spatial variability of vegetation greenness and of land 
surface temperature were weakly correlated across Argentina (r = 0.22 
based on summer temperature, and r = 0.02 based on winter). Within 
ecoregions, maximum values occurred during summer in the Pampa (r =
0.40), Patagonian steppe (r = 0.37), Espinal (r = 0.35), and Low Monte 
(r = 0.34; Table S3). Within provinces, spatial variability of vegetation 
greenness and summer land surface temperature spatial variability were 
highly correlated in Rio Negro (r = 0.52), Chubut (r = 0.51), Neuquén (r 
= 0.51) and Santa Cruz (r = 0.50) (Table S4). 

3.3. Areas of potential conservation concern due to phenological and 
seasonal variability 

We combined our maps of inter-annual variability in the phenology 
of vegetation greenness and in the seasonality of land surface temper-
ature (Fig 6a) with their respective maps of spatial variability (Fig 6b), 
to identify potential areas of high, medium, and low conservation 
concern due to phenological and seasonal variability (Table 1, Fig. 6c). 

The hotspots of high and low conservation concern that we mapped 
based on vegetation greenness (Fig. 6, 1d) differed considerably from 
those mapped based on land surface temperature (Fig. 6, 2d). Based on 
the vegetation greenness, hotspots of conservation concern were 
concentrated in the High Andes, Puna, Ibera marshes, south of High 
Monte, north of Low Monte, west part of Patagonian steppe and in parts 
of Espinal ecoregion. At province level, hotspots of conservation concern 
based on the spatio-temporal patterns of vegetation greenness were in 
Salta, Catamarca, La Rioja, San Ruan, Mendoza, San Luis, La Pampa, 
Chaco, Santa Fé, Entre Rios, Corrientes, Rio Negro, Chubut and Santa 
Cruz. Areas of low conservation concern were concentrated in the Alto 
Parana Atlantic forests, Southern Andean Yungas, Patagonian forest, 
north of Puna, some parts of Chaco, Mesopotamian savanna, and Pampa 
ecoregions, and in the following provinces: Misiones, Tierra del Fuego, 
and some parts of Salta, Buenos Aires, Chubut, Rio Negro, Neuquén, 
Córdoba, San Luis, Jujuy, Chaco, and Catamarca. Hotspots of conser-
vation concern based on the spatio-temporal patterns of land surface 
temperature were quite different. For example, the Alto Parana Atlantic 
forests in northeastern Argentina were of low conservation concern 
based on vegetation greenness, but of high conservation concern based 
on land surface temperature. 

In a final step, we identified hotspots of high and low conservation 
concern based on the spatial agreement between vegetation greenness 
and land surface temperature derived maps of conservation concern 
(Fig. 7). The high-conservation concern areas were in the northern re-
gion predominantly within the Humid Chaco (62,586 km2), Espinal 
(51,930 km2) and Ibera Marshes (33,331 km2) ecoregions and in the 
south in a small portion of the Patagonian steppe in Santa Cruz province 
(21,024 km2). Humid Chaco, Ibera Marshes, Mesopotamian savanna and 
Parana flooded savanna ecoregions have more than 50% of their area 
within the hotspot of high-conservation concern (Fig. 7a). In Humid 

Fig. 3. Inter-annual variability of the start of the season according to (a) vegetation greenness (CV_EVI_SOS) and (b) land surface temperature (CV_LST_SOS), and (c) 
Pearson’s correlation (r) between these two indices within ecoregions. Numbers (1-4) show detailed patterns within the Southern Andean Yungas (SAY), Humid 
Chaco (HC), High Andes (HA), and Mesopotamian savanna (MS) ecoregions, respectively (patterns for vegetation greenness in the top row, patterns for land surface 
temperature in the bottom row). White areas in maps reflect those with <15 observations of seasonal metrics. Insets 1abc and 2abc show regions and scatterplots 
where the correlation between two indices is negative, while insets 3abc and 4abc show regions where it is positive. 
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Fig. 4. (a) Enhanced vegetation index (EVI) derived from Landsat 8 Surface Reflectance Tier 1 composite from 2013 to 2018, (b) vegetation spatial variability, 
defined as the standard deviation (STD) of EVI captured in a moving window of 11 × 11 pixels, (c) landcover map, with the following classes: (1) forest plantations, 
(2) crops, (3) native forests, (4) shrublands, (5) grasslands, (6) herbaceous wetlands, and (7) urban areas (source: https://inta.gob.ar/sites/default/files/script-tmp-i 
nforme_tecnico_lccs.pdf; INTA, 2007), Numbers (1-4) depict detail of EVI (top row), vegetation spatial variability (middle row), and land cover (bottom row) and 
column numbers indicate locations of insets on country scale maps. 
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Chaco, the hotspots of high conservation concern are mainly in Santa Fé 
and Chaco provinces, while in Ibera Marshes and Espinal ecoregions, 
hotspots of high conservation concern are mainly in Corrientes and 
Entre Rios provinces (Table S5). Among provinces, the high- 
conservation concern hotspots encompassed more than 50% of Cor-
rientes and Santa Fe provinces and 45% of Entre Rios territory (Fig 7b). 
The high-conservation concern hotspots are mainly occupied by 

