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Abstract

Human activities alter ecosystems everywhere, causing rapid biodiversity loss

and biotic homogenization. These losses necessitate coordinated conservation

actions guided by biodiversity and species distribution spatial data that cover

large areas yet have fine-enough resolution to be management-relevant

(i.e., ≤5 km). However, most biodiversity products are too coarse for manage-

ment or are only available for small areas. Furthermore, many maps generated

for biodiversity assessment and conservation do not explicitly quantify the

inherent tradeoff between resolution and accuracy when predicting biodiver-

sity patterns. Our goals were to generate predictive models of overall breeding

bird species richness and species richness of different guilds based on nine

functional or life-history-based traits across the conterminous United States at

three resolutions (0.5, 2.5, and 5 km) and quantify the tradeoff between resolu-

tion and accuracy and, hence, relevance for management of the resulting bio-

diversity maps. We summarized 18 years of North American Breeding Bird

Survey data (1992–2019) and modeled species richness using random forests,

including 66 predictor variables (describing climate, vegetation, geomorphol-

ogy, and anthropogenic conditions), 20 of which we newly derived. Among

the three spatial resolutions, the percentage variance explained ranged from

27% to 60% (median = 54%; mean = 57%) for overall species richness and 12%

to 87% (median = 61%; mean = 58%) for our different guilds. Overall species

richness and guild-specific species richness were best explained at 5-km resolu-

tion using �24 predictor variables based on percentage variance explained,

symmetric mean absolute percentage error, and root mean square error values.

However, our 2.5-km-resolution maps were almost as accurate and provided

more spatially detailed information, which is why we recommend them for

most management applications. Our results represent the first consistent,

occurrence-based, and nationwide maps of breeding bird richness with a thor-

ough accuracy assessment that are also spatially detailed enough to inform

local management decisions. More broadly, our findings highlight the impor-

tance of explicitly considering tradeoffs between resolution and accuracy to

create management-relevant biodiversity products for large areas.
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INTRODUCTION

Accurate biodiversity maps that cover large areas, are
consistent across various management units, and have a
fine resolution are essential for mitigating biodiversity
loss. In general, biodiversity maps can be derived from
species range maps, potential habitat maps, or species
distribution models that combine sample plot occurrence
data with predictor variables. Each of these approaches
has inherent benefits and disadvantages.

At global to continental scales, analyses of biodiver-
sity patterns are typically based on expert-drawn species
range maps from which species richness is derived, but
resulting data sets mischaracterize spatial patterns of rich-
ness at finer resolutions (e.g., <1�–2� or ≈100–200 km;
Hurlbert & Jetz, 2007). Such coarse-resolution maps can
provide broad perspectives about multitaxa diversity and
macroecological relationships (Burns et al., 2003; Grenyer
et al., 2006; Schipper et al., 2008). However, biodiversity
maps derived from species range maps are only reliable at
coarse resolutions, often diverge strongly from field sur-
veys, can have high spatial bias, contain no abundance
information, and have unknown accuracy (Cantú-
Salazar & Gaston, 2013; Graham & Hijmans, 2006; Hughes
et al., 2021). Furthermore, because species are not present
uniformly throughout their range, resulting richness maps
often misidentify biodiversity hotspots (Hurlbert &
Jetz, 2007; Peterson et al., 2018), which can lead to conser-
vation prioritization that is both biologically ineffective
and economically inefficient (Brown et al., 2015).

Maps of potential habitat provide an alternative to
assessing biodiversity because they can be derived at finer
resolutions (Brooks et al., 2019). For the United States,
the US Geological Survey (USGS) has generated
fine-scale maps of potential habitat for �1600 terrestrial
vertebrates at 30-m resolution (Gergely et al., 2019) by
identifying suitable habitat within national range maps
for each species. Similar maps at ≤1-km resolution exist
for forest species (Rosas, Peri, Lencinas, & Martinez
Pastur, 2019), mammals (Rondinini et al., 2011), insects
(Rosas, Peri, Carrara, et al., 2019), amphibians (Ficetola
et al., 2015), and threatened species (Xu et al., 2017), both
globally and for some countries. However, potential habi-
tat maps are limited in their management application
because of the difference between fundamental and real-
ized niches (Kearney, 2006; Kearney & Porter, 2004;
Pearman et al., 2008), which means that species typically

do not occupy all potential habitats. Furthermore, maps
of potential habitat have unknown and almost
impossible-to-quantify accuracy because errors in the
vegetation maps used to delineate habitat are difficult to
propagate into the resulting biodiversity maps. There is
also no independent so-called ground truth if an area
mapped as potential habitat is indeed suitable for a given
species unless it occurs there.

Predictive species distribution maps can be generated
over large areas at fine-enough resolutions for local man-
agement actions to advance resource planning capability
(Bateman et al., 2020; Jetz et al., 2012; Johnston et al.,
2021). The increase in remotely sensed environmental var-
iables relevant for conservation (He et al., 2015; Turner
et al., 2003), including indices designed explicitly for biodi-
versity and species distribution models (Hobi et al., 2017;
Wüest et al., 2020), and increases in publicly available
occurrence data sets both from agencies (e.g., breeding
bird survey) and volunteer geographic information
(e.g., eBIRD) make species distribution models increas-
ingly suitable for biodiversity assessments and conserva-
tion planning (Muscatello et al., 2020; Zurell et al., 2020).
The availability of fine-scale species and habitat data have
resulted in many species distribution models focused on
biodiversity conservation, including regional to global
maps (Hoskins et al., 2020; Tulloch et al., 2015; Wang
et al., 2021). These species distribution maps can provide
the fine-scale data necessary to identify areas critical for
species conservation, like NatureServe’s Map of Biodiver-
sity Importance. However, species-distribution-based maps
are subject to the same shortcomings as potential habitat
map and coarse species distribution maps without valida-
tion, namely, high error rates that can misdirect conserva-
tion and are rarely quantified (Guillera-Arroita et al., 2015;
Loiselle et al., 2003; Seo et al., 2009).

