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Abstract

The niche-based argument that species are filtered from environments in which they cannot sustain viable populations is the
basis of the Richness-Heterogeneity Relationship (RHR). However, the multi-dimensionality of niches suggests that the RHR
may take different shapes along different environmental axes, with potential confounding effects if filtering along the axes is
not equally strong. Here, we explore how different structural and landscape variables drive the RHR as the accumulative out-
come of environmental preferences at the species-level while considering the intercorrelation between heterogeneity levels
along three niche axes. We used occurrence data of avifauna from 226 sites situated along a grassland-to-woodland gradient in
a Midwestern USA study area. In each site, we quantified horizontal (habitat cover type), vertical (vegetation height structure),
and spatial (habitat configuration) heterogeneity and explored the shape of the observed RHR at the landscape scale, as well as
the correlations among heterogeneity levels at different axes. We then fitted species distribution models to environmental varia-
bles from the three axes separately and compared the stacked probabilities of occurrences of all species to the observed species
richness. We found that predictions of richness patterns improved when more than one heterogeneity axis was included in
RHR models, and that habitat suitability along different axes is not equally strong. Furthermore, a unimodal RHR along the
vegetation height axis, which the species distribution models revealed to be a weak predictor for most species, may arise
through intercorrelation with heterogeneity along the two other axes, along which we recorded stronger signals of environmen-
tal preference at the species level. Our results emphasize the importance of selecting relevant niche axes in studies of species
richness patterns because ultimately, these patterns reflect the various environmental preferences of individual species.
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Introduction

Environmental heterogeneity is a fundamental ecological
pattern that plays a role in many ecological processes (Grin-
nell, 1917; Hutchinson, 1957). Along with area and
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isolation, environmental heterogeneity is amongst the most
influential drivers of species richness (Rosenzweig, 1995).
Environmental heterogeneity can promote species coexis-
tence in space (Chesson, 2000a) and time (Chesson, 1994)
and has inherent effects on species co-occurrence patterns
(Bar-Massada, 2015b; Heino, 2013). In addition, it affects
the relative role of niche vs. dispersal assembly processes in
generating ecological communities (Bar-Massada et al.,
2014). Environmental heterogeneity plays a role in these
phenomena because variation in environmental conditions
across space (and time) enables species with different eco-
logical requirements to establish and persist in sites (or peri-
ods) where (or when) they have distinctive advantages over
heterospecifics (Chesson, 1994, 2000b; Hutchinson, 1957).
In the absence of other processes, aggregating species-level
occurrence in sites where required habitat elements exist
gives rise to richness patterns at the community level.

Both empirical and theoretical studies suggest that the
relationship between species richness and environmental
heterogeneity (the richness � heterogeneity relationship,
RHR hereafter) may take multiple shapes (Allouche et al.,
2012; Ben-Hur & Kadmon, 2020), including positive-mono-
tonic (Bar-Massada & Wood, 2014; Stein et al., 2014),
unimodal (Bar-Massada, 2015a; Bar-Massada &
Wood, 2014; Chocron et al., 2015), and even negative-
monotonic curves (Ben-Hur & Kadmon, 2020; Gazol et al.,
2013; Laanisto et al., 2013). Positive RHRs are the manifes-
tation of niche-based environmental filtering
(Allouche et al., 2012), the process by which species arriv-
ing from the regional species pool can only establish in a
locale if their niche preferences correspond with the biotic
and abiotic conditions in the site (whereas species whose
preferences do not fit are ‘filtered out’). The positive RHR is
driven by environmental filtering because an increase in het-
erogeneity leads to more habitat types, which can support
more species with specific habitat requirements (Hutchin-
son, 1957). Negative RHRs may arise if the increase in habi-
tat heterogeneity occurs over a restricted and finite area,
thereby making the amount of area covered by each combi-
nation of habitat conditions too small to support viable pop-
ulations of specialist species (Flather & Bevers, 2002), thus
increasing their likelihood of stochastic extinction (Kadmon
& Allouche, 2007). Unimodal RHRs may arise if the range
of heterogeneity covered is wide enough (i.e., from nearly
homogenous environments to highly heterogeneous envi-
ronments) to include both the positive RHR at relatively low
heterogeneity values and the negative RHR that occurs at
high heterogeneity (Allouche et al., 2012; Kadmon &
Allouche, 2007). We note, however, that the particular shape
of the RHR is not indicative of the strength of environmental
filtering (or any other mechanism) as a species-selection pro-
cess, as all shapes may arise under either strong or weak fil-
tering, which is likely due to other processes unrelated to
environmental filtering, such as area limitation
(Chocron et al., 2015), spatial scale (Stein et al., 2014) or
even fine-scale habitat fragmentation (Laanisto et al., 2013;
Tamme et al., 2010). If the negative RHR is related to area
limitation, species must be first sorted into the habitat by an
environmental filter and then become stochastically extinct
due to area limitation (Kadmon & Allouche, 2007).

