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a b s t r a c t 

Large sets of autocorrelated data are common in fields such as remote sensing and genomics. For example, remote 

sensing can produce maps of information for millions of pixels, and the information from nearby pixels will likely 

be spatially autocorrelated. Although there are well-established statistical methods for testing hypotheses using 

autocorrelated data, these methods become computationally impractical for large datasets. 

• The method developed here makes it feasible to perform F -tests, likelihood ratio tests, and t -tests for 

large autocorrelated datasets. The method involves subsetting the dataset into partitions, analyzing each partition 

separately, and then combining the separate tests to give an overall test. 
• The separate statistical tests on partitions are non-independent, because the points in different partitions 

are not independent. Therefore, combining separate analyses of partitions requires accounting for the non- 

independence of the test statistics among partitions. 
• The methods can be applied to a wide range of data, including not only purely spatial data but also 

spatiotemporal data. For spatiotemporal data, it is possible to estimate coefficients from time-series models at 

different spatial locations and then analyze the spatial distribution of the estimates. The spatial analysis can be 

simplified by estimating spatial autocorrelation directly from the spatial autocorrelation among time series. 
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Specifications Table 

Subject Area; Environmental Science 

More specific subject area; Statistics 

Method name; Method for performing statistical tests using non-independent data 

partitions 

Name and reference of original method; These are standard statistical methods documented in most statistical 

textbooks, for example, Neter et al. [12] and Judge et al. [10] 

Resource availability; The methods are implemented in the package remotePARTS in the R 

programming language. This is available at 

https://github.com/morrowcj/remotePARTS 

Method details 

Overview 

The method developed here uses a conceptually simple approach to perform statistical estimation 

and hypothesis tests on large autocorrelated datasets [ 1 , 4 , 8 , 11 , 13 , 14 ]. The method was developed

specifically for remote-sensing datasets, so it will be described in this context, although it could be

applied to other types of large datasets such genome samples from different subjects in which base-

pair similarity is likely to be greater for base pairs located nearby on a chromosome due to limited

recombination. The approach divides the dataset into non-overlapping partitions, and statistical 

hypothesis tests are conducted on each partition. The results of these tests are not independent,

because the data points from different partitions are not independent. Nonetheless, it is possible to

calculate the correlation between the statistical test scores from different partitions and combine the 

scores for an overall test. The selection of sampling schemes for partitions is arbitrary, but here we

will focus on random sampling to produce partitions. This approach has the advantage of guaranteeing

that each partition gives a representation of the entire dataset. The method is central to the analysis

of spatiotemporal data given in Ives et al. [9] . 

We apply this approach to three common tests used for regression and ANOVA on Gaussian data

[12] : the F -test, the likelihood ratio test (LRT), and the t -test. The F -test and LRT involve hypotheses

comparing a full statistical model with a reduced model, thereby allowing tests of hypotheses on

multiple coefficients in a model. The t -test is used for inference about individual coefficients. These

tests can be performed for datasets with autocorrelated errors using generalized least squares (GLS) 

regression [10] . In GLS, a correlation matrix is specified to describe the autocorrelation of errors. We

apply the approach to both purely spatial and spatiotemporal data. 

Mathematical derivations 

The specific problem addressed here involves the regression of a response (dependent) variable y l 
on p predictor (independent) variables for l = 1, 2, ..., N locations in a spatial map. The p predictor

variables for location l are contained in a 1 x p vector X l ; at the minimum, X l contains the value 1 to

correspond to an intercept. The regression model for location l is 

y l = X l B + γl (1) 

where γ l is the remaining random error, and B is a p x 1 vector containing regression coefficients for

the p variables in X l . We assume that the parameters B are the same for all locations l . We further

assume that the correlation between γ l and γ k for locations l and k depends on the distance between

them. For example, if the correlation diminishes exponentially with distance, then cor[ γ l , γ k ] = exp(–

d lk / r ) where d lk is the distance between locations l and k , and the parameter r gives the "range" of

the correlation, with larger values of r giving correlations over greater spatial distances. Thus, the

covariance matrix for the errors, � = ( γ 1 , ..., γ N ) 
′ (where the apostrophe denotes transpose), is the N

x N covariance matrix V = σ 2 C , where C is the correlation matrix containing the values of cor[ γ l , γ k ]

for all pairs of locations l and k , and σ 2 is a common variance. 

https://github.com/morrowcj/remotePARTS
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LS analysis 

A single dataset, or a subset of a larger dataset, in which errors are autocorrelated can be analyzed

y GLS when V is known [10] . Thus, let Y denote an N x 1 vector of response variables, and X denote

n N x p matrix of predictor variables including a column of ones for the intercept. The p x 1 vector
ˆ 
 containing the estimates of the regression coefficients B is 

ˆ B = 

(
X ′ V 

−1 X 

)−1 (
X ′ V 

−1 Y 

)
(2)