There are currently no biodiversity maps available for
the United States based on species distribution models
that are at fine resolutions, consistent over large areas,
and provide spatial accuracy assessments to support local
decision-making. Spatial accuracy assessments are criti-
cal because of tradeoffs between resolution and accuracy
when predicting biodiversity across large areas, so man-
agers need to decide which data sets best meet their
needs. The tools, methods, and data exist to generate
management-relevant, fine-scale biodiversity maps, but
there are gaps between published scientific products and
management needs, which is referred to as the science–
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management gap (Arlettaz et al., 2010; Cook et al., 2010;
Knight et al., 2008). Maps with well-specified accuracy,
that is, with accuracy assessments based on independent
validation data, and depicting spatial variability in pre-
diction accuracy, including the upper and lower bounds
of those predictions, are rare. Without maps demonstrat-
ing the reliability or uncertainty of biodiversity predic-
tions, conservation decisions will be inefficient at best
(Ladle & Hortal, 2013). Thus, the science–management
gap can be overcome by quantifying uncertainty because
land management and conservation can be based on con-
sistent and clearly validated maps (Rocchini et al., 2011).

In addition to consistent biodiversity maps with
well-specified accuracy, it is important to consider which
biodiversity metrics to map to further reduce the science–
management gap. The reason is that some of the biodi-
versity metrics that are central for macroecology, such as
overall species richness, are less important for manage-
ment because common species typically dominate overall
richness. Managers, instead, typically focus on functional
guilds that are declining (e.g., grassland birds) or on spe-
cies of management concern (e.g., threatened and endan-
gered species). Maps of guild-level richness can provide
managers with critical information lacking in species-
richness-only conservation planning (Lelli et al., 2019).
Guild-based approaches provide a management-relevant
view of biodiversity because management often focuses
on multiple rather than single species to maximize man-
agement effects. Furthermore, guild-based metrics can
also account for inconspicuous, poorly known or sam-
pled, and rare species for which there are not enough
observations to model species-level distributions accu-
rately and that may otherwise be missed in management
efforts. Guilds defined based on habitat affinity, diet, for-
aging strategy, nest type, and migratory strategy can help
manage species with similar life-history traits and adapta-
tions (Root, 1967). Thus, focusing on guild-level species
richness in predictive diversity modeling could result in
products aligning more closely with management goals
and having higher accuracy.

Our goal was to develop nationwide predictive models
of overall breeding bird species richness and guild-level
richness at resolutions useful for land management
and planning across the contiguous United States with
clear accuracymetrics.We focused on bird richness because
birds are highly sensitive to environmental change
(Bateman et al., 2016; Hausner et al., 2003; Sekercioglu,
2006), occupy diverse ecological niches, implement a vari-
ety of life-history strategies (Hildén, 1965), and bird occur-
rence data are abundant (Hudson et al., 2017; Ralph
et al., 1995; Simons et al., 2007). Our objectives were to
(1) map overall bird species richness and richness for
19 guilds based on habitat affiliation, migratory strategy,

range size, nesting strategy, diet, conservation status, and
population trend at scales relevant to management
(i.e.,≤5-km resolution) and (2) compare tradeoffs in resolu-
tion and prediction accuracy among 3 resolutions (0.5, 2.5,
and 5 km) of richness estimates for each guild based on
3 levels of occurrence data. We expected large-ranged and
generalist species guilds to have models with higher predic-
tion accuracy than specialist species guilds because of the
higher number of observations and species in the former
categories. We also expected the canopy-nesting species
guild model to have higher prediction accuracy than the
ground-nesting species guild model based on the satellite
data-derived variables we examined, includingmany forest-
canopy-specific metrics, because the satellites detect canopy
characteristics better than understory characteristics.

The three resolutions we examined (0.5, 2.5, and
5 km) represent different scales meaningful to bird spe-
cies’ ecology, relevant to management decisions, and
based on different summaries of occurrence data. The
0.5-km resolution represents both the radius within
which birds are recorded in our data set (Breeding Bird
Survey) and the area encompassing most small-bodied
Passeriformes’ home ranges. Notably, most species in the
conterminous United States are within this taxonomic
order. We expected maps created at 0.5-km resolution
would be most beneficial for managers working in areas
of small extent and on guilds composed of declining, rare,
or small-ranged species. We expected the 2.5-km resolu-
tion to balance scale and accuracy best given our bird
survey data (see section “Methods”). We also expected
that this resolution would be best for managers interested
in a broader species pool, broad-scale home range
dynamics and relationships, and population-level trends
in habitat use (McLoughlin & Ferguson, 2000). We
expected the 5-km resolution to have the highest accu-
racy and be most relevant for managers interested in
broad spatial patterns of bird diversity working over large
jurisdictions on state- to national-scale questions.

METHODS

North American breeding bird survey data

The North American Breeding Bird Survey (BBS) is an
avian monitoring program jointly coordinated by the
USGS Patuxent Wildlife Research Center and the Cana-
dian Wildlife Service’s National Wildlife Research Center.
The BBS program began in 1966 and currently includes
over 4100 survey routes across North America. Skilled
volunteers conduct the surveys each June along 39.4-km
(24.5-mile) routes along secondary roads. A surveyor
stops approximately every 800 m (0.5 miles) along the
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route to conduct a 3-minute point count, recording all
birds detected within a 400-m (0.25-mile) radius. The raw
data, metadata, and trend estimates for 420 species are
publicly available (https://www.pwrc.usgs.gov/bbs/). The
raw data include the number and species identification of
birds surveyed at each stop and the route’s starting coor-
dinates (Pardieck et al., 2020). Digital route maps were
available until 2012 but are no longer accessible, and for
routes shifted or started after 2012, only the starting point
location is provided.

North American breeding bird survey
preprocessing

We focused on BBS routes surveyed between 1992
and 2019 because these years correlated with species pat-
terns from 2013 to 2019 (the timeframe of our predictors)
and greatly increased the sample size (Appendix S1:
Figures S3–S7). We removed from consideration non-
randomly established routes, surveys conducted in
inclement weather, and surveys conducted by first-year
observers (n = 2748) (Farwell et al., 2020). We subdivided
bird occurrence data into three subsets that aligned with
the three resolutions we analyzed: (1) first-survey-stop
data, with 0.5-km square buffers for sampling predictive
variables centered on the first-stop location; (2) first-
10-stops of data, with 2.5-km square buffers centered on
the first-stop location; and (3) full-route data, with 5-km-
resolution squares centered on route centroids (for routes
for which the full route location line file was available) or
the routes’ first-stops.