In addition to habitat filtering, the RHR is affected by any
ecological process or methodological decision that alters our
estimation of either richness and/or heterogeneity. In terms
of ecological processes, for example, species richness is
affected by species dispersal abilities (Bar-Massada, 2015a),
interspecific biotic interactions (Bertness & Callaway, 1994),
and ecological drift (Hubbell, 2001). Regarding methodo-
logical decisions, measures of environmental heterogeneity
differ according to the variable type (categorical vs. continu-
ous), the hierarchical level of the analysis (i.e., within habi-
tats or across habitats), and the grain and extent of the
spatial and temporal scales (Costanza et al., 2011; Li &
Wu, 2004). Finally, environmental heterogeneity may be
quantified for different habitat characteristics, such as eleva-
tion (Schmitz et al., 2002); food resources (Gazol et al.,
2013); or woody cover (Ovalle et al., 2006).

On top of the ecological processes mentioned above, the
multi-dimensionality of niches suggests that even within a sin-
gle community and study system, the RHR may take different
shapes along different environmental axes (Bar-Massada &
Wood, 2014). In fact, in the absence of other ecological pro-
cesses, the RHR results from the accumulation of many spe-
cies-level environmental filtering processes (Kadmon &
Allouche, 2007), potentially along multiple environmental
axes.

Under the environmental filtering mechanism, if a species
passes the filter of a given environmental axis, we expect its
distribution to reflect that filtering, especially when biotic
interactions or dispersal limitation have a relatively weak
effect on its distributional patterns (Pottier et al., 2013). In
such cases, and from a methodological standpoint, we would
expect high predictive ability of Species Distribution Mod-
els (SDM) based on variables that together reflect and cap-
ture the heterogeneity along the given environmental axis
(e.g., the cover of various habitat types reflecting habitat het-
erogeneity). We further expect that if an environmental axis
is essential to many species, stacking the predicted likeli-
hood of occurrence from their respective SDMs would pro-
vide an accurate and unbiased estimate of local species
richness (Guillera-Arroita, 2017) (Fig. 1A). Alternatively, if
environmental filtering along a specific axis is a weak pro-
cess for a focal species (i.e., its ability to establish and persist
in a site is unrelated to the site’s condition along this niche
axis), we expect its distribution pattern to deviate from this
axis (and in practice, we expect the SDM to have relatively
lower predictive ability). Furthermore, if this axis is a weak
filter for most species, the stacked likelihood of occurrence
would not provide an accurate and unbiased estimate of
local species richness. A weak agreement between the
stacked likelihood of occurrence of many species and local
species richness may also emerge if other processes besides
environmental filtering affect species presence in a local



Fig. 1. A schematic representation of potential relationships between actual species richness, expected species richness (summed suitability),
and environmental heterogeneity under different community assembly scenarios. Each trapezoid depicts a simple representation of a land-
scape, with shades of gray showing the values of an arbitrary environmental variable that acts as an environmental filter. Box colors depict
species’ environmental preferences. For simplicity, assume that all species are specialists that can only establish in a single habitat type, that
there is no dispersal limitation, and that each sub-habitat type is small, so it can only support a viable population of a single species. In panel
(A), species richness is related to environmental heterogeneity solely through environmental filtering. Consequently, actual richness and
summed suitability are expected to correspond perfectly. In panel (B), pre- and post-establishment interaction processes among species also
affect species richness. In this scenario, expected species richness based solely on species-level niche requirements in the absence of interspe-
cific interactions is higher than actual richness. In panel (C), one species with unsuitable niche requirements can establish and persist due to
facilitative processes. Hence actual species richness is higher than expected.
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community, leading to either underestimation (e.g., due to
dispersal limitation, predation, competition, Fig. 1B) or
overestimation (e.g., due to rescue effects, mass effects,
facilitation, Fig. 1C) of richness.

Finally, the shape of the RHR along a given niche axis
may also indicate correlations among environmental varia-
bles whose role as environmental filters varies. For example,
assume variable A is a strong environmental filter for many
species and that species richness is positively related to its
heterogeneity. In contrast, variable B is a weak filter for
most species, but its heterogeneity value is negatively corre-
lated with variable A. The RHR for variable B will be nega-
tive monotonic, not because of the ecological mechanism of
limited area per species, but simply because of the statistical
relationship between A and B and the strong response of
many species to A. This possibility, which has been mostly
ignored in the literature, highlights the need to analyze mul-
tiple niche axes and their interrelations in studies that aim to
explain the RHR. This can be achieved by analyzing the
effect of each environmental variable on the RHR indepen-
dently while also considering the effects of different varia-
bles on species richness, environmental heterogeneity, and
the RHR simultaneously. Our objective here was to explore
how different environmental variables that capture structural
and habitat features in a landscape in central Wisconsin
(including vegetation height, habitat cover, and habitat con-
figuration; and subsequently, their heterogeneity) drive
avian species richness patterns and the RHR. Specifically,
we wanted to test if richness patterns and the RHR reflect
the accumulative outcome of species-level habitat preferen-
ces along multiple axes (with habitat preference serving as a
proxy for environmental filtering at the individual species
level), which are captured by species distribution models (or
habitat suitability models); and to analyze the RHRs that
emerge from the predictions of these models.
Materials and methods