The sum-of-squared error is then 

SSE = 

(
Y − X ̂

 B 

)′ 
V 

−1 
(
Y − X ̂

 B 

)
(3)

An F -test is based on the sum-of-squared error of the full model ( SSE ) and a reduced model

 SSE 0 ) defined by the hypothesis to be tested; for example, the null hypothesis that some of the

redictor variables have no effect on the response variable is tested using the reduced model with

hese predictor variables removed. Under the null hypothesis, and letting SSR 1–0 = SSR 1 – SSR 0 = SSE 0
SSE denote the difference in sum-of-squared regression between full and reduced models, we have

( SS R 1 −0 /df 1 ) / ( SSE /df 2 ) ∼ F (4)

Thus, the ratio of SSR 1–0 / df 1 to SSE / df 2 follows an F distribution where df 1 is the degrees of freedom

qualing the difference in the number of predictor variables between full and reduced models, and

f 2 = N – p is the degrees of freedom for the sum-of-squared error in the full model. Strategic

election of the reduced model makes it possible to test a wide range of hypotheses, not only about

hether one or more of the coefficients in B are different from zero, but also whether some or all of

he coefficients are equal by generating orthogonal contrasts [12] . 

For GLS, a LRT is closely related to an F -test. Specifically, the log-likelihood ratio between the

ull and reduced models is SSR 1–0 for the case when the full and reduced models have the same

ovariance matrix V . The LRT uses the asymptotic approximation 

2 SS R 1 −0 ∼ χdf 1 (5)

Thus, twice the difference between the SSR s from the full and reduced models is χ2 distributed

ith df 1 degrees of freedom. The distribution for the F -test ( Eq. 4 ) will converge to the distribution

or the LRT when df 2 approaches infinity. For large datasets, df 2 will be large, and the F -test and LRT

ill give very similar results. 

Like the LRT, the t -test is closely related to the F -test. Letting MSE = SSE / df 2 be the mean squared

rror, the estimated covariance matrix for the estimates ˆ B is 

̂ var 
[

ˆ B 

]
= MSE 

(
X ′ V 

−1 X 

)−1 
(6)

The standard error of the estimate of a coefficient b h contained in 

ˆ B , se[ ̂ b h ], is the square-root of

he h th diagonal element of ̂ var [ ̂  B ], and a test of the null hypothesis that the coefficient is zero is

erformed with t -distribution: 

ˆ b h / se 

[ 
ˆ b h 

] 
∼ t df 2 (7)

To simplify the following developments, it is useful to recast the GLS model above by transforming

ariables. Specifically, let D be the matrix such that DVD 

′ = I . For example, D could be the inverse

f the Cholesky decomposition of V . With this construction of D , the covariance matrix for the

ransformed errors A = D � is E[ AA 

′ ] = E[( D �)( D �) ′ ] = DVD 

′ = I . If U = DX and Z = DY , then 

ˆ B = ( U ’ U ) −1 ( U ’ Z ) (8)

Further, let H denote the hat matrix for U defined by 

H = U ( U ′ U ) −1 U ′ (9)
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Then 

SS R 1 −0 = Z ′ ( H − H 0 ) Z (10) 

SSE = Z ′ ( I − H ) Z (11) 

where H 0 is the hat matrix for the reduced model derived from U 0 = DX 0 , and X 0 is the matrix of

predictor variables in the reduced model. 

Correlations among partitions for SSR 1–0 , SSE , and 

ˆ B 

The primary computational burden of GLS is inverting V (or its Cholesky decomposition). A map

with 10 6 pixels would require inverting a 10 6 x 10 6 V matrix, and the computation time for this

inversion scales roughly with N 

3 . If a map is partitioned into n p subsets of size m and each subset is

analyzed separately, then the computational burden will scale linearly with N for a fixed subset size

m . Using the computational advantage of analyzing partitions, the method below makes it feasible to

combine the results from the n p separate analyses. 

For the F -test, the method requires calculating the correlation between sums-of-squares computed 

for the n p different subsets. Specifically, it is necessary to calculate the correlation between SSR i 
and SSR j , and between SSE i and SSE j ; for notational convenience, SSR i denotes SSR 1–0 (the difference

between the SSRs for the full and reduced models) for partition i , and SSE i denotes the SSE of the

full model for partition i. Further, let Z i , U i , and A i denote the transformed response and predictor

variables, and the transformed errors, for partition i . It is possible to show that, for any m x m

matrices S i and S j , 

cov 
[
( A ′ i S i A i ) 

(
A ′ j S j A j 

)]
= v ec ( S i ) ′ cov 

[
( A i A ′ i ) �

(
A j A ′ j 

)]
v ec 

(
S j 

)
(12) 

where vec is the vec operator that stacks columns of a matrix on top of each other to form a

vector, and � is the Kronecker product. The matrix cov[( A i A i 
′ ) �( A j A j 

′ )] can be expressed in terms

of the matrix V ij = σ 2 C ij containing covariances between errors γ i , l and γ j , k from partitions i and j ,

respectively. Specifically, cov[( A i A i 
′ ) �( A j A j 

′ )] = R ij �R ij + P , where R ij = D i C ij D j 
′ and P is the matrix

constructed by horizontally joining the matrices R ij �R ij [ ϕ] where [ ϕ] denotes the ϕth column of R ij .