wetlands (45%), followed by grasslands (26%), forests (22%) and 
shrublands (7%). 

Low-conservation concern hotspots are in the northwest (106,272 
km2) and central-west of Argentina (63,643 km2), mainly in Puna within 
Jujuy (21,232 km2) and Salta (14,656 km2) provinces and Patagonian 
steppe within Neuquén, Rio Negro and Chubut provinces (Fig 7; 
Table S6). Southern Andean Yungas and Patagonian forests have more 

Fig. 5. (a) Land surface temperature (LST) based on B10 (brightness temperature) from Landsat 8 TIR data for summer, (b) LST based on B10 (brightness tem-
perature) from Landsat 8 TIR data for winter, (c) spatial variability in land surface temperature, defined as the standard deviation (STD) of LST captured in a moving 
window of 11 × 11 pixels, for summer, (d) winter, and (e) the interaction of spatial variability in land surface temperature for summer and winter. 
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than 50% of their areas inside the hotspot of low-conservation concern 
(Fig. 7a). Among the provinces, low-conservation concern areas cover 
90% of Jujuy, 50% of Neuquén, 30% of Tucuman, 20% of Catamarca 
and Rio Negros and 10 % of Chubut provinces. The main land cover 
classes within low-conservation concern hotspots are shrublands (43%), 
grasslands (32%) and forests (25%). 

4. Discussion 

4.1. Inter-annual and spatial variability indices 

High inter-annual variability in the phenology of vegetation green-
ness and in the seasonality of temperature presents a threat to the sur-
vival of many species, but high spatial variability enhances resilience to 
this threat. We generated indices to capture the inter-annual variability 
and spatial variability of vegetation greenness and land surface tem-
perature so that we could identify hotspots of high and low conservation 
concern for biodiversity conservation. We found strong differences 
among the ecoregions and the provinces of Argentina in terms of the 
magnitude of both inter-annual and spatial variability, suggesting that 
species in different areas face very different threats from variability in 
phenology and temperature seasonality. Spatio-temporal variability in 
vegetation greenness was only weakly correlated with land surface 
temperature. That suggests that it is valuable to map both when 
assessing the threats from phenological and seasonal variations. By 
combining our maps of inter-annual and spatial variability, we 

identified the areas of highest conservation concern due to phenological 
and seasonal variability (i.e., those areas where high inter-annual vari-
ability posed a strong threat, and where low spatial variability meant 
that resilience is low), as well as those of low conservation concern 
where the threat is low and resilience is high. 

The time series of MODIS EVI and LST data provided a powerful 
dataset to calculate inter-annual variability for the phenological and 
seasonal metrics (start, end and length of the growing season). Most 
phenological metrics are derived from time series of vegetation indices, 
such as EVI and NDVI (Zeng et al., 2020). However, vegetation indices 
sometimes are not able to detect phenological patterns due to low intra- 
annual variation in greenness, especially where vegetation is very sparse 
(Liu et al., 2016) (see blank areas in Fig. 3a). In areas where the 
phenology of vegetation and seasonality of temperature have similar 
patterns, land surface temperature changes over the course of a year can 
play a complementary role when assessing phenology, especially in 
areas, such as evergreen forests, where estimates of the start and end of 
the season tend to be more variable due to limited phenological vari-
ability in canopy greenness (Liu et al., 2016). 