B¼ 2dð Þ2 ð1Þ

We determined buffer size based on the detection area
covered by a given number of stops using Equation (1),
where B represents buffer size and d the summed dis-
tance over which birds were surveyed in consecutive BBS
route point counts at the three scales of analysis (i.e., the
buffer radius). We did not use true buffers for the full-
route analysis owing to either route line file issues or
missing route location information. Instead, we deter-
mined buffer size using Equation 1 with a 5-km diameter
for the 39.4-km BBS routes (the distance of an entire BBS
route) and used that area in the shape of a square around
centroids (where available) or route starting points if line
files for routes were unavailable. We conducted a robust-
ness check and found no difference when we compared
our alternative square buffers for the 5-km-resolution
analysis to true buffers around the subset of available line
files (Appendix S1: Table S1 and Figures S1 and S2).

Predictor data

We analyzed 66 variables known or suspected to influ-
ence bird richness patterns (Table 1) (Elsen et al., 2021;
Farwell et al., 2021; Gudex-Cross et al., 2021). We derived
data layers from all available full-year Landsat 8 data
from 2013 to 2019, with a few exceptions (Table 1;
Appendix S2). We generated image texture (using cumu-
lative dynamic habitat index data) and thermal metrics
by assigning a value to the central pixel within a
17 � 17-pixel moving window. To generate continuous
data layers of our predictor variables at each spatial reso-
lution, we resampled our input data layers using nested
grids of 0.5-, 2.5-, and 5-km resolution in ESRI Arc Pro
and Python version 3.6, matching the three scales at
which we extracted bird occurrence data for calculating
richness.

Guilds

We estimated species richness for 19 guilds based on hab-
itat affiliation, migratory strategy, range size, nesting
strategy, diet, conservation status, and population
trend—the specific guilds were forest affiliates, grassland
affiliates, shrubland affiliates, forest specialists, grassland
specialists, shrubland specialists, residents, long-distance
migrants, short-distance migrants, ground nesters,
midstory/canopy nesters (grouped), threatened species
(including all higher classifications such as endangered
species), species with decreasing population trends, spe-
cies with stable or increasing population trends
(grouped), large-ranged species, small-ranged species,
insectivores, granivores, and frugivores (Carroll
et al., 2022). We based affiliate and specialist statuses on
the International Union for Conservation of Nature
(IUCN) Habitats Classification Scheme (Version 3.1).
Habitat specialist species were defined as those with only
one habitat of major importance, while affiliates had two
or more during the breeding season (IUCN 2021). We
adopted BBS designations for migration and nesting strat-
egy (Pardieck et al., 2020) and followed the International
Union for Conservation of Nature (IUCN) Red List of
Threatened Species for defining threatened species and
IUCN population trends from BirdLife International for
stable and increasing versus decreasing species (Birdlife
International, 2021). We classified short-distance
migrants as migratory birds wintering primarily in the
United States and Canada and long-distance birds as neo-
tropical migrants. We determined range size by taking
the median of all BBS species’ ranges and designating
ranges below the median as small-ranged and those
above the median as large-ranged (Elsen et al., 2020;
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TAB L E 1 Covariate type, name, metric, spatial and temporal resolution, and source

Covariate type Covariate Covariate metric
Spatial
resolution

Temporal
resolution

Vegetation Dynamic habitat indices Cumulative 30 m 2014–2019

Minimum 30 m 2014–2019

Variation 30 m 2013–2019

Texture 1st-order SD 30 m 2013–2019

Contrast 30 m 2013–2019

Dissimilarity 30 m 2013–2019

Homogeneity 30 m 2013–2019

Entropy 30 m 2013–2019

Uniformity 30 m 2013–2019

Correlation 30 m 2013–2019

Mean 30 m 2013–2019

Variance 30 m 2013–2019

Biomass 30 m 2000

Canopy height 30 m 2000

Land cover Proportion forest 30 m 2016

Proportion shrubland 30 m 2016

Proportion grassland 30 m 2016

Proportion wetland 30 m 2016

Forest edge 30 m 2016

Shrubland edge 30 m 2016

Grassland edge 30 m 2016

Wetland edge 30 m 2016

Forest core 30 m 2016

Shrubland core 30 m 2016

Grassland core 30 m 2016

Wetland core 30 m 2016

Net primary productivity (NPP) 30 m 2013–2019

Enhanced vegetation index (EVI) Peak greenness 30 m 2013–2019

Median greenness 30 m 2013–2019

Anthropogenic Housing density Block-level housing density 1 km 2010

Land cover proportion agriculture 30 m 2016

Proportion urban 30 m 2016

Agriculture edge 30 m 2016

Urban edge 30 m 2016

Agriculture core 30 m 2016

Urban core 30 m 2016

Climate Thermal heterogeneity Summer 30 m 2013–2019

Winter 30 m 2013–2019

Relative temperature Summer 30 m 2013–2019

Winter 30 m 2013–2019

Temperature amplitude Annual 30 m 2013–2019

Cloud cover index 30 m 2013–2019
(Continues)
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Farwell et al., 2020). Lastly, we assigned each species a
foraging type class based on the Elton Traits database
(Wilman et al., 2014).

Building richness models

Our first objective was to develop models of overall bird
species richness and richness within our 19 guilds. We
chose random forest as our modeling framework because
it works well for large data sets with nonlinear trends,

collinear variables, and missing data. Random forests are
also helpful in making predictions when there are only a
few samples in large areas, which was the case for several
guilds (Liaw & Wiener, 2002; Mi et al., 2017).