Study area and surveys of the avian community

We conducted the study in Fort McCoy, southwestern
Wisconsin, USA, an active military installation covering
24,281 ha (Fig. 2). The installation is located within the
Driftless Area, an unglaciated region of Wisconsin, Illinois,
Iowa, and Minnesota, that harbors diverse habitat types,



Fig. 2. Locations of sampling sites (black circles) on the classified aerial image of the study area (10 m cell size). The inset shows an example
of morphological spatial pattern analysis (MSPA) for a small subset of the image (black square in the main image), with colors representing
MSPA classes. For visual simplicity, the colors of the bridge and loop sub-categories were merged. A full description of MSPA classes
appears in: https://forest.jrc.ec.europa.eu/en/activities/lpa/mspa/. The color version of this figure appears in the online article.
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including sparsely vegetated forb and grass-dominated grass-
lands, oak-dominated (Quercus spp.) savannas and wood-
lands, and mixed hardwood forests. These habitat types at
Fort McCoy vary strongly in both structural and plant spe-
cies composition and thus harbor distinct bird assemblages.

We conducted field surveys of the avian community from
2007 to 2009, encompassing the breeding period of the
majority of diurnally active landbirds in the study area.
These surveys included 226 sites, in a stratified random
design within the three dominant habitat types (grassland,
oak savanna, oak woodland), and separated by at least
300 m. At each site, trained observers conducted a five-min-
ute point count, during which all birds seen or heard were
recorded (Hutto et al., 1986; Ralph et al., 1995). Observers

https://forest.jrc.ec.europa.eu/en/activities/lpa/mspa/
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estimated the distance to each detected bird using laser ran-
gefinders, and we truncated detections at 100 m. Sites were
visited four times in 2007 and 2008 and three times in 2009.
From the count data, we generated a presence/absence matrix
by pooling data from all visits. We treat the data as presence/
absence since each site was visited eleven times, and we have
found no evidence of increasing species accumulation during
our study period (Wood et al., 2013). Further, habitat condi-
tions, including vegetation cover and plant composition at sites,
remained relatively stable across years as there were no major
disturbances during the three-year study.

Niche axis 1 - horizontal habitat structure

At each site, we recorded the percent cover of 22 horizon-
tal cover variables (e.g., % cover of hardwood, Table A.1)
in five circular subplots of 5 m radius, located at the center
and four corners of each site (i.e., 100 m from its center in
the cardinal directions), following established breeding bird
surveying protocols (Bar-Massada & Wood, 2014;
Martin et al., 1997). We used these percent cover variables
as the explanatory variables in the horizontal-variables
SDMs (see below) and calculated the Shannon diversity of
the 22 cover types as a measure of horizontal heterogeneity.
This measure for land cover diversity is similar to classic met-
rics for animal species diversity (e.g., MacArthur & MacAr-
thur, 1961), but with the relative abundance of different species
replaced by the proportional cover of different land cover types.
We omitted from all horizontal analyses four sites with
extremely low heterogeneity values (2.5 standard deviations
below the mean). All of these sites were located in grasslands.
Yet, species richness in them did not differ significantly from
the average species richness in the other 47 grassland sites,
which we retained for subsequent analyses.

Axis 2 - Vertical habitat structure

We collected data on vertical vegetation structure at each
site at 16 points, four in each of the four corner subplots
described in the previous section. At each point, we divided
the vertical axis into 55 sections of 30 cm each and recorded
the number of times any plant (regardless of individual iden-
tity) hit our measuring pole within each section, using a
12 m telescopic pole or estimated with rangefinders for sec-
tions higher than 12 m. We then summed the number of hits
from all 16 points and used the 55 vertical height sections as
explanatory variables in the vertical-variables SDMs. Next,
we calculated the Shannon diversity index of these 55 varia-
bles as our measure of vertical heterogeneity (MacArthur &
MacArthur, 1961; more details are in Wood et al., 2012).
Axis 3 - Spatial configuration of the habitat

Spatial variables and their corresponding heterogeneity
characterize the habitat configuration of woody and non-
woody vegetation in a 100 m radius around each site. We
acquired a 1 m resolution color orthophoto of the study area
taken in summer 2008 and used a supervised classification
model to separate woody (“1”) from non-woody (“0”) vege-
tation (Fig. 2). We performed image classification using the
maximum likelihood method and conducted all GIS analy-
ses in ArcGIS 10.2. We calculated the percent cover of
woody vegetation within a 100 m buffer around each site
based on classification results. In general, the woody cover
amount increases along a continuum among the three main
habitat types in the study area (grasslands, savannas, and
woodlands, Fig. 2).