Climate change can result in changes in either temperature or in the 
seasonality of temperature. Changes in temperature, also referred to as 
temperature magnitude, cause a change in the statistical distribution of 
temperature (e.g., an increased mean), while temperature temporal 
position describes the change in timing (i.e., date) of a specific event 
(Waldock et al., 2018). Temperature temporal position can change over 
time while the statistical distributions remains the same (Garcia et al., 

Fig. 6. Areas of high and low conservation concern based on (1) vegetation greenness and (2) land surface temperature: (a) inter-annual variability in phenology, (b) 
spatial variability, (c) integration between inter-annual and spatial variability, and (d) hotspots maps according to the Getis-Ord Gi* statistic. White areas in (a) and 
(c) had <15 phenology metrics observations. 
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2014; Loarie et al., 2009). For example, changes in date of specific 
events, e.g., an earlier start and end of the season, is a change in tem-
poral position but not a change in statistical distribution. Thus, research 
that focuses strictly on directional change of means and not on changes 
in the seasonality, may underestimate the effects of climate change on 
biodiversity patterns and responses (Waldock et al., 2018). This is why 
we calculated the inter-annual variability in the seasonal dates of tem-
perature variability (i.e. CV_LST_SOS) to capture seasonal variability. 
Having said that, we did not include an analysis of the trends, because 
the MODIS record of twenty years is fairly short. Hence, we acknowl-
edge that describing seasonal variations alone does not capture the full 
effect of climate change. However, we opted to focus on seasonal vari-
ation because that allowed identification of areas of high and low con-
servation concern assuming that climate change will result in higher 
climatic variability and more frequent extreme events. 

We found considerable differences in the patterns of inter-annual 
variability in the phenology of vegetation greenness and in the 

seasonality of land surface temperature across Argentina. The correla-
tion between CV_EVI_SOS and CV_LST_SOS was surprisingly weak across 
the entire country (r = -0.19), and also fairly weak in most ecoregions 
and provinces. However, in some ecoregions we found moderately 
positive (r = 0.58) to negative (r = -0.38) correlations. Our analyses 
were not designed to identify the reasons why the differences in the 
inter-annual variability patterns of greenness and land surface temper-
ature were weak to moderate in Argentina. However, ecoregions in 
Argentina are diverse in terms of vegetation and topography. Some 
reasons for the weak and moderate relationships could be that in gen-
eral, vegetation growth acclimates to rapid temperature warming and 
becomes less affected by climate change (Hikosaka et al., 2006), or due 
to topographic effects. Other reasons could be the lagged response of 
greenness to water limitation (An et al., 2018), and relationships 
affected by vegetation type (Liu et al., 2018; Wang et al., 2008). 

Our results combined with those from prior studies thus suggest that 
examining the inter-annual variability in the phenology of vegetation 

Fig. 7. Hotspots of highest and lowest conservation concern by (a) ecoregion and (b) province. Abbreviations of ecoregions: 1 - High Andes (HA), 2 - High Monte 
(HM), 3 - Puna (PU), 4 - Southern Andean Yungas (SAY), 5 - Dry Chaco (DC), 6 - Humid Chaco (HC), 7 - Ibera marshes (IM), 8 - Mesopotamian savanna (MS), 9 - Alto 
Parana Atlantic forests (APAF), 10 - Espinal (ES), 11 - Pampa (PA), 12 - Parana flooded savanna (PFS), 13 - Patagonian forests (PF), 14 - Low Monte (LM), 15 - 
Patagonian steppe (PS). Provinces: 1 – Autonomous city of Buenos Aires, 2 – Buenos Aires, 3 – Catamarca, 4 – Chaco, 5 – Chubut, 6 – Córdoba, 7 – Corrientes, 8 – 
Entre Rios, 9 – Formosa, 10 – Jujuy, 11 – La Pampa, 12 – La Roja, 13 – Mendoza, 14 – Misiones, 15 – Neuquén, 16 – Rio Negro, 17 – Salta, 18 – San Juan, 19 – San 
Luis, 20 – Santa Cruz, 21 – Santa Fé, 22 – Santiago del Estero, 23 – Tierra del Fuego, 24 – Tucumán. 
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greenness and in the seasonality of land surface temperature is both 
necessary and valuable because one is not a good proxy for the other, 
and some species will respond more strongly to greenness (e.g., herbi-
vores), and others to temperature (e.g., exotherms). Although the pat-
terns in inter-annual variability in the phenology of vegetation 
greenness and in the seasonality of land surface temperature were not 
highly spatially correlated, there was strong inter-annual variability in 
the start of the growing season (greenness) and spring warm-up (tem-
perature) from 2001 to 2018. Climate change may have caused this 
variability either via a trend over time, so that all later years are 
considerably higher than all early years, or by increasing year-to-year 
differences and the frequency of extreme year. Our analyses were not 
designed to distinguish between these potential causes for higher inter- 
annual variability, but this variability is concerning for species either 
way. Indeed, high variability of spring onset may cause phenological 
mismatches between animals and plants (Thackeray et al., 2010), 
especially if the amount of variability that we found is greater than in 
decades prior to our study period (Allstadt et al., 2015; Schweiger et al., 
2008). 