To avoid overfitting and to reduce the number of vari-
ables, we ranked explanatory variables using the random
forest permutation-based score of importance and
employed a stepwise forward variable introduction using
the VSURF package for variable selection in R Statistical
Software (Version 4.0.5; Genuer et al., 2015; R Core
Team, 2021). While random forests are generally

TAB L E 1 (Continued)

Covariate type Covariate Covariate metric
Spatial
resolution

Temporal
resolution

Winter habitat indices Duration 30 m 2013–2019

Variability 30 m 2013–2019

Subnivium 30 m 2013–2019

Bioclimatic variables (BIOCLIM; C�

or mm)
Annual mean temperature 1 km 1990–2019

Mean diurnal range of
temperature

1 km 1990–2019

Isothermality 1 km 1990–2019

Seasonality of temperature 1 km 1990–2019

Maximum temperature of
warmest month

1 km 1990–2019

Minimum temperature of coldest
month

1 km 1990–2019

Temperature annual range 1 km 1990–2019

Mean temperature of wettest
quarter

1 km 1990–2019

Mean temperature of driest
quarter

1 km 1990–2019

Mean temperature of warmest
quarter

1 km 1990–2019

Mean temperature of coldest
quarter

1 km 1990–2019

Annual precipitation 1 km 1990–2019

Precipitation of wettest month 1 km 1990–2019

Precipitation of driest month 1 km 1990–2019

Seasonality of precipitation 1 km 1990–2019

Precipitation of wettest quarter 1 km 1990–2019

Precipitation of driest quarter 1 km 1990–2019

Precipitation of warmest quarter 1 km 1990–2019

Precipitation of coldest quarter 1 km 1990–2019

Geomorphological Terrain Ruggedness Index … 30 m …

Elevation … 30 m …

Notes: Each raster layer is a mean value (not time series) over the temporal resolution listed, resampled at the three resolutions (0.5, 2.5, and 5.0 km). We

sampled all variables to coarser resolutions except for the BIOCLIM variables for the 0.5-km resolution. Additional information for how we calculated each
suite of covariates or their source is available in Appendix S2.
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insensitive to highly correlated metrics, both variable
importance and overall variation explain decrease when
metrics overlap in multidimensional feature space
(De’ath & Fabricius [2000], but see Fox et al. [2017]).
Thus, we selected the highest performing, most parsimo-
nious predictor variables for each guild and resolution to
maximize model performance.

We used the VSURF and caret R packages to deter-
mine the top predictive model for each guild at each reso-
lution (19 guilds + overall richness � 3 resolutions = 60
models) and used 70% of observations for training and
30% for validation (Genuer et al., 2015; Kuhn, 2021).
Once we identified the input variables for each model,
we parameterized 500 random forest trees (ntree) to
ensure the errors stabilized for each guild (Lawrence
et al., 2006). We then reevaluated fit metrics and hyper-
parameters using k-fold cross-validation and our 30%
holdback data set to determine the models’ reliability.
We reevaluated hyperparameters, including the number
of trees grown (ntree) and the number of predictors tested
at each node (mtry), to select the best hyperparameters
for each final guild and resolution model (Roberts
et al., 2017). We used the root mean square error (RMSE)
to select the best performing mtry for each model and
evaluated error convergence on random forest plots for
ntree.

Both sampling variability and stochastic processes
contribute to prediction variance in random forest predic-
tions (Wager et al., 2014). Thus, it is important to deter-
mine the properties of the distribution of our results and
estimate the prediction intervals of our models. Predic-
tion intervals, which are similar to confidence intervals
but encompass the full range of predictions, are essential
for managers because they indicate the range of richness
values that can be expected, as well as how accurate our
models were. We mapped prediction intervals using the
k-fold cross-validation results. We then determined
which pixels had wider prediction intervals and, hence,
more uncertainty in the richness values. We further
assessed the accuracy of the predictions by plotting model
residuals. Each of these assessments can be used by man-
agers to determine which of our predictive richness maps
might be most useful.

Comparison of model performance

Our second objective was to compare tradeoffs in
resolution and richness model performance for each
guild, and we did so using several metrics. We examined
all 19 guilds and overall species richness at all 3 resolu-
tions, such that each guild � resolution combination had
a unique model. Our performance metrics included

percentage variance explained (pseudo-R2), RMSE, and
symmetric mean absolute percentage error (sMAPE). The
percentage variance explained was calculated based on
the complete data set, whereas RMSE and sMAPE were
generated separately for test and training data sets. We
omitted raw RMSE from our output for model compari-
son because it is scale-dependent and not easily compara-
ble across models. Instead, we used percentages of
RMSE. We also chose sMAPE because it is an easily
interpretable and comparable error metric and works
well on data with zero values. To facilitate interpretation
of the sMAPE values, we rescaled it to 0%–100%. Raw
RMSE is in the same unit as the response (i.e., bird rich-
ness), and, as with sMAPE, the closer the test RMSE is to
the training RMSE, the better the model performed. We
divided RMSE values by the sample means for better
comparability, so all RMSE values are reported as
percentages.

We calculated both RMSE and sMAPE because the
two indices weigh large errors differently and, thus, pro-
vide unique information. RMSE gives a higher weight to
larger errors, so RMSE is always larger than or equal to
sMAPE. For this reason, a larger difference between
RMSE and sMAPE indicates a larger error variance.
While one or both of these metrics are often reported,
RMSE is more useful when signed values are needed
(sMAPE relies on absolute values) and when the cost of
increasing errors is increasingly bad (e.g., when estima-
tions being off by six is more than twice as bad as being
off by three). For this application, sMAPE is a better met-
ric than RMSE because large errors do not require stron-
ger penalties in this circumstance, but RMSE is now used
more frequently, so both are provided. Interpreting how
to evaluate model performance using RMSE and sMAPE
can still be challenging. For this reason, focusing on the
differences between test and training scores is helpful.
The RMSE and sMAPE training scores indicate how well
the model predicts the data used to build it, whereas the
test scores indicate how well the model predicts
unknown data and, hence, how generalizable it is. Thus,
the test scores and differences (test minus training) pro-
vide useful information about the model’s performance.

Richness maps

To create guild-specific continuous richness maps at reso-
lutions of 0.5, 2.5, and 5 km, we applied our models inde-
pendently to raster layers resampled to each resolution,
retaining those with ≥50% variance explained. Unlike
predictions of the likelihood of occurrence for single spe-
cies, we predicted breeding bird species richness with our
random forest models, meaning low values were as likely
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to be correct as high values and that it would not be
appropriate to apply a minimum threshold to our guild
maps. After generating all maps, we then exported them
in tagged image file format (TIFF). We examined each
map to determine whether there was disagreement in
specific areas by subtracting standardized quantiles of
richness values from lower-resolution maps from higher-
resolution maps (i.e., 5�2.5, 2.5�0.5, and 5�0.5 km rich-
ness). We also used the prediction intervals generated
during the model assessment to generate lower and
upper prediction interval maps for each richness map.