Next, we resampled the binary map to 10 m resolution
using a majority filter. Then we used Morphological Spatial
Pattern Analysis (MSPA), implemented in GuidosToolbox
2.9 (https://forest.jrc.ec.europa.eu/en/activities/lpa/gtb/; last
accessed 21/7/2021), to identify different spatial context
units in the binary habitat map (Vogt et al., 2007). MSPA
assigns each “1” cell to one of 11 landscape structural cate-
gories (core, edge, perforation, bridge, bridge in edge, bridge
in perforation, loop, loop in edge, loop in perforation, islet,
and branch; see details in: https://forest.jrc.ec.europa.eu/en/
activities/lpa/mspa/; last accessed 21/7/2021) while setting
all “0” cells as background. Given that bird species in the
study area might view either woody or non-woody cells as
preferred habitat, running MSPA only on one habitat type
(woodland or non-woodland) does not provide insight into
the spatial pattern of the other class. We, therefore, gener-
ated two different MSPA maps, once with the woody habi-
tats as “1” and the other with the non-woody habitats as “1”.
The two maps are complementary but different, with the “0”
of one map assigned to the other map's eleven “1” catego-
ries. We combined the two maps to create a single map with
22 categories (Fig. 2 inset). We used the percent cover of
each category in the 100 m buffer around each site as the
explanatory spatial variables in the SDM. We calculated
Shannon’s diversity index of the percent cover of each
MSPA category as our spatial heterogeneity measure. Fus-
ing the two MSPA maps ensured spatial heterogeneity
peaked at savanna habitat (i.e., sparse trees in a grass/forb
matrix, Fig. A.1), where both tree-and grassland�affiliated
species may find appropriate habitats (Wood et al., 2011).
Empirical estimation of models of RHR

At this stage, we had a set of explanatory variables that we
could use to explore habitat preference at the species level (see
next section) and a heterogeneity measure summarizing them to
explore the RHR for each of the three niche axes. First, we
quantified the relationships among all possible pairs of the three
heterogeneity measures (horizontal heterogeneity, vertical het-
erogeneity, and spatial heterogeneity) using linear regression
models with and without quadratic terms. Next, we quantified
the RHR by fitting linear regressions with the observed species
richness as the dependent variable and one of the three

https://forest.jrc.ec.europa.eu/en/activities/lpa/gtb/
https://forest.jrc.ec.europa.eu/en/activities/lpa/mspa/
https://forest.jrc.ec.europa.eu/en/activities/lpa/mspa/
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heterogeneity measures as the predictor variable. We fit models
using least-squares and built two models per heterogeneity vari-
able: first with a linear term only and second with linear and
quadratic terms to capture either the monotonic linear effect or a
unimodal effect in the RHR expected by current ecological the-
ory (Bar-Massada & Wood, 2014). In addition, we fit a model
containing all three heterogeneity measures as predictors, with
or without quadratic terms, to explore the benefit of accounting
for multiple niche axes in the prediction of species richness. We
compared the explained variances of the models adjusted for
multiple predictors (adjusted R2) and their information content
using Akaike’s Information Criterion (AIC). Finally, we evalu-
ated if models violated the assumption of independence via spa-
tial-autocorrelation by visually inspecting the semi-variograms
of model residuals and found no evidence for spatial-autocorre-
lation. We fit all models using R (R Core Team, 2013), gener-
ated the figures using the R package ggplot2 (Wickham, 2016),
and generated semi-variograms using the R package gstat
(Gr€aler et al., 2016).
Estimation of environmental suitability at the
species level