Letting H i and H 0 i denote the hat matrices H i = U i ( U i 
′ U i ) 

–1 U i 
′ and H 0 i = U 0 i ( U 0 i 

′ U 0 i ) 
–1 U 0 i 

′ , we have

cor 
[
SS R i , SS R j 

]
= v ec ( H i − H 0 i ) 

′ (R i j � R i j 

)
v ec 

(
H j − H 0 j 

)
/d f 1 (13) 

where the appearance of df 1 arises by noting that var[ SSR i ] = vec ( H i – H 0 i ) 
′ vec ( H i – H 0 i ) = 2 df 1 . 

Eq. (13) was simplified using the empirically confirmed identity that vec ( H i – H 0 i ) 
′ ( R ij � R ij ) vec ( H j 

– H 0 j ) = vec ( H i – H 0 i ) 
′ P vec ( H j – H 0 j ) for the matrices H j – H 0 j under the null hypothesis. Using a

similar derivation, 

cor 
[
SS E i , SS E j 

]
= v ec ( I − H i ) 

′ (R i j � R i j 

)
v ec 

(
I − H j 

)
/d f 2 (14) 

The LRT depends on the SSR 1–0 , and therefore the method requires calculating the correlations

between values of SSR i from the n p partitions, as is already given for the F -test. For t -tests on

the coefficient values, it is necessary to calculate the correlations between the estimators of the

coefficients given by Eq. (8) , which are given as 

cor 
[

ˆ B i , ̂  B j 

]
= ( U ′ i U i ) 

−1 
(
U ′ i R i j U j 

)(
U ′ j U j 

)−1 
(15) 

where ˆ B i is the estimator of the coefficients from partition i . 

Combining tests from the partitions 

From the values of SSR i and SSE i calculated for each partition, i = 1, 2, ..., n p , and the correlations

between SSR i and SSR j , and between SSE i and SSE j , it is possible to compute an overall F -test for the
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ata. The procedure for the LRT is similar to that for the F -test, and below they are presented together.

he procedure for the t -test is somewhat different and is described after the F -test and LRT. 

For a given partition i , 2 SSR i follows a χ2 distribution with df 1 degrees of freedom. A χ2

istribution with df 1 degrees of freedom is the sum of df 1 squared Gaussian variables with mean

 and variance 1. Thus, SSR i can be expressed as SSR i = G 

2 
i, 1 + G 

2 
i, 2 + ... + G 

2 
i , df 1 . The overall test

tatistic depends on the sum of SSR i from all partitions i = 1, 2, ..., n p . Let G denote the ( n p df 1 ) x 1

ector of values of G i , μ ( μ = 1, ..., df 1 ) from all partitions. By construction Eqs. 8 - (11) , the distributions

 i, μ and G i, ν ( μ � = ν) within the same partition i are independent. To satisfy the identity in Eq. (13) for

SR , the correlations between G i, μ and G j, ν from different partitions i and j are 

cor 
[
G i,μ, G j,ν

]
= 

(
ρi, j /d f 1 

)1 / 2 
(16)

or ρ i,j = vec ( S i ) 
′ ( R ij �R ij ) vec ( S j )/ df 1 and S i = ( H i – H 0 i ). Letting P be the correlation matrix containing

alues of cor[ G i, μ, G j, ν ], the distribution of the sum of SSR i from all partitions is 

SSR = 

∑ 

i 

SS R i ∼ G ′ PG (17)

here G 

′ PG follows a quadratic Gaussian distribution. The probability density function of this

uadratic Gaussian can be computed directly [ 5 , 7 ] to give the probability of G 

′ PG being greater than

n observed value of SSR , which produces the P -value of the LRT. 

The F -test depends on both SSR and SSE , where SSE is defined like SSR as SSE = �i SSE i and

ach SSE i has df 2, i degrees of freedom. Because partitions may differ in size, df 2, i may differ among

artitions. Because the values of df 2, i will be large (certainly > 100), the values of SSE i / df 2, i will be

pproximately Gaussian distributed with mean 1 and variance 2/ df 2, i . The correlation between the

aussian distributions of SSE i / df 2, i and SSE i / df 2, i can be derived from Eq. (14) with S i = ( I – H i ).

hus, the F -score is approximated as the quadratic Gaussian distribution for SSR divided by the

aussian distribution for SSE . There is no closed-form expression for this distribution, and therefore it

s obtained via simulating a large number (e.g., 10 5 ) values to generate the approximate (parametric

ootstrapped) test distribution. 