RESULTS

We successfully modeled and predicted bird species rich-
ness for 19 bird guilds plus overall richness at 3 resolu-
tions across the conterminous United States. We found
substantial differences in the richness values predicted
depending on resolution, illustrating the tradeoffs we
expected. The coarsest-resolution predictions had the
highest accuracy, but finer resolutions may be more rele-
vant for management. Limiting models to first-survey-
stop bird data allowed us to make predictions at the
0.5-km resolution, but the number of observations
decreased from 2,146,694 at the route level to 264,034. As
expected, limiting the observations to either the 0.5- or
2.5-km data resulted in lower richness values per route
compared to the full route 5 km data (Figure 1). Across
guilds, average richness decreased from 65.4 (SD = 17.5)
at 5-km resolution to 46.8 (SD = 15.5) at 2.5-km resolu-
tion and declined further to 18.5 (SD = 7.5) at 0.5-km res-
olution. The differences in guild-level richness among
scales were most pronounced for large-ranged species,
midstory/canopy nesters, and species with stable or
increasing populations and less pronounced for grassland
affiliates, grassland specialists, shrubland specialists,
threatened species, small-ranged species, and frugivores
(Figure 1). There were few observations of grassland affil-
iates, grassland specialists, shrubland specialists, threat-
ened species, small-ranged species, and frugivores at all
scales, and the average richness within these guilds was
<1 at 0.5-km resolution, rendering predictions at this
scale not meaningful.

For most guild models, the patterns of richness values
were similar across resolutions resulting in high-
correlation coefficients between richness for different res-
olutions, especially when comparing 2.5 km versus either
0.5 or 5 km (Figure 2). Specifically, when calculating cor-
relations between the predictions from pairs of models of
different resolutions (Figure 2), 21 of the 60 (35%) model
pairs had Pearson’s correlation coefficients of ≥0.90, and
only 10 (17%) had correlation coefficients ≤0.70. Only the

0.5-km resolution frugivore richness model predictions
had a correlation of <0.5 with the 2.5- and 5-km resolu-
tion predictions. The 5- versus 2.5-km predictions had
correlation coefficients between 0.80 and 1 for all guilds.

Predictor variables

Of 66 candidate variables, 64 were included in our
60 models. All variables except the core of grassland
cover and edge of wetland cover occurred in at least one
model, with a mean frequency of 24 variables per model.
Mean relative winter temperature, mean terrain rugged-
ness index, mean canopy height, mean peak net primary
productivity, total precipitation in the wettest month,
mean temperature in the coldest quarter, mean tempera-
ture in the warmest quarter, and annual mean diurnal
temperature range variables were the most commonly
selected variables, each of which was included in at least
45 of the 60 models (Appendix S3: Figure S1) (Carroll
et al., 2022).

Model performance

Matching our expectations, the 5-km-resolution models
performed best across all guilds (from 50% to 87% vari-
ance explained for granivores and shrubland specialists,
respectively) (Table 2). However, the 2.5-km models per-
formed almost as well (from 50% to 79% variance
explained for granivores and shrubland specialists,
respectively). There was an inflection point in variation
explained among the different resolutions, indicating that
the relationship between resolution and model perfor-
mance was not linear (Figure 3 and Table 2).

The models for forest specialists performed better
than the models for forest affiliates according to RMSE,
sMAPE, and the percentage variance explained (Table 2).
Similarly, the models for shrubland specialists performed
better than the models for shrubland affiliates for all met-
rics except the difference between test and training
sMAPE at the 2.5-km resolution. Model performance
metrics of grassland habitat specialist versus affiliate
models were inconsistent, with specialist models per-
forming better at all resolutions based on the percentage
variance explained and affiliate models performing better
based on the difference between test and training sMAPE
and RMSE at 2.5- and 5-km resolutions. Interestingly, the
ground-nesting guild models performed better across all
resolutions based on the percentage variance explained,
and the midstory/canopy nesting models only performed
better at the 5-km resolution based on the difference in
training and test sMAPE and RMSE, despite expectations
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that the ground-nesting models would have worse perfor-
mance metrics (Table 2).

The percentage variance explained differed consider-
ably between the 0.5-km and coarser resolutions. Our
models of overall species richness explained between 27%
and 60% of the variance, depending on the resolution.
Some of our guild richness models, but not all of them,
performed better, with percentage variance explained
ranging from 12% to 87% (median = 61%, mean = 58%).
The percentage variance for overall species richness and
guild-specific richness was greatest at 5-km resolution,
except for granivores (Table 2). At 5-km resolution, the
best performing models (percentage variance explained
>80%) were forest affiliates, forest specialists, shrubland
specialists, and small-ranged species (in that order). All
guilds had at least one model with sufficiently high per-
formance (>50% variance explained) to allow nationwide
predictions.

Our second performance metric, RMSE percentage,
validated our models using separate training and test
subsets of the data. Our training RMSE percentage
ranged from 6% to 49% for all models (median = 14%,
mean = 16%) and our test RMSE percentage ranged from
14% to 94% (median = 33.89%, mean = 35.74%) (Table 2).
The difference between test and training data RMSE
ranged from 8% to 84%. Similarly, we found that for
sMAPE and the percentage variance explained, the best
performing models based on RMSE were at 5-km resolu-
tion. These models always had the closest training and
test RMSE percentage values.