To assess the role of environmental preference at the indi-
vidual species level on the richness patterns at the commu-
nity level, we fitted SDMs using the random-forest
algorithm (Breiman, 2001), implemented in the R package
sdm (Naimi & Ara�ujo, 2016). In doing so, we made an
implicit assumption that SDMs can provide a proxy for the
outcome of environmental filtering, as manifested by envi-
ronmental preference. This assumption might break down in
cases where the spatial distribution of a species reflects other
processes besides filtering, including interspecific interac-
tions, dispersal limitations and barriers, and demographic
stochasticity. Nevertheless, we suggest that in our study sys-
tem, these processes are less likely to considerably alter the
distribution of any given species due to the lack of dispersal
barriers and the large number of sample sites in each habitat
type (grasslands, woodlands, and savannas), which increases
the likelihood of the successful estimation of species-envi-
ronment relationship even if interspecific interactions affect
occurrence in some sites (Sober�on, 2007). We restricted our
analyses to 49 bird species (Table A.2; out of 71 bird species
detected) that were present in ten sites or more
(Hernandez et al., 2006), which occurred, on average, in
49.08 sites (range 10-146). We used the SDM procedure
outlined below with three different variable sets per species;
the 22 horizontal habitat cover variables, the 22 spatial con-
figuration variables, and the 55 vertical vegetation structure
variables. In a single SDM procedure, we first divided the
sites into ten cross-validation sets, ensuring they all have
similar relative proportions of presences and absences. Next,
we fitted a random-forest model on nine of the cross-valida-
tion sets and made predictions for the set-aside one. After
fitting ten random-forest models, one for each cross-valida-
tion set, we assembled the predicted value for all sites, thus
ensuring all our predicted values were based on set-aside
sets that were not included in model training. We took the
mean predicted value from the ten models per variable set as
the habitat preference value and the mean area under the
curve (AUC) of the receiver operator curve (ROC) over the
ten runs as the model performance index.

We compared AUC values of the three axes for each spe-
cies to explore if one of the environmental axes was consis-
tently better at predicting species distribution patterns and,
therefore, may signal a stronger filter for more species.
Next, in each sampling site, we summed the suitability value
of all species to yield the expected species richness values
along each axis and compared the expected values to the
actual species richness. When stacking species, we only
took the subset of species with AUC > 0.6, thus minimizing
the effect of statistical bias due to low predictive ability of
the suitability models (by omitting species with low AUC
we distilled the relationship between environmental filtering
and the RHR because we only retained those species who
responded to the three niche axes we accounted for). There-
fore, the list of species we explored in each axis (for both
observed and expected richness) differed slightly. If envi-
ronmental filtering is the dominant mechanism behind the
RHR along an axis, and the confounding factors highlighted
at the beginning of this section are weak, then expected spe-
cies richness should correspond well with actual species
richness. We, therefore, fitted a linear regression model of
the actual species richness against the expected richness
(Pi~neiro et al., 2008) and compared the slope and intercept
to a unit slope and zero intercept, respectively. Furthermore,
if a low correlation between observed and expected richness
is due to poor predictive abilities of the SDMs, then we
would not expect the difference between observed and
expected richness to vary consistently along the values of
the heterogeneity axis (i.e., the deviation between observed
and expected richness will not depend on environmental het-
erogeneity). To explore this, we calculated the difference
between expected and actual species richness and quantified
its relationship with habitat heterogeneity (of the corre-
sponding niche axis) using a linear regression model. We
also included terms for percent woody cover and the interac-
tion between heterogeneity and woody cover in the model to
account for a potential confounding effect of habitat type
(grassland, savanna, or woodland) on the relationship.
Results

The richness-heterogeneity relationships along the
three axes

Horizontal heterogeneity had a significant unimodal qua-
dratic relationship with vertical heterogeneity (linear effect:
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0.8§0.07, p < 0.001, quadratic effect: -0.24§0.02, p <

0.001, adjusted R2: 0.37; Fig. 3A), and a significant positive
relationship with spatial heterogeneity (effect: 0.23§0.02, p
< 0.001, adjusted R2: 0.34; Fig. 3B). Spatial heterogeneity
had a significant quadratic relationship with vertical hetero-
geneity (linear effect: 2.24§0.17, p < 0.001, quadratic
effect: -0.62§0.05, p < 0.001, adjusted R2: 0.44; Fig. 3C).

All three heterogeneity measures and their combination
were significantly associated with avian species richness
(Table A.3). Individual heterogeneity axes explained
(adjusted R2) between 33% (horizontal and vertical hetero-
geneity) and 44% (spatial heterogeneity) of the variation in
species richness, while the model combining all three varia-
bles explained 49% of the variation in avian species richness
(Table A.3). Also, the model with all variables had the low-
est AIC (1009.16), compared to the spatial, vertical, and hor-
izontal heterogeneity models (1046.81, 1053.72, and
1066.81, respectively). Yet, the nature of the richness-het-
erogeneity relationships differed markedly among the three
axes. Horizontal heterogeneity had a significant positive
effect on species richness (linear effect: 7.07§0.71, p <