Image texture based on the standard deviation of EVI and LST from 
Landsat 8 data captured vegetation greenness and land surface tem-
perature spatial variability, and thus helped to identify areas where 
there are enhanced resilience to the threat of high inter-annual pheno-
logical and seasonal variability. We found the highest spatial variability 
in land surface temperature in areas of high topography relief and 
highest spatial variability of vegetation greenness in areas cover by 
forests. High spatial variability can result from different processes, 
including high geodiversity. Geodiversity, defined as ‘the diversity of 
geological (rocks, minerals, fossil), geomorphological (land form, pro-
cesses) and soil features” (Gray, 2008) is a strong driver of biodiversity 
patterns worldwide (Gill et al., 2015). Environmental conditions can 
enforce physiological limitations, while diversity of topographic, habitat 
and geophysical features can lead to niche diversification (Zarnetske 
et al., 2019). For example, geodiversity components (landforms, hy-
drology and surface materials), climate, topography and land cover 
variability improved understanding of the relationship between species 
richness and abiotic heterogeneity at multiple spatial scales (Bailey 
et al., 2017) and have been suggested as key variables for identifying 
refugia (Keppel et al., 2015). 

The spatial variability of vegetation has a strong influence on 
biodiversity patterns (Stein et al., 2014), and high variability promotes 
species diversity by increasing the number of available niches (Tews 
et al., 2004), promotes speciation via genetic isolation in species with 
low mobility (Thorpe et al., 2008) and increases the availability of mi-
crohabitats that provide refugia from adverse conditions and climatic 
extremes (Keppel et al., 2012). This increased access to a variety of 
microhabitats, in particular, links vegetation spatial variability to 
increased resilience against climate change, both in the context of short- 
term (Piha et al., 2007) and long-term changes (Virah-sawmy et al., 
2009). Spatial variability in the vegetation greenness also increases 
environmental resilience in the face of changes in climate by providing a 
buffer against the loss of ecosystem processes (Turner et al., 2013) and 
promoting functional redundancy (Feit et al., 2019). Indices of vegeta-
tion greenness characterize net primary productivity (Sims et al., 2006), 
and regions with higher overall productivity can support more species 
(Currie, 2020). Texture measures derived from vegetation indices pro-
vide information about the spatial patterning of productivity that make 
them strong predictors of bird richness patterns (Farwell et al., 2020; St- 
Louis et al., 2009). 

The spatial variability of land surface temperature drives species 
richness patterns in similar ways as that of vegetation greenness. For 
example, spatial variability in temperature can increase species richness 
through the creation of thermal niches that can be exploited by organ-
isms adapted to unique thermal environments (Letten et al., 2013). 
Furthermore, species can utilize environments with high spatial vari-
ability to find refugia during times of temperature extremes, thereby 

minimizing their exposure to hot and cold temperatures (Scheffers et al., 
2014). Areas of high spatial variability in temperature are also partic-
ularly important for climate-sensitive species, including species with 
poorer thermoregulatory capacity and narrow thermal tolerances (Elsen 
et al., 2020). Taken together, regions with high spatial variability of 
temperature provide resilience to possible threats due to high inter- 
annual variability in temperature. Our recommendations are scale- 
dependent though, and the relationship between temperature and 
biodiversity will likely differ at different scales (Bailey et al., 2017; 
Zarnetske et al., 2019). Having said that, at the scales that we measured, 
while temperature changed markedly in Argentina (Fig. 5a, b), the re-
gions with high spatial variability were generally the same in summer 
and winter (Fig. 5c–e). 