For the t -test, the estimator of the coefficient b h,i , ˆ b h,i , from partition i follows a

aussian distribution, and the test statistic for the mean value of ˆ b h,i from all partitions is

 �i ̂
 b h,i / n p )/se[ �i ̂

 b h,i / n p ] Eq. (15) . gives the correlation between 

ˆ b h,i and 

ˆ b h,j from partitions i and

 , cor[ ̂ b h,i , ˆ b h,j ]. Thus, se[ �i ̂
 b h,i / n p ] 

2 = (1/ n p ) 
2 �ij cor[ ̂ b h,i , ˆ b h,j ]se[ ̂ b h,i ]se[ ̂ b h,j ] is the sum of n p random

ariables each having a χ2 distribution with df 2, i degrees of freedom. From this expression,

 �i ̂
 b h,i / n p )/se[ �i ̂

 b h,i / n p ] is approximately distributed as a t -distribution with �i df 2, i degrees of

reedom; for large degrees of freedom df 2, i , this will approach a Gaussian distribution with mean

ero and variance one. 

patiotemporal analyses 

The spatiotemporal analyses follow the approach presented in Ives et al. [9] for analyzing time

rends in remote-sensing data. The approach involves first fitting a time-series model to the time

eries in each pixel on a map and obtaining the estimate of the time trend. As described below, the

orrelations between the residuals obtained from the fitted time-series model approximate the spatial

utocorrelation of the estimated coefficients of the time trends. Therefore, the spatial autocorrelation

atrix required for the GLS spatial analysis can be estimated before the GLS analysis is performed.

lthough this approach can be used for different time-series models, here we focus on two: least-

quares (LS) regression, and regression with AR(1) errors estimated using REML. The former is useful,

ecause it allows analytical solutions, whereas the second has better statistical properties and is

herefore preferentially used for the analyses in Ives et al. [9] . 

To explain the approach, we use a specific spatiotemporal model, and we also use this model in

he validation. The model for time series within pixel l is 

z l ( t ) = a l + c l t + ε l ( t ) 
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ε l ( t ) = βl ε l ( t − 1 ) + δl ( t ) (18) 

Here, z l ( t ) is the value of interest in pixel l at time t ( t = 1, 2, ..., T ), a l is the intercept, and c l 
is the time trend. Random errors εl ( t ) follow a stationary first-order Gaussian autoregressive process

with mean zero generated from the Gaussian random variable δl ( t ) that has mean zero and variance

σ 2 , with values independent through time so that E[ δl ( t ) δl ( s )] = 0 for s � = t . Thus, the vector ( εl (1) ,

..., εl ( T )) 
′ ,has distribution N(0, σ 2 /(1 – β l 

2 ) �l ), where the elements of the correlation matrix �l are

cor[ ε l ( t ), ε l ( s )] = β l 
| t –s | for all t and s . To include spatial autocorrelation, we assume that the Gaussian

random variables δl ( t ) and δk ( t ) at t from pixels l and k are correlated, with parameter cor δ = cor[ δl ( t ),

δk ( t )], but values of δl ( t ) and δk ( s ) are independent when s � = t . 

The procedure for spatiotemporal data collapses temporal information from the time series into 

two quantities: the pixel-specific estimates of the time trend c l and the correlations between the

temporal errors εl ( t ) and εk ( t ) from pixels l and k . Note that the estimates of c l , ˆ c l , are now the

dependent variable in the spatial model, rather than the data z l ( t ). For LS regression, the exact

relationship between the correlation cor[ ̂ c l , ˆ c k ] and cor[ ε l ( t ), ε k ( t )] can be derived analytically under

the assumption that the temporal autocorrelation coefficients β l and βk are known. The T x T

covariance matrix W lk whose t,s -element ( t = 1, ..., T; s = 1, ..., T ) is the covariance between εl ( t )

and εk ( s ) is given by 

W lk = co r δ ( I − βi �) 
−1 �lk 

(
( I − βk �) 

−1 
)′ 

(19) 

where I is the T x T identity matrix, and � is the backward shift operator [3] . Under the assumption

that the time series are sampled from their stationary distributions, �lk is a diagonal matrix whose

first diagonal element is the value of cov[ ε l ( t ), ε k ( t )] at the stationary distribution, and other

diagonal elements are one. The stationary distribution of E ( t ) = ( ε l ( t ), ε k ( t )), follows a bivariate

Gaussian distribution with mean (0, 0), and covariance matrix �E satisfying vec( �E ) = σ 2 ( I –

���) –1 vec ( �) where � is the 2 x 2 diagonal matrix containing β l and βk , and � is the 2 x 2 matrix

with 1 on the diagonal and cor δ on the off-diagonal. 