0.001, adjusted R2: 0.33; its unimodal term was non-signifi-
cant; species richness increased monotonically with increas-
ing horizontal heterogeneity) (Fig. 4A), while vertical
heterogeneity (linear effect: 8.77§0.86, p < 0.001, qua-
dratic effect: -2.49§0.25, p < 0.001, adjusted R2: 0.33) and
spatial heterogeneity (linear effect: 8.07§0.93, p < 0.001,
quadratic effect: -2.35§0.41, p < 0.001, adjusted R2: 0.44)
had significant unimodal effects on avian richness (Fig. 4B
and 4C, respectively, Table A.3) with inflection points at
global maxima located within the data range (i.e., species
richness increased at low-to-moderate heterogeneity levels,
then levelled off, and eventually decreased at high heteroge-
neity levels). However, there was a strong decline in rich-
ness at high vertical heterogeneity values. In contrast, only a
modest decline was observed for high values of spatial het-
erogeneity, as the curve's inflection point was closer to the
maximal value of heterogeneity.
Fig. 3. Relationships among the three heterogeneity variables.
Each panel depicts a different pair of heterogeneity variables. Point
colors represent the percent of woody cover (see also Fig. A.1).
Small segments on the top and right axes depict the density of data
points. The color version of this figure appears in the online article.
Relationships between summed suitability and
species richness

Across all three environmental variables (and their combi-
nation), the mean cross-validated AUC values of the ran-
dom-forest models of bird species richness was 0.77
(standard deviation 0.10), 0.75 (0.12), and 0.73 (0.13) for
the horizontal habitat cover variables, spatial configuration
variables, and vertical structure variables, respectively.
AUC values were generally higher with the horizontal varia-
bles than with spatial variables (Fig. A.2C), while the AUC
with the vertical variables was lowest (Fig. A.2B, A.2D).

We excluded three, seven, and eight species with
AUC<0.6 from the horizontal, spatial, and vertical hetero-
geneity analyses, respectively (Table A.2). After summing



Fig. 4. Top row: relationships between avian species richness and three habitat heterogeneity measures. Curves depict the linear (A) or qua-
dratic (B, C) fit of linear regression models (Table A.3). Panels (A) and (B) depict results that were reported in Bar-Massada and
Wood (2014), which we re-analyzed here. Middle row: relationships between actual species richness in sites and expected species richness
when stacking SDMs based on habitat cover type (D), vertical habitat structure (E), and spatial configuration (F). The solid line depicts a lin-
ear model fit to the data, whereas the dashed line depicts the 1:1 line. Deviations between the solid and dotted lines correspond with a weaker
effect of habitat preference at the species level on species richness at the landscape scale. Bottom row (G, H, I): relationships among the dif-
ference between actual and expected species richness and the corresponding heterogeneity measure. The solid lines are loess curves, while
dashed lines highlight the zero-difference line. Note that the figure column is aligned per the heterogeneity axis. Point colors depict the per-
cent of woody cover. The color version of this figure appears in the online article.
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in each site the predicted habitat suitability measures from
the random-forest models across the remaining species, their
relationship with actual species richness varied among
environmental axes (Fig. 4D, 4E, 4F). The relationship
between actual richness and expected richness did not differ
from 1:1 when stacking the horizontal habitat cover SDMs
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(slope = 1.02§0.08, intercept = -0.42§0.98) and only
slightly differed when stacking the spatial configuration var-
iables SDMs (slope = 0.91§0.06, intercept = 0.9§0.84).
The horizontal cover and spatial configuration models pre-
dicted 43.30% and 49.71% of the variation in actual species
richness, respectively (Fig. 4D, 4F). In contrast, stacked ver-
tical structure SDMs significantly differed from the unity
line (slope = 0.75§0.08, intercept = 2.41§1.00) and
explained just 26.15% of the variation in actual species rich-
ness (Fig. 4E).

In the stacked horizontal cover SDMs and spatial configu-
ration SDMs, the differences between expected and actual
species richness were not significantly affected by horizontal
heterogeneity and spatial heterogeneity, respectively
(Fig. 4G, 4I), nor by their interactions with the proportion of
woody cover. In contrast, for the stacked vertical structure
SDMs, the difference between expected and actual species
richness was significantly affected by woody cover and its
interaction with vertical heterogeneity (Fig. 4H; effect size
of woody cover = -5.21§2.28, p = 0.02; effect size of inter-
action between vertical heterogeneity and woody
cover = 2.72§0.87, p = 0.002; effect size of vertical hetero-
geneity is non-significant (p = 0.84)). An analysis of the
interaction reveals a strong overestimation of species rich-
ness in sampling plots with high woody cover (blue circles
in Fig. 4H). In contrast, in plots with low-to-intermediate
woody cover (orange and red circles in Fig. 4H), there was
better correspondence between expected and actual richness.
The sites in which over-estimation occurs are the same ones
that drive the unimodal relationship between species rich-
ness and vertical heterogeneity (Fig. 4B).
Discussion