We analyzed inter-annual and spatial variability indices at the scale 
of the country of Argentina and at finer scales (ecoregions, provinces, 
and their intersection). We did not perform a grain size scale analysis 
because our inter-annual variability indices are limited to 1-km and 250- 
m resolution. Similarly, in our analysis of spatial variability we also did 
not test grain size scales by changing the moving window size (30-m 
resolution summarized in 330-m windows) because first-order texture 
measures, such as standard deviation, are highly correlated from 3x3 to 
101 × 101 pixels (Culbert et al., 2012; St-Louis et al., 2006). However, 
phenological and seasonal metrics, and image textures calculated from 
higher spatial resolution images may provide better characterization of 
the spatio-temporal patterns of vegetation greenness and land surface 
temperature. To interpret our results in greater detail, we intersected 
boundaries of ecoregions and provinces to identify hotspots of high 
conservation and low conservation concern (Tables S5, S6). Because our 
analysis are in the same spatial grain, the only differences we found are 
in the result’s interpretation. 

4.2. Conservation and management implications 

The hotspots of biodiversity conservation concern provide important 
information for conservation prioritization. For example, in areas where 
land use plans are mandated in Argentina, such as forests (Argentina 
National Forest Law N◦ 26,331), making strategic adjustments to 
existing land use zones can enhance biodiversity conservation (Marti-
nuzzi et al., 2018). Argentina currently protects less than 9% of its 
terrestrial land area (UNEP-WCMC, 2020), which means it would need 
to almost double the size of its current protected area estate to meet 
international targets set by the Convention on Biological Diversity (17% 
of terrestrial and inland water areas). Our approach of integrating 
spatio-temporal indices of vegetation greenness and land surface tem-
perature allowed us to identify regions where the conservation concerns 
due to phenological and seasonal variability are high or low. 

Areas of low conservation concern are those where inter-annual 
variability is low, and spatial variability is high, which means that the 
likelihood of mismatches between species and resources is lower and 
resilience against high inter-annual variability is higher. Such regions 
are located in the forests of northwest and central-west Argentina, 
encompassing the Southern Andean Yungas, Patagonian forests, Puna, 
High Monte and a small part of the Patagonian steppe ecoregions 
(Fig. 7a) and provinces of Jujuy, Neuquén, Tucumán, Catamarca and Rio 
Negro (Fig. 7b). These areas have enhanced resilience to both pheno-
logical and seasonal variability and may be important areas for biodi-
versity conservation (Kerr and Packer, 1997). Adding protected areas in 
these regions may be effective ways of both protecting current patterns 
of biodiversity and maintaining the adaptive capacity to climate change 
(Lawler et al., 2015; Tingley et al., 2014). Argentina created most of the 
National Parks for purposes other than conservation of biodiversity. For 
example, some Parks were established at the border with other countries 
for geopolitical reasons, and many showcase unique landscapes with an 
emphasis on tourism (Vejsbjerg et al., 2014). Further, many of Argen-
tina’s natural ecosystems are not well represented by the protected area 
system (Martin and Chehébar, 2001; Rosas et al., 2017; Rosas et al., 
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2019). 
The hotspots of low conservation concern in northwest and central- 

west Argentina are classified as medium level of human influence (Liz-
árraga and Monguillot, 2020) and 26% of these areas are under pro-
tection (UNEP-WCMC and IUCN, 2020). In addition, 36%, 58% and 6% 
of the forests of northwest and central-west Argentina within our low- 
conservation concern hotspots areas are classified into Zones I (high 
conservation value forests), Zone II (medium conservation value forest) 
and Zone III (low conservation values forests), respectively, according to 
Argentina’s National Forest Plan (Fig S9). Zone I includes forests critical 
for biodiversity and ecosystem services provisioning, in which only 
tourism, scientific research, and the gathering of non-timber products 
are allowed. However, Zone II allows productive activities such as 
grazing, silvopasture and sustainable harvesting of timber and non-
timber products and Zone III include forests that can be converted to 
other land uses such as agriculture, pastures, or timber plantations. To 
improve biodiversity conservation in Argentina, forests classified as 
Zone II and III, that we classified as low conservation concern, should be 
included in Zone I given their high potential conservation value. 