For LS regression, cor[ ̂ c l , ˆ c k ] can be computed as 

cor 
[

ˆ c l , ̂  c k 
]

= 

(
KW lk K 

’ 
)
/ 
((

KW ll K 

’ 
)(

KW kk K 

’ 
))

(20) 

where K is the second row of the 2 x T matrix ( J ′ J ) –1 J , where J is the T x 2 matrix containing 1 in the

first column and time t = 1, ..., T in the second column; in other words, J is the matrix of independent

variables that would be used to fit Eq. (18) using LS regression. 

We used Eqs. (19) and (20) to explore the relationship between cor[ ̂ c l , ˆ c k ] and cor[ ε l ( t ), ε k ( t )],
thereby investigating the validity of using cor[ ε l ( t ), ε k ( t )] as an approximation of cor[ ̂ c l , ˆ c k ] in a spatial

GLS analysis of ˆ c l . Eqs. (19) and (20) apply only for LS regression analyses of the time series ( Eq. 18 ),

and therefore we performed simulations for regression with AR(1) errors estimated using REML. When 

β l = βk , cor[ ̂ c l , ˆ c k ] = cor[ εl ( t ), εk ( t )] = cor δ for LS regression ( Table 1 ). For AR(1) regression, cor[ ̂ c l , ˆ c k ]

and cor[ ε l ( t ), ε k ( t )] are slightly lower than cor δ, although they are equal (within the uncertainty of the

simulation) ( Table 2 ). Therefore, when β l = βk , cor[ εl ( t ), εk ( t )] is an excellent approximation for cor[ ̂ c l ,

ˆ c k ]. Keeping β l = 0.8, as βk decreases from the high value of βk = 0.8, cor[ ε l ( t ), ε k ( t )] decreases below

cor δ; cor[ ̂ c l , ˆ c k ] also decreases below cor δ, but the decrease is not as great as cor[ ε l ( t ), ε k ( t )] especially

for longer time series (larger T ). Therefore, cor[ ̂ c l , ˆ c k ] is generally greater than cor[ ε l ( t ), ε k ( t )], with the

ratio cor[ ̂ c l , ˆ c k ]/cor[ ε l ( t ), ε k ( t )] greater when the difference between β l and βk is large, and when the

time-series are longer. For the example dataset from Alaska analyzed in Ives et al. [9] , the time series

have length T = 34, and estimates of β l had a mean of 0.40 and a standard deviation of 0.23. The

simulations in Table 2 for AR(1) regression suggest that using cor[ ε l ( t ), ε k ( t )] to approximate cor[ ̂ c l ,

ˆ c k ] will lead to a small overestimate of cor[ ̂ c l , ˆ c k ], although this will not change the conclusions; this

is discussed in detail in Ives et al. [9] . 

To build the correlation matrix C for the GLS spatial analysis, we assume that cor[ ̂ c l , ˆ c k ] decays

according to some function v ( d lk ) of the distance d lk between pixels l and k . For example, Ives et al.

[9] use an exponential-power function v ( d lk ) = exp(-( d lk / r ) 
g ) where the range parameter r and shape
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Table 1 

Relationship between the correlation for estimates of the time trend parameter, cor[ ̂ c l , 

ˆ c k ], and the correlation for residuals from least-squares (LS) regression, cor[ ε l ( t ), ε k ( t )]. 

To explore extreme differences in the strength of temporal autocorrelation between time 

series, β l = 0.8 for one time series and βk = –0.4, 0, 0.4, and 0.8 for the other time 

series, with time-series length T = 10, 30, or 100. The values of cor[ ε l ( t ), ε k ( t )] and cor[ ̂ c l , 

ˆ c k ] were calculated analytically using Eqs. (19) and (20) , respectively. Throughout, the 

parameter governing the correlation between δl ( t ) and δl ( s ), cor δ, was 0.5. 

β l βk T cor δ cor[ ε l ( t ), ε k ( t )] cor [ ̂ c l , ̂  c k ] cor [ ̂ c l , ̂  c k ] /cor[ ε l ( t ), ε k ( t )] 

0.8 -0.4 10 0.5 0.21 0.25 1.21 

0.8 -0.4 30 0.5 0.21 0.38 1.84 

0.8 -0.4 100 0.5 0.21 0.46 2.22 

0.8 0.0 10 0.5 0.30 0.32 1.06 

0.8 0.0 30 0.5 0.30 0.41 1.37 

0.8 0.0 100 0.5 0.30 0.47 1.58 

0.8 0.4 10 0.5 0.40 0.41 1.00 

0.8 0.4 30 0.5 0.40 0.45 1.11 

0.8 0.4 100 0.5 0.40 0.48 1.20 

0.8 0.8 10 0.5 0.50 0.50 1.00 

0.8 0.8 30 0.5 0.50 0.50 1.00 

0.8 0.8 100 0.5 0.50 0.50 1.00 

Table 2 

Relationship between the correlation for estimates of the time trend parameter, cor[ ̂ c l , ˆ c k ], 

and the correlation for residuals, cor[ εl ( t ), εk ( t )], from regression with AR(1) errors fit with 

REML. To explore extreme differences in the strength of temporal autocorrelation between 

time series, β l = 0.8 for one time series and βk = –0.4, 0, 0.4, and 0.8 for the other time 

series, with time-series length T = 10, 30, or 100. The values of cor[ ε l ( t ), ε k ( t )] and cor[ ̂ c l , 

ˆ c k ] were calculated by simulating Eq. (18) for 50,0 0 0 pairs of time series. Throughout, the 

parameter governing the correlation between δl ( t ) and δl ( s ), cor δ , was 0.5. 

