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Abstract: Soil organic carbon (SOC) content supports several ecosystem services. Quantifying SOC
requires: (i) accurate C estimates of forest components, and (ii) soil estimates. However, SOC is
difficult to measure, so predictive models are needed. Our objective was to model SOC stocks
within 30 cm depth in Patagonian forests based on climatic, topographic and vegetation productivity
measures from satellite images, including Dynamic Habitat Indices and Land Surface Temperature
derived from Landsat-8. We used data from 1320 stands of different forest types in Patagonia,
and random forest regression to map SOC. The model captured SOC variability well (R2 = 0.60,
RMSE = 22.1%), considering the huge latitudinal extension (36.4◦ to 55.1◦ SL) and the great diversity
of forest types. Mean SOC was 134.4 ton C ha−1 ± 25.2, totaling 404.2 million ton C across Patagonia.
Overall, SOC values were highest in valleys of the Andes mountains and in southern Tierra del Fuego,
ranging from 53.5 to 277.8 ton C ha−1 for the whole Patagonia region. Soil organic carbon is a metric
relevant to many applications, connecting major issues such as forest management, conservation, and
livestock production, and having spatially explicit estimates of SOC enables managers to fulfil the
international agreements that Argentina has joined.

Keywords: soil organic carbon; native forests; land use planning; vegetation productivity; Landsat-8;
dynamic habitat indices (DHIs)

1. Introduction

Argentina is among the countries that signed the Kyoto Protocol and the Paris Agree-
ment, recognizing climate change as a shared problem. Argentina has committed to
reducing carbon (C) emissions significantly by 2030 and reaching zero C emissions by 2050.
To meet these goals, the Argentinian government implemented the “National Plan for
Adaptation and Mitigation to Climate Change” [1]. One of the key targets of this plan is to
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protect native forests, which cover approximately 46.8 million hectares [2]. Maintaining
native forests is also a key strategy under the REDD+ initiative (Reducing Emissions from
Deforestation and forest Degradation) of the United Nations. According to REDD+, pro-
tection of forests alone can contribute 30% of the actions needed to keep global average
temperature rise at or below 2 ◦C, but requires rapid reduction of deforestation and degra-
dation, and promotion of sustainable management [3]. Argentina has a strong protected
area network that covers nearly 12% of the land area, and which does not equally protect
all native forest ecosystem types [4]. However, most native forests are privately owned,
and regulations are needed to ensure their persistence [5]. Zoning is one of the instruments
used by the Argentinian government to regulate human activities in native forests, and the
provinces are obligated to define land use zones, which must be updated every five years,
e.g., Ordenamiento Territorial de los Bosques Nativos/Land Use Planning of Native Forests
(OTBN) defined by National Law 26,331/07 [1,6]. Accurate, broad-extent yet fine-resolution
information on forest resources is needed for sustainable management and conservation
planning [7–11], and for scientific investigations [12]. In Argentina, national and provincial
governments are lacking accurate information to quantify emissions and C stocks, which is
required for both policy formulation and meeting reporting requirements by international
agencies [13,14]. Without detailed information on forest C dynamics, it is impossible to
gauge the effectiveness of both proposed and implemented policies [15–17].

Quantifying C stocks in the forested landscapes requires two steps: the first is to obtain
accurate C estimates in the stands (e.g., trees, deadwood, understory plants, soils) [16,18].
The second step is to model and map these C across large areas [19,20], representing a
challenge in those areas with low data availability. There are estimates of C storage in
native forests at stand level in Patagonia [19,21–23], and they include both estimates of
above- and below-ground components for wide ranges of site quality of the stands and
tree crown classes [15,18,24]. While these data provide accurate estimates of the different
tree components at stand level, modeling and mapping forest C in the landscape remains
a challenge in Argentina. Fortunately, recent advances in mapping forest structure and
functionality for large areas combine field-based measurements with data from passive
and active satellite sensors including radar (e.g., [25–27]) provide measurements of forest
attributes, plus the uncertainty in those measurements, over large areas at much lower cost
than traditional field inventories [28–30]. In contrast to the advances in biomass and C
stock estimations in the above-ground components of forests, soil components have largely
been ignored. The question that we want to answer in this study is how well those remote
sensing metrics can predict forest C, and especially SOC, for which large-area estimates
are rare.

Soil organic carbon (SOC) is the main component of forest C stock [31], and can
be greatly affected by management [32,33]. The amount of carbon in soil is the result
of a combination of forest cover, past disturbances, climatic conditions, and manage-
ment practices [34,35]. SOC is also important for ecosystem service provision in native
forests [15,36,37], and for supporting biodiversity [16,23]. SOC influence over the ca-
pacity of forests to produce timber and forage availability for both wild and domestic
animals [23,38]. Accordingly, SOC is a useful indicator for assessing the sustainability of
silvopastoral systems [15,32]. While SOC content has been characterized in local studies
of Patagonian native forests [15,24,39–41], large-area modeling of SOC at regional scale
has rarely attempted, e.g., in Santa Cruz province, climate variables (e.g., isothermality
and precipitation seasonality) plus the normalized difference vegetation index (NDVI)
explain broad-scale SOC variation [19]. NDVI was one of the first remote sensing analytical
products used to simplify the complexities of multi-spectral imagery, and is one of the most
popular indices used for vegetation assessment [42]. The capabilities of NDVI have greatly
improved in recent decades [43], and its potential has greatly increased with analysis com-
plexity and available technology. More recently, other related indexes have also been used
to improve vegetation assessment, e.g., Landsat Enhanced Vegetation Index (EVI) [44,45].
SOC is positively associated with vegetation cover [34], and it is possible that measures
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such as vegetation phenology and Dynamic Habitat Indices (DHIs) [26,46,47] may offer
higher predictive power for estimating SOC. We expect that these vegetation indices can
improve the SOC modeling at landscape level, due to these variables combine multiple
functional proxies of ecological processes [15,26,47].

Our goal was to model SOC stocks on soils within 30 cm depth in Patagonian forests
(Argentina), based on climatic, topographic and remotely sensed vegetation productivity
measures. Our specific objectives were to: (i) model SOC based on the DHIs and cli-
mate variables (e.g., Land Surface Temperature, LST) derived from Landsat-8 data plus
climate and topography information and predict SOC across Patagonia at 30 m resolution;
(ii) map the uncertainty of our SOC predictions, and quantify the relative contribution
of the predictors to the model; (iii) compare model accuracy for different provinces and
forest types across Patagonia; and (iv) quantify the SOC stocks by province, forest type,
national or regional protection status (National Law 26,331/07), and national and provincial
reserve networks.

2. Materials and Methods
2.1. Study Area and Sampling Design

We analyzed the native forests of Argentinian Patagonia (30,071.7 km2), which are
located between 36.4◦ and 55.1◦ SL, and 63.8◦ and 73.5◦ WL (Figure 1). The forest area was
defined by crossing the area defined in Argentina’s National Forest Inventory [48] and the
Global Forest Change (GFC) data set [49]. Patagonia includes five different provinces along
2100 km: Tierra del Fuego (TDF), Santa Cruz (SC), Chubut (CHU), Río Negro (RN), and
Neuquén (NQN). The region is dominated by temperate forests with low diversity of tree
species, and included different assemblages of deciduous, evergreen and coniferous [50].
We considered seven categories of forests for this study (different grouping of forest types
with similar characteristics) (Table 1), where Nothofagus are the dominant tree genus,
growing in pure or mixed stands [51].
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Table 1. Forest type classification for Patagonian forests.

Acronym