In contrast the areas of highest conservation concern are in the 
northeastern region, predominant in the Humid Chaco, Espinal, Ibera 
marshes, Mesopotamian savanna and Parana flooded savanna ecor-
egions (Fig. 7a) and in Corrientes, Santa Fé and Entre Rios provinces 
(Fig. 7b). These areas include large wetlands, along with forests, grass-
lands, lakes, and marshes (Neiff, 2001). These ecosystems host high 
species richness – more than 450 plants species, 50 fish species, 40 
amphibian species, 50 reptile species, 350 bird species, and 70 mammal 
species (Ginzburg and Adámoli, 2006; Neiff, 2001). High inter-annual 
variability is likely to have negative effects for species dependent on 
the timing of key events linked to temperature and vegetation greenness 
as ecological cues (e.g., for reproduction or migration (e.g., for repro-
duction or migration). In addition, especially times of extreme temper-
atures in northeast Argentina may have a substantial negative impact on 
species if there are no thermal refugia, which is why high inter-annual 
variability integrated with low spatial variability is of high conserva-
tion concern. This is especially the case for species whose populations 
have already declined in association with land use change. For example, 
these areas in northeast Argentina harbor at least 22 globally threatened 
or near-threatened bird species that depend on grasslands, some in 
combination with adjacent wetlands (Azpiroz et al., 2012). Eliminating 
the existing pressures on wetlands (i.e., dam construction, land use 
change, drainage, etc.; Sica et al., 2018) and improving spatial vari-
ability by increasing the abundance and diversity of natural landcover in 
this highly modified region are promising approaches to mitigate the 
adverse effects of high phenological variability on biodiversity. 

The northeastern region has been categorized as of conservation 
concern (Ferrer-Paris et al., 2019). Most of the vegetation types are 
highly degraded by human activities such as agriculture and cattle 
grazing, and these areas are classified under low, medium and high level 
of human influence, with protected areas around 10% (Lizárraga and 
Monguillot, 2020; UNEP-WCMC and IUCN, 2020). Key actions to pro-
mote higher spatial variability include increasing the protection of the 
remaining refugia habitats, restoring natural vegetation where possible, 
expanding protected areas with high spatial variability to maintain 
structural complexity, and connecting refugia with corridors to reduce 
barriers to movement (Braatz, 2012; Galatowitsch et al., 2009). For 
wetlands specifically, conservation actions should also include main-
taining connectivity between the wetland and open water sources to 
improve water quality and food resources, restoring complex channel 
networks to provide habitat spatial variability, and improving landscape 
permeability and connectivity through native plant and stream resto-
ration (Beller et al., 2019). All of these strategies bolster the resilience of 
habitats by helping species adapt to changing climate conditions. 

We also identified regions of medium conservation concern where 
there is something of a balance between the threat of inter-annual 
variability and enhanced resilience from spatial variability, because 

both are either high or low (Fig. 6; see also Table 1). While the threat 
from high inter-annual variability may be offset by the higher resilience 
due to high spatial variability, and, similarly, low spatial variability may 
be offset by low inter-annual variability, it is not always clear which 
factor takes precedence for a given species. For example, species adapted 
to inter-annual variability are often also more resilient to habitat loss 
because they are better adapted to cope with the changing thermal 
environment resulting from physical changes to the landscape (Balm-
ford, 1996; Srinivasan et al., 2019). Similarly, species adapted to low-
land habitats characterized by low spatial variability in land surface 
temperatures may be highly threatened by changes in mean tempera-
ture, even if temperature seasonality patterns remain relatively stable 
over time (Colwell et al., 2008). Consequently, some regions that we 
categorized as having medium conservation concern may still warrant 
some conservation actions. However, regions characterized as having 
high inter-annual variability and low spatial variability likely are those 
that require the most urgent conservation attention. 