β l βk T cor δ cor[ ε l ( t ), ε k ( t )] cor[ ̂ c l , ˆ c k ] cor[ ̂ c l , ˆ c k ]/cor[ ε l ( t ), ε k ( t )] 

0.8 -0.4 10 0.5 0.23 0.24 1.04 

0.8 -0.4 30 0.5 0.22 0.33 1.54 

0.8 -0.4 100 0.5 0.21 0.43 2.06 

0.8 0.0 10 0.5 0.31 0.30 0.95 

0.8 0.0 30 0.5 0.31 0.37 1.19 

0.8 0.0 100 0.5 0.30 0.44 1.47 

0.8 0.4 10 0.5 0.41 0.40 0.97 

0.8 0.4 30 0.5 0.40 0.41 1.01 

0.8 0.4 100 0.5 0.40 0.47 1.16 

0.8 0.8 10 0.5 0.46 0.49 1.06 

0.8 0.8 30 0.5 0.48 0.47 0.98 

0.8 0.8 100 0.5 0.49 0.48 0.99 

p  

l  

p  

n

I

 

d  

t  

c  

v  

e  

c

arameter g are estimated from the calculated values of cor[ ε l ( t ), ε k ( t )] for a subset of pairs of

ocations using nonlinear regression of cor[ ε l ( t ), ε k ( t )] on d lk . For large datasets, the estimates of

arameters in v ( d lk ) have small standard errors, and therefore uncertainty in v ( d lk ) is assumed to be

egligible. 

mplementation 

The partition approach for performing statistical tests can be implemented directly using the

erivations above. When using random partitions, for large datasets it is not necessary to calculate

he pairwise correlations between SSR i (or SSE i ) from all partitions Eqs. 13 , (14) , or the pairwise

orrelations between the estimates of the coefficients from all partitions ( Eq. 15 ). These correlations

ary little between different pairs of partitions, and the number of partitions can be set after

xamining the variation in correlations for specific datasets. This approach saves considerable

omputational time for large datasets with many partitions. 
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Although the methods are presented assuming that the correlation matrices C i are known, in

many applications C i will contain one or more parameters to be estimated. For example, spatial

models will often contain a "nugget" to capture local (non-spatial autocorrelation) variation [ 4 , 9 ].

In the spatiotemporal analysis we outline above, other parameters giving the spatial extent of the

autocorrelation (e.g., r in v ( d lk )) can be estimated from the residuals of the time-series analyses.

However, for the purely spatial model these would be estimated during the GLS spatial analysis. Any

parameters of C i can be estimated for each partition separately and the formulae applied with the

estimated matrices of C i . The resulting omnibus test statistics are then conditional on the parameter

estimates of C i . 

The methods are implemented as a part of the package remotePARTS in the R programming

language. It is available at https://github.com/morrowcj/remotePARTS . 

Methods validation 

Spatial model 

To assess type I error rates and power, we performed a simulation study using the regression

model 

y l = b 0 + b x l + γl (21) 

in which the N spatial errors γ l follow a multivariate Gaussian distribution with correlation matrix 

C , N(0, σ 2 
γ C ). The simulation was performed on a 60 x 60 pixel map ( N = 3,600), which was small

enough to perform a GLS analysis Eqs. 1 - (7) without partitioning the datasets. Spatial autocorrelation

was introduced by assuming that the elements of C equal exp(–d lk / r ). Values of r were standardized

to the scale of the map, and values of r = 0.03 and 0.1 correspond to 3% and 10% of the maximum

distance on the map (corner to corner). Values of x l were given by the “latitude” that was defined as

the row number in the 60 x 60 map divided by 60. For each value of b = 0, 2, 4, ..., 20, five hundred

simulations were performed, and the null hypothesis H 0 : b = 0 was tested for each at the significance

levels of α = 0.05 and 0.01. We performed the partition analyses with eight partitions, and computed

the pairwise correlations between SSR i (or SSE i ) Eqs. 13 , (14) as the average from a random subset of

six partitions (a subset of 15 of the 28 total number of pairwise correlations). 