We also evaluated the sMAPE of both training and test
data to compare model performances. Model performance
based on sMAPE indicated that all 5-km-resolution models
outperformed the other two resolutions (Table 2). The best
performing models based on sMAPE (<10%) were those
of forest affiliates, shrubland affiliates, forest specialists,

F I GURE 1 Average species richness, from North American Breeding Bird Survey data, 2013–2019, by functional and life history guilds,

modeled at three spatial resolutions, based on the 0.5-km resolution (first bird survey stop), 2.5-km resolution (first 10 survey stops), and

5-km resolution (full route data), respectively. The error bars here represent 1 SD.
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residents, long-distance migrants, short-distance migrants,
ground-nesting species, midstory/canopy nesting species,
threatened species, decreasing populations, increasing
populations, large-ranged species, insectivores, and grani-
vores (in that order). Notably, many guilds had a sMAPE
<10% for both 2.5- and 5-km-resolution models. We deter-
mined which resolution had the closest sMAPE percent-
age values for training and test data and found that the
differences ranged from 3% to 12% across all three resolu-
tions. Interestingly, the differences in sMAPE did not fol-
low the same patterns as the other performance metrics,
with some 0.5-km models outperforming those at 2.5- or
5-km resolutions (e.g., models of frugivore richness).

Richness maps

We generated 42 maps of bird richness covering the
19 guilds plus 2 for overall species at our 3 resolutions
and limited maps to only those where models explained
>50% of the variance (Figure 4). For the overall species
maps, predictions of bird species richness ranged from
14 to 79 (mean = 42, SD = 11) at the 2.5-km resolution

and 27 to 97 (mean = 60, SD = 12) at 5 km. Among
guilds, predicted bird species richness ranged from 1 to
23 at the 0.5-km resolution (mean = 3, SD = 2; n = 6),
1 to 74 at 2.5 km (mean = 14, SD = 5; n = 17), and 1 to
91 at 5 km (mean = 19, SD = 6; n = 19). The highest
predicted average species richness at 0.5 km was achieved
by the forest affiliate guild (mean = 7, SD = 5), whereas
at 2.5- and 5-km resolution, the highest average predicted
richness was achieved by large-ranged species (mean= 38,
SD = 12 at 2.5-km resolution, and mean = 55,
SD = 14 at 5-km resolution). The shrubland specialist
species guild had the lowest average predicted species
richness (mean = 2, SD = 2) at the 0.5-km resolution,
the threatened species guild at 2.5 km (mean = 3,
SD = 1), and the frugivore species guild at 5 km
(mean = 2, SD = 1).

In addition to the richness maps, we also made
maps of the prediction intervals for each model
(Figure 5) and the spatial agreement between resolu-
tions (Figure 6). There were clear differences in
predicted richness at the different resolutions for some
guilds and overall species richness, especially in the
central United States (Figure 6).

F I GURE 2 Hexplots comparing number of species (no. of spp) detected at different resolutions for (a–c) overall species richness, (d–f)
threatened species richness, and (g–i) forest specialist species richness at 5 versus 0.5 km (a, d, g), 5 versus 2.5 km (b, e, h), and 2.5 versus

0.5 km (c, f, i). The red lines represent the fitted line, and r is the Pearson’s correlation coefficient.
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TAB L E 2 The percentage variance explained, training and testing root mean square error (RMSE) percentage at each resolution by

guild, the difference between test and training data RMSE values (test–train RMSE), training and testing symmetric mean absolute

percentage error divided by 2 (symmetric mean absolute percentage error [sMAPE], %), and the difference between test and training data

sMAPE values (test–train sMAPE)

Guild
Resolution
(km)

Percentage
variance
explained

Train
RMSE

Test
RMSE

Test–
train
RMSE

Train
sMAPE

Test
sMAPE

Test–train
sMAPE

Overall species
richness

0.5 27 14 33 19 7 14 7

2.5 54 8 21 12 4 9 5

5.0 60 6 14 8 2 6 3

Forest affiliates 0.5 56 19 46 27 10 21 11

2.5 73 11 26 15 6 13 7

5.0 80 8 17 9 4 9 5

Grassland
affiliates

0.5 61 37 86 50 59 66 7

2.5 71 19 47 28 25 33 8

5.0 75 15 36 21 13 19 6

Shrubland
affiliates

0.5 42 19 46 27 12 22 9

2.5 62 11 27 16 5 12 7

5.0 71 8 20 12 3 8 4

Forest specialist 0.5 66 24 60 36 20 32 12

2.5 79 14 35 21 12 22 10

5.0 85 10 24 14 7 13 6

Grassland
specialists

0.5 63 36 89 54 58 67 10

2.5 74 20 47 27 30 37 7

5.0 79 15 35 20 15 20 5

Shrubland
specialists

0.5 59 48 – – 61 72 12

2.5 79 26 64 38 23 27 4

5.0 87 21 52 31 12 18 6

Residents 0.5 42 21 47 26 14 22 9

2.5 60 10 25 15 5 11 6

5.0 65 8 18 11 3 7 4

Long-distance
migrants

0.5 41 18 46 28 10 21 11

2.5 62 10 25 15 5 11 6

5.0 69 7 19 12 3 8 4

Short-distance
migrants

0.5 29 15 38 23 7 17 9

2.5 54 8 20 12 3 8 5

5.0 69 6 14 8 2 5 3

Ground nesters 0.5 30 15 38 23 8 16 9

2.5 45 9 23 14 4 9 5

5.0 51 7 17 10 3 7 4

Midstory/canopy
nesters

0.5 34 9 42 33 9 19 9

2.5 61 9 22 13 4 10 5

5.0 68 6 15 9 3 6 4

Threatened 0.5 31 40 94 53 53 59 6

2.5 59 17 43 26 18 26 8

5.0 67 12 29 17 7 14 7

(Continues)
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DISCUSSION

We generated standardized richness maps for 19 breeding
bird guilds plus overall species richness at 0.5-, 2.5-, and
5-km resolution, thereby addressing our first objective: to
map breeding bird species richness at scales relevant to
management. We also addressed our second objective by
comparing tradeoffs in resolution and prediction accuracy
for models of richness estimates for different guilds at three
spatial resolutions based on three levels of occurrence data.
We found that the 2.5-km-resolution richness maps best
balanced resolution versus accuracy, so they are our recom-
mendation for most management applications. Even
though the 5-km resolution models almost always had the
best performance metrics, the 2.5-km-resolution maps per-
formed nearly as well, based on both performance metrics

and correlation coefficients, but at half the resolution and
hence four times more pixels (Table 2 and Figures 3 and 4).
This tradeoff is important, given that many management
units and properties are quite small, which means that the
finer 2.5-km-resolution pixels can provide substantially
more information about the spatial pattern of species rich-
ness within these properties than the 5-km resolution. Fur-
ther, management decisions are often made within a small
area, such as a single watershed or forest stand, and thus,
more detailedmaps can support finer-scale decisions.