General findings and caveats

In this study, we shed light on the role of environmental
preferences at the individual species level as an important
driver of the RHR of the avian community at a local scale.
Most empirical explorations of the RHR either focus on the
phenomenological shape of the relationship (Stein et al.,
2014) or partition the variance in species richness explained
by various heterogeneity axes (Chocron et al., 2015).
Although much can be learned from such approaches, here,
we adopted a bottom-up approach. Each species’ environ-
mental preference along each of the three axes was first
quantified using SDM, and the RHR is then explored as the
accumulation of species-level responses. While our
approach cannot quantify the relative importance of environ-
mental filtering versus other processes in driving species
richness, or allow for the direct quantification of filtering
existence or strength, it allows exploring if the cumulative
environmental preferences of multiple individual species are
a significant driver of the RHR. Since the SDMs were based
on variables that captured the horizontal composition,
vertical structure, and spatial configuration (or heterogene-
ity) of our study system, our approach also approximates the
relative role of environmental preferences across these envi-
ronmental axes. With that in mind, we found that different
axes of heterogeneity may be correlated in complex ways to
one another (Fig. 3). First, more than one heterogeneity axis
is needed to improve the predictions of richness patterns
(Table A.3). Second, the shape of the RHR varies among
axes (Fig. 4, A-C), and third, environmental preference
along different axes may not be equally strong (Fig. 4, D-I).
We caution that the approach we applied here might not be
suitable for all study settings, as it benefited from the unique
characteristics of our study area, which likely minimized the
effect of confounding factors on our results. These were lack
of dispersal barriers, similar climatic conditions across sites,
and strong species � environment relationships, which led
to moderately strong SDM performance across all niche
axes. Another caveat to our conclusions is that they are diffi-
cult to generalize because our analysis focused on one taxo-
nomic group in a single landscape. Finally, the general
notion about the difficulty of inferring ecological processes
from community patterns holds here as well: it is impossible
to directly deduce the strength or even the presence of envi-
ronmental filtering (or any assembly process) from empirical
community data (M€unkem€uller et al., 2020). Yet given the
specific characteristics of our study system (mentioned
above), it is likely that our results provide a reasonable
approximation to the differential effect of environmental fil-
tering across different niche axes on the RHR.
Environmental filtering across multiple niche axes

Species-specific niche preferences are the root causes of
environmental filtering. According to niche theory, each
species can survive and reproduce only under a restrictive
set of conditions. Thus, under environmental filtering
(Kraft et al., 2015), species would only be found in locations
where suitable conditions prevail. Of course, the environ-
ment may still affect species distribution patterns even in the
absence of environmental filtering through its effects on
population growth rates (Chesson, 2000a) or biotic interac-
tions (Bar-Massada & Belmaker, 2017; Chesson, 2000b;
Kraft et al., 2015). Thus, even under weak environmental fil-
tering, we expect species to be absent in locations where
unfavorable biotic and abiotic conditions prevail. Nonethe-
less, niches are multi-dimensional and species-specific,
implying that filtering may act differently along different
axes on different species in the community. Indeed, in our
study, we found that a combination of all three heterogeneity
variables increases the explanatory power of the richness-
heterogeneity model (Table A.3). Although the adjusted R2

increase was not substantial, it does highlight the benefit of
accounting for multiple niche axes in attempts to explain the
relationships between community patterns and
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environmental variables, in line with Hutchinson’s classic
prediction (Hutchinson, 1957).

In the case of the avian communities in our study area, the
results of the stacked SDMs suggest that both horizontal
habitat composition and the spatial configuration of the habi-
tat may act as stronger habitat filters compared to the vertical
composition of the habitat (Fig. 4, Fig. A.2). It seems rea-
sonable that horizontal habitat composition will act as a
stronger habitat filter than the habitat's vertical composition
because habitat composition represents the available sub-
habitat types (e.g., trees, shrubs, grass, or bare soil), which
many bird species tend to select, strongly, at the microsite
scale (Roth, 1976). The other variable which served as a
strong habitat filter, spatial configuration (based on MSPA
units), is likely informative because it reflects the spatial
context of habitat patches in the site and differentiates
among core woodland, woodland/grassland edge, and core
grassland. Bird species have specific affinities for resources
within habitats, which differ in their proportions across land-
scapes at different successional stages or disturbance histo-
ries (Imbeau et al., 2003; Pfeifer et al., 2017). In contrast,
vertical habitat composition, which we found to provide a
relatively weaker habitat filter, may only act as a strong filter
to woodland specialist species, playing a minor role in the
presence and absence of other species in the regional pool.