Fig. 1 gives the proportion of the simulations for which H 0 : b = 0 was rejected, with the

significance level α given by the black dotted line. The tests were based on different methods for

producing P -values. First, GLS ( Eq. 4 ) was used to perform an F -test ( P GLS ), which gives the "gold

standard" since the GLS is the best linear unbiased estimator (BLUE) [10] . Second, the partition

method developed here was applied using eight partitions to give an F -test ( P F ), a LRT ( P LRT ), and a

t -test ( P t ). Third, the lowest P -value from the eight partitions from F -tests was selected and adjusted

for eight multiple comparisons using either the Hochberg adjustment ( P hoch ) [6] or the False Discovery

Rate adjustment ( P fdr ) [2] . Finally, a single partition was selected at random and its P -value was used

( P single ). 

As expected, all three values using the method developed here ( P F , P LRT , and P t ) gave very similar

results. Type I error rates were appropriate, with close to 5% and 1% of simulations rejected at

significance levels of α = 0.05 and 0.01, respectively. There was slight loss of power in comparison

to the GLS ( P GLS ). Nonetheless, this loss of power was less than that of either Hochberg or FDR

adjustments for multiple comparisons ( P hoch and P fdr ). In fact, when autocorrelation was high ( r = 0.1),

the Hochberg or FDR adjustments had lower power than the randomly chosen partition ( P single ). 

Because partitions were created randomly, there is variation in the test statistics depending on 

the partitions created. To illustrate this, Fig. 2 gives the distributions of P -values for a partition LRT

of H 0 : b = 0 for two simulated datasets constructed as described above with r = 0.03 ( Fig. 2 a) and

r = 0.1 ( Fig. 2 b). The variation in the P LRT with eight partitions is created solely by the selection

of different partitions, because the datasets were the same for all analyses in the same panel. It is

interesting that the variation in P -values is less for the more-highly autocorrelated dataset ( r = 0.1,

Fig. 2 b), which is likely due to the greater correlations between SSR i from different partitions which

makes the test scores from the separate partitions more similar. Finally, note that these results are

https://github.com/morrowcj/remotePARTS
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Fig. 1. Type I errors and power for the methods combining correlated tests among partitions for spatial data. Five-hundred 

simulations were performed on a 60 x 60 map using equation (19) for each value of b = 0, 2, 4, ..., 20, with either moderate 

( r = 0.03; a,c) or strong ( r = 0.1; b,d) spatial autocorrelation. The hypothesis H 0 : b = 0 was tested at significance levels of 

α = 0.05 (a,b) and 0.01 (c,d) using: an GLS F -test ( P GLS ); the partition method with eight partitions giving an F -test ( P F ), a LRT 

( P LRT ), and a t -test ( P t ); selecting the lowest P -value and applying a Hochberg ( P hoch ) or the False Discovery Rate adjustment 

( P fdr ); and randomly selecting one partition ( P single ). 

f  

P  

d  

P

 

s  

a  

w
 

a  

c  

w

or “small” datasets compared to those that the method was designed to analyze; the variation in

 -values from different random partitions is less for larger remote-sensing datasets [9] . For smaller

atasets, the analyses can be run multiple times with different random partitions, and the overall

 -value is selected as the median of multiple values computed. 

To compare the statistical results for different numbers (and hence sizes) of partitions, we use the

ame simulation model on a 60 x 60 pixel map to investigate the power to reject H 0 : b = 0 using

 LRT when the true value is b = 10 Table 3 ). For 8 and 16 partitions, a subset of six partitions

as chosen at random to compute the pairwise correlations between SSR i among partitions and SSE i
mong partitions ( Eqs. 13 , (14) . The proportion of the simulations for which H 0 : b = 0 was rejected

hanged little with the number of partitions, n p = 1, 2, 4, 8, and 16. This suggests that loss of power

hen partitioning data is insensitive to the number of partitions. 
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Fig. 2. P -values from a LRT of H 0 : b = 0 applied to the same simulated 60 x 60 pixel dataset but using different random 

partitions. (a) A simulated dataset with b = 20 and the range parameter r = 0.03, and (b) a simulated dataset with b = 5 and 

the range parameter r = 0.1. The example datasets were selected to give P -values near 0.05. For each panel, the same dataset 

was fit 100 times with different partitions. Eight random partitions each containing 450 pixels were selected for each analysis. 

Table 3 

Power of the partition method for a given 

number of partitions. Five-hundred simulations 

were performed on a 60 x 60 map using Eq. (21) 

with b = 10 and either moderate ( r = 0.03) 

or strong ( r = 0.10) spatial autocorrelation. The 

hypothesis H 0 : b = 0 was tested at a significance 

level of α = 0.05 for different numbers of 

partitions: 1, 2, 4, 8, and 16. Significance was 

determined using an F-test (for 1 partition, 

i.e., the entire dataset) and LRTs (for partitions 

n p = 2, 4, 8, and 16). The reported values are 

the proportions of the 500 simulations for which 

H 0 : b = 0 was rejected. 