Predictive variables

Our variables effectively predicted breeding bird richness for
all guilds at one or more resolutions, and typically all three.

TAB L E 2 (Continued)

Guild
Resolution
(km)

Percentage
variance
explained

Train
RMSE

Test
RMSE

Test–
train
RMSE

Train
sMAPE

Test
sMAPE

Test–train
sMAPE

Decreasing 0.5 34 19 46 27 11 21 10

2.5 51 10 24 14 4 10 5

5.0 59 7 16 9 3 6 4

Stable/increasing 0.5 39 14 34 20 7 15 8

2.5 61 9 21 13 4 10 5

5.0 66 7 15 9 3 6 4

Large-ranged 0.5 36 14 34 20 7 14 8

2.5 65 8 20 12 4 9 5

5.0 73 6 14 8 2 6 3

Small-ranged 0.5 66 49 – – 66 75 9

2.5 82 25 56 31 27 36 9

5.0 86 18 40 22 13 23 11

Insectivores 0.5 38 19 44 25 11 20 9

2.5 61 10 26 16 5 12 7

5.0 67 7 17 10 3 7 4

Granivores 0.5 37 17 40 23 9 17 8

2.5 50 10 23 13 4 10 6

5.0 50 7 17 11 3 7 4

Frugivores 0.5 12 – – – 94 98 4

2.5 41 30 69 39 43 50 7

5.0 55 18 42 24 18 24 6

Minimum 12 6 14 8 2 5 3

Mean 58 16 36 21 15 22 7

Median 61 14 34 20 7 16 6

Maximum 87 49 94 54 94 98 12

Notes: The minimum, maximum, and median exclude overall species richness, and all values except resolution are percentages. Resolutions represent the area
the explanatory variables were sampled over, including 0.5 km (first-stop), 2.5 km (ten-stops), and 5 km (full routes). Missing values denote models without

predictive power for that data set or metric. Models with percentage variance explained ≥50% are bolded.

12 of 21 CARROLL ET AL.



Of the 66 variables, many were generated from satellite data
specifically for this analysis to predict fine-scale bird richness
(Appendix S2). Our variables fit well within the framework
of essential biodiversity variables (EBVs) (Pereira
et al., 2013), representing a core set of complementary biolog-
ical measurements intended to capture changes in bio-
diversity, because our variables allow us to make better
predictions of species distributions and abundances. How-
ever, several EBV classes have poor alignment with remote
sensing products, making it challenging to generate seamless
data products (Skidmore et al., 2021). Our variables do not
overcome that limitation, but given their value for distribu-
tion modeling, all of the variables included here are already
or will bemade publicly available at silvis.forest.wisc.edu.

Comparison of model performance by guild

We expected data-rich guilds, such as large-ranged spe-
cies and generalist species guilds (e.g., species identified

as habitat affiliates rather than specialists), to be better
modeled (Madon et al., 2013; Ovaskainen & Soininen,
2011), but that was not the case. Instead, our specialist
species guild models performed better than generalist
species guild models for all resolutions. We speculate that
this was the case because specialist species guilds are
often limited to a narrower range of predictive values for
a given variable and a specific combination of variables,
resulting in models with higher predictive power. For
generalist guilds, larger sample sizes may be required to
predict distributions accurately because a number of
combinations of variable values can result in the same
richness (Connor et al., 2018; Hernandez et al., 2006).
Similarly, we expected that models of canopy nesting spe-
cies would perform better than those for ground-nesting
species because our remote sensing variables would char-
acterize the canopy better than attributes of importance
to ground nesters. However, we were surprised to see that
that was not the case either (Table 2). Lastly, we expected
that richness of our rarer or highly specialized guilds

F I GURE 3 Percentage variance explained by guild for each spatial resolution, as well as for overall species richness
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(e.g., frugivores) would best be predicted at the 0.5-km
resolution because finer-resolution environmental vari-
ables would better represent habitat resources within
average passerine home range sizes, but there were too
few bird observations at that resolution to parameterize
reliable models.

Comparison to existing products

Several previous efforts generated landscape-level
biodiversity pattern maps to aid conservation efforts
using species range maps (Kullberg et al., 2019; Pompa
et al., 2011; Schipper et al., 2008), potential habitat maps

F I GURE 4 Equal-interval standardized overall species richness at (a) 0.5-km, (b) 2.5-km, and (c) 5-km resolution that employs a

relative bird richness scale to make maps at the three resolutions comparable; and absolute overall species richness at (d) 0.5-km, (e) 2.5-km,

and (f) 5-km resolutions that have unique scales for each resolution across the conterminous United States. The first set of zoom-ins (1–4)
illustrate standardized overall species richness at the 2.5-km resolution around (1) Bozeman, Montana, (2) Madison, Wisconsin, (3) Flagstaff,

Arizona, and (4) Chattanooga, Tennessee. The second set of zoom-ins (5–7) illustrate absolute overall species richness at (5) 0.5 km,

(6) 2.5 km, and (7) 5 km around Madison, Wisconsin.
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(Gergely et al., 2019; Rondinini et al., 2011; Xu
et al., 2017), and species distribution maps (Bateman
et al., 2020; Engler et al., 2017; Sofaer et al., 2019). With
the growing availability of species occurrence data sets
(e.g., BBS, Global Biodiversity Information Facility
[GBIF]), predictive models of species distributions or
aggregate biodiversity metrics such as species richness
are an alternative way to map biodiversity (Jiguet
et al., 2005; Sporbert et al., 2019; Troia & McManamay,
2016). The rich modeling environment for occurrence-
based species distribution models, a growing set of
remotely sensed variables designed for species distribu-
tion modeling, and growing species occurrence data sets
increasingly enable the development of finer-scale biodi-
versity products (Jetz et al., 2012; Luque et al., 2018;
Schwager & Berg, 2021).