In general, the models of the RHR for the three heteroge-
neity axes had similar (and only moderate) explanatory
power (Table A.3). This suggests that other processes
besides environmental filtering per se affect the number of
bird species in these communities. Such processes include
species interactions and dispersal limitation, which are gen-
erally related to habitat conditions (Bar-Massada & Bel-
maker, 2017; Bertness & Callaway, 1994). The lack of a
strong signal of environmental filtering on the RHR is
aligned, to some degree, with the suggestion of recent studies
that environmental filtering has an overall weak role in struc-
turing communities (Cadotte & Tucker, 2017; Kraft et al.,
2015). Yet it is also likely that our findings were affected by
the local spatial scale of the analysis. Stronger RHRs are
expected to be found at relatively coarser spatial scales com-
pared to the local scale of our analysis (Chocron et al.,
2015). This is because at moderate spatial scales, the length
of the heterogeneity gradient will be greater (Chocron et al.,
2015), allowing for increased differentiation between habitat
types, thereby increasing the potential role of environmental
filtering in structuring the community. Hypothetically, the
signal of environmental filtering might be more pronounced
if analyzed at coarser scales because niche differentiation
(and habitat differences) will be greater at broader scales.
Yet, simultaneously, the role of dispersal limitation in struc-
turing meta-communities will also expand (Heino, 2011),
possibly obscuring the effect of filtering per se. Hence it will
be interesting to repeat our approach across a larger geo-
graphic area to see if our findings of the role of environmen-
tal filtering on the RHR are also expressed beyond the level
of a single meta-community in one landscape.
The various shapes of the RHR

When exploring the shape of the RHR curves in our
study, we found a unimodal curve for two niche axes: verti-
cal and spatial (Fig. 4B, 4C). For spatial configuration, the
expected number of species was similar to the actual number
of species (Fig. 4F), and the residuals were not dependent
upon spatial heterogeneity (Fig. 4I). Thus, we cannot rule
out an area effect (in which the RHR becomes negative at
high heterogeneity values) as predicted by the area-heteroge-
neity tradeoff hypothesis (Allouche et al., 2012). Yet the
most spatially heterogeneous sites (which portray a negative
relationship with richness) also have a low cover of core
habitat (either woody or non-woody) and high cover of edge
habitat; thus, bird species that cannot cope with edge-effects,
or those that require large core habitat may have avoided
such sites. Therefore, the unimodal RHR pattern we
observed is more likely to arise through habitat selection
instead of stochastic extinction as expected if the area effect
was strong (Chocron et al., 2015).

In contrast, for vertical heterogeneity, the higher part
(on the horizontal axis) of the RHR curve corresponds to
sites with high woody cover (i.e., woodland sites). These
are the exact sites in which, presumably, environmental
filtering along this axis was at its weakest, as summed
suitability across individual-species models predicted a
much larger number of species than the actual number of
species found in those sites (Fig. 4H). As these wood-
land sites are the least diverse in our study area in terms
of plant species richness (E.M. Wood, unpublished data),
it is expected that they will support a smaller number of
bird species (Rotenberry, 1985). Hence the gap between
expected and observed avian richness in woodland sites
may be driven by the composition of the plant commu-
nity, despite the high vertical diversity of those habitats
in terms of structure.

Alternatively, the analysis of the relationships between
different heterogeneity variables revealed that woodland
sites with high vertical heterogeneity are characterized
by low horizontal and spatial heterogeneity (Fig. 3), both
associated with low species richness (Fig. 4A, 4C).
Therefore, we propose that the ‘missing’ species in the
higher parts of the vertical RHR curve might be those
that could not establish because of missing horizontal
and/or spatial sub-habitat types. In other words, the
strong quadratic relationships between vertical heteroge-
neity and both horizontal and spatial heterogeneity sug-
gest that the RHR in the vertical niche axis is not driven
by strong environmental filtering, as predicted by the
AHTO. Instead, the unimodal curve is more likely to be
a statistical artifact that arises from the inter-relationships
among the heterogeneity measures of different environ-
mental axes. If filtering along the vertical axes were
stronger than filtering along the horizontal axes, we
would most likely observe a unimodal trend for the rich-
ness-horizontal heterogeneity curve.
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Conclusion

Our results suggest that the role of different ecological
processes in driving the RHR depends on the environmental
or niche axis to which most species in the community
respond. Given the plethora of observed types of this rela-
tionship across different taxa, scales, and regions
(Stein et al., 2014), what can we learn from our results that
will enable future studies to understand this relationship bet-
ter? We suggest that if the RHR is evaluated as a pattern
driven by a bottom-up process, ideally, the choice of the
environmental variable whose heterogeneity will serve as a
predictor of species richness should reflect a niche axis
known to affect species habitat selection in the first place.
We presented an approach to evaluate this congruence. Yet,
a single measure of environmental heterogeneity will likely
not suffice to adequately explain variation in species rich-
ness across space (and time). Curiously, most studies seem
to ignore the inherent relationship between environmental
heterogeneity and species’ niches and consequently rely on
single heterogeneity measures, ignoring variation in species’
environmental preferences and potential inter-relationships
among different environmental variables. Here, we highlight
the diverse effects of different environmental variables, their
heterogeneity, and the ecological processes that they trigger
on the richness patterns of avian communities and suggest
that future studies account for the many faces of environ-
mental heterogeneity when attempting to understand its
roles in driving ecological phenomena.
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