Number of partitions r = 0.03 r = 0.10 

1 0.722 0.188 

2 0.732 0.196 

4 0.724 0.192 

8 0.716 0.196 

16 0.718 0.200 

 

 

 

 

 

 

 

 

 

 

 

Spatiotemporal model 

We performed a simulation study using the time-series model given in Eq. (18) on a map of

40 x 40 pixels. Each time series was 30 data points long, with moderate temporal autocorrelation

( β l = 0.2). Spatial autocorrelation in the matrix C was assumed to have the form v ( d lk ) = (1

– nugget )exp(–( d lk / r )) for l � = k ; thus, a proportion nugget of the error variance is “local” to a

pixel. Spatial autocorrelation was assumed to be either moderate or strong ( r = 0.03 or r = 0.1).

We estimated r from the correlation among residuals, while nugget was estimated during the GLS

spatial analysis via maximum likelihood. Thus, unlike the spatial example ( Fig. 1 ), the spatiotemporal

example included a parameter in matrix C that was estimated. 

We assumed that the map was divided into 16 squares (10 x 10 pixels each) and assigned to four

land-cover classes (e.g., Fig. 4 in [9] ). The time trends in each of the four land-cover classes were

given by c 1 = 0, c 2 = c, c 3 = 2 c, c 4 = 3 c , with values of c = 0, 0.04, ..., 0.20. We simulated 500

datasets for each parameter combination and tested the hypothesis that there were no differences in
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Fig. 3. Type I errors and power for the methods combining correlated tests among partitions for spatiotemporal data. Five- 

hundred simulations were performed using Eq. (16) , and the proportions of simulated datasets for which the null hypotheses 

of (a,b) no differences in time trends among land-cover classes and (c,d) no overall time trend were rejected at the significance 

level of α = 0.05. Simulations were performed for weak ( r = 0.03; a,c) and strong ( r = 0.1; b,d) spatial autocorrelation. The 

true time trends for the four land-cover classes were c 1 = 0, c 2 = c, c 3 = 2 c, c 4 = 3 c , with values of c = 0, 0.02, ..., 0.2. 

To scale the time trends, the time variable t ranged from 0 to 1 over the 30-year simulated time series, and the standard 

deviation σ of δl ( t ) was 1. Therefore, a value of 0.12, for example, represents a change in the mean value of z l ( t ) over 30 

years of 0.12 σ (1 − βι
2 ) –0.5 . To include pixel-scale (non-spatially autocorrelated) variation, we added non-spatial variation in 

the form of a Gaussian random variable with mean zero and variance 0.16 to c for each pixel. Simulations were performed for 

a 40 x 40 grid of pixels with weak temporal autocorrelation ( β l = 0.2). The hypotheses were tested using (i) a GLS analysis 

applied to all of the data ( P GLS ), (ii) a GLS applied to eight partitions of the data with the log-likelihood ratios combined among 

partitions ( P part ), (iii) the lowest P -value from the GLS analyses of the eight partitions correcting for multiple comparisons using 

a Hochberg ( P hoch ) or False Discovery Rate ( P fdr ) adjustment, and (iv) a randomly selected partition ( P single ). 

t  

t  

e  

t  

a

 

(  

n  

p
 

rends among land-cover classes, H 0 : c 1 = c 2 = c 3 = c 4 , and the hypothesis that there was no overall time

rend, H 0 : c = 0. We performed the test using GLS on the entire map. We also partitioned the map into

ight random partitions and tested each separately. We then combined the tests either by selecting

he partition with the lowest P -value and adjusting for multiple comparisons, or combining the tests

s described in the section Combining tests from the partitions . 

For both tests of differences among land-cover classes ( Fig. 3 a, b) and tests for an overall trend

 Fig. 3 c, d), the GLS analyses of the entire map had the highest statistical power to reject the

ull hypothesis. The method combining statistical results among partitions had the second-highest

ower ( P part ), while the method using adjustments for multiple comparisons had lower power ( P hoch
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and P fdr ). Finally, in general picking a single partition at random had the lowest power ( P single ).

Spatial autocorrelation reduced the statistical power of all methods ( r = 0.1; Fig. 3 b, d). The method

combining statistical results among partitions ( P part ) had somewhat inflated type I error rates for

the analyses of land-cover classes, rejecting 9% of the simulated datasets when the null hypothesis

was true. The inflated type I error rates, however, were the result of the relatively small size of the

simulated map (40 x 40 pixels) necessitated by the application of the GLS analysis of the entire

map ( P GLS ). Repeating the same analysis on a 60 x 60 pixel map ( P part ) gave rejection rates of

5.4% ( r = 0.03) and 5.2% ( r = 0.1). The inflated type I errors for the smaller map occurred due to

the estimation of the nugget , because GLS in which no parameters in the correlation matrix C are

estimated does not give inflated type I errors [10] . 
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