There are manifold benefits to using occurrence-
based products. However, our models of guild-level rich-
ness represent an approach that avoids the coarseness of
range-based maps, the overpredictions of potential habi-
tat maps, and the lack of samples for many species that
precludes making occurrence maps for them. Further,
the ability to validate maps and provide information
about the confidence of predictions is critical for strategic
planning and decision-making (Ladle & Hortal, 2013;
Rocchini et al., 2011; Thuiller et al., 2019). Importantly,
the patterns we found do not deviate substantially from
those based on range maps and potential habitat (Gergely

et al., 2019; Jenkins et al., 2013). However, our approach
has the advantages of having a management-relevant res-
olution based on species observations and well-specified
accuracy, including upper and lower bounds for our
predictions.

Implications and guidance for
conservation

Overall, our maps address a major impediment to land
management for multiple land planning units and juris-
dictions, namely, the lack of accurate maps at fine
enough spatial resolutions to be suitable for management
and decision-making consistent across large areas and
that have well-specified accuracy information, to allow
for conservation planning (Kuenzer et al., 2014). Our
maps thus bridge the gap between the needs of local
managers for evidence-based information to support
decision-making with the large number of biodiversity
maps in the scientific literature (Cook et al., 2010; Fazey
et al., 2005).

The high correlation between our maps at the differ-
ent resolutions further supports their conservation utility
(Figure 3). Which resolution is best depends on the man-
agement or conservation goal. Despite the lower accu-
racy of our 0.5-km maps, their high correlation with 2.5-
and 5-km maps supports the credibility of the derived

F I GURE 5 Spatial pattern predictions generated by (a, b) 500 aggregate random forest models and (c, d) the range of values across

200 individual random forest trees for each pixel for (a, b) overall species richness and (c, d) threatened species richness at 2.5-km resolution
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richness patterns. Maps for those guilds with high corre-
lations among scales are particularly useful for managers
working in small areas or at fine scales. By generating
richness maps at three resolutions and making them
freely available, managers can decide which resolution
best meets their needs (Costello & Wieczorek, 2014). For
managers seeking relatively high accuracy in predicted

values, the 5-km resolution maps are best. Alternatively,
managers working to determine where conservation may
be most effective for all birds or a specific guild in a
small geographical area can use the 0.5-km-resolution
maps. We suggest that the 2.5-km richness maps repre-
sent the best tradeoff between accuracy and resolution
for most purposes.

F I GURE 6 Patterns of disagreement for (a–c) overall species richness, (d–f) forest specialist species richness, (h–j) forest affiliate species
richness, (k–m) threatened species richness, and (n–p) frugivore species richness when subtracting (a, d, h, k, n)5- to 0.5-km richness, (b, e, i,

l, o) 2.5- to 0.5-km richness, and (c, f, j, m, p) 5- to 2.5-km richness. All legends represent standardized quantiles for a given map rather than

absolute values for better visualization. A negative value means that the higher-resolution map had higher species richness values, and a

positive value means that the coarser-resolution map had higher richness values. The number in the lower right of each map represents the

Pearson’s correlation coefficient of the two maps. Areas in agreement (i.e., zero values) are colored white. For each guild the largest and

smallest values shown are (a–c) 4 and �4, (d–f) 7 and �7, (g–i) 5 and �3, (j–l) 8 and �5, and (m–p) 8 and �5, respectively.
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One of the ways these products can be applied to con-
servation and management is through their inclusion in
planning efforts, such as, for example, the development
of land management plans for each national forest, as
required by the National Forest Management Act
(NFMA). Current regulations on National Forest Land
Management Plans require place-based wildlife conserva-
tion for threatened or endangered species, species of con-
servation concern, and species commonly enjoyed and
used by the public. Our maps of threatened and endan-
gered species, as well as other guilds of management con-
cern, can assist forest planners in determining where to
focus wildlife conservation and where to allow more
extensive human land use. However, we recognize that
our products may be too coarse for organizations making
land management decisions about small individual par-
cels. Ultimately, though, we expect that many state- and
federal-level managers could integrate these richness
products into ongoing or new conservation efforts, partic-
ularly when seeking to balance wildlife conservation and
human use.

For those using our products for conservation plan-
ning, we suggest the following steps and considerations
for selecting the best data set for a given management
question. First, managers should decide what level of
uncertainty in predicted species richness is acceptable for
their management question. Second, the overall model
performance metrics (Table 2), including percentage vari-
ance explained, RMSE, and sMAPE, provide the first
indication of whether the corresponding predictive maps
are suitable for their question. Third, an important con-
sideration is how large the area being managed is and,
hence, how many pixels that area would encompass, with
the goal of balancing resolution and model accuracy. For
example, a manager working in a relatively small plan-
ning unit (e.g., a county) and seeking to protect areas
with high forest affiliate species richness may find the
finer details of the 2.5-km resolution more useful, despite
having slightly lower accuracy than the 5-km resolution.
Fourth, we suggest downloading both the prediction
interval maps (e.g., Figure 5) and the species richness
maps (e.g., Figure 4). The prediction interval maps indi-
cate the precision of estimates for a given area. Fifth, we
suggest downloading the raster files that compare how
much richness differs based on resolution (e.g., Figure 6).
If richness patterns are very similar, that supports using
the finest-resolution 500-m richness maps. The tradeoff
between resolution and accuracy is partially spatially
dependent (Figure 6). Maps for guilds with lower correla-
tions among scales, such as threatened species at the
0.5-km resolution, should be used with caution (Figure 6).
In such instances, the prediction interval files should be
used to determine whether regional patterns are

informative before using finer-resolution maps (Figure 5).
Following these steps will help managers determine which
species richness map can best support their conservation
efforts.

CONCLUSION

Despite advances in species distribution modeling,
few biodiversity products meet management and conser-
vation needs directly. We developed breeding bird species
richness maps at high enough resolution to be
management-relevant yet consistent across the contermi-
nous United States. These maps have well-specified accu-
racy based on both independent validation data and maps
of prediction accuracy and upper and lower bounds of pre-
diction richness. Furthermore, we quantified the inherent
tradeoff between higher resolution and map accuracy and
found that a 2.5-km resolution provided the best compro-
mise between the two. As such, our maps can help bridge
the gap between the rich literature on species distribution
modeling and the need for management-relevant biodiver-
sity products.
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