4.3. Caveats and considerations 

To develop our inter-annual variability indices, we focused on 
vegetation greenness and land surface temperature time series derived 
from MOD13Q1-Collection 6 (250-m resolution) and MOD11A2- 
Collection 6 (1-km resolution). We then derived phenology and sea-
sonality metrics and computed their coefficient of variation among 
years. In doing so, we made the inherent assumption that the phenology 
of vegetation greenness is related to vegetation phenology, but we 
caution that the two are by no means identical. Numerous approaches 
based on MODIS products have been used to derive phenology metrics 
that are proxies of plant phenology at regional and global scales 
(Ganguly et al., 2010; Liu et al., 2016; Wu et al., 2014). However, while 
MODIS data clearly capture general phenological patterns of greenness 
across landscapes, species interactions sensitive to phenology occur at 
much finer spatial scales than are observable from MODIS and thus 
timing and magnitude should be viewed as approximations, and 
different from actual plant phenology (Zhang et al., 2017). Conse-
quently, our results should be used to understand broad phenology 
patterns of vegetation greenness, and do not depict the fine- scale as-
pects of vegetation phenology (e.g., the timing of bud-burst, or flower-
ing, in tree species with inconspicuous flowers), and other aspects of 
vegetation phenology for which the resolution for MODIS pixels is too 
coarse. 

Furthermore, remote sensing derived phenology metrics should not 
be interpreted in the same way as field-based observations of vegetation 
phenology. Vegetation indices derived from remotely sensed images 
measure vegetation greenness at the pixel level and do not directly re-
cord specific phenological events (Atkinson et al., 2012), which is a 
common limitation of phenology studies based on remotely-sensed data 
(de Beurs and Henebry, 2005, 2010). For example, the phenology of 
vegetation greenness of evergreen forests is more challenging to mea-
sure than that of deciduous forests because absolute changes in green-
ness are smaller, which means there is likely some degree of bias in the 
seasonality metrics between forest types (Zeng et al., 2020). Some bias 
can also be introduced due to vegetation changes caused by diseases or 
plant stress (Vina et al., 2004) or by specific grazing and agricultural 
practices (Hall-Beyer, 2003; Wardlow et al., 2006). Lastly, the statistical 
methods to determine the start and end of the growing season also have 
limitations, and linking remotely sensed observations with field 
collected data is one of the major challenges inherent in remotely-sensed 
phenology studies (de Beurs and Henebry, 2004). 

Despite these limitations though, satellite data are the only data 
source that can map phenology of greenness consistently for large areas, 
and our results establish a novel approach to assess the threat from 
phenological variability for larger regions. That makes them valuable for 
informing conservation and management action, in our case for 
Argentina. 
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5. Conclusion 

Remotely sensed data provide a great opportunity to generate indices 
that capture the inter-annual and spatial variability of vegetation 
greenness and land surface temperature that can be analysed jointly to 
efficiently determine hotspots of high threat from, and with enhanced 
resilience to phenological and seasonal variability. Management actions 
can be targeted in order to reduce the threat, or strengthen the resilience 
of ecosystems in order to minimize biodiversity loss. The hotspots of 
high conservation concern that we mapped represent areas where 
increasing spatial variability in vegetation greenness and land surface 
temperature could have large conservation benefits, and where spatial 
variability is high already, we suggest that protection should strongly be 
considered in order to maintain the natural biodiversity heritage of 
Argentina. The remotely sensed indices we developed for Argentina are 
freely available at http://silvis.forest.wisc.edu/data/inter-annual-spatia 
l-variability-indices. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2021.112368. 
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González-Braojos, S., Sanz, J.J., Moreno, J., 2017. Decline of a montane Mediterranean 
pied flycatcher Ficedula hypoleuca population in relation to climate. J. Avian Biol. 48, 
1383–1393. https://doi.org/10.1111/jav.01405. 

Gray, M., 2008. Geodiversity: developing the paradigm. Proc. Geol. Assoc. 119, 287–298. 
https://doi.org/10.1016/S0016-7878(08)80307-0. 

Hall-Beyer, M., 2003. Comparison of single-year and multiyear NDVI time series 
principal components in cold temperate biomes. IEEE Trans. Geosci. Remote Sens. 
41, 2568–2574. https://doi.org/10.1109/TGRS.2003.817274. 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., 
Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., 
Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 
21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/ 
science.1244693. 

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image 
classification. IEEE Trans. Syst. Man Cybern. 3, 610–621. 

Harrington, R., Woiwod, I., Sparks, T., 1999. Climate change and trophic interactions. 
Tree 14, 146–150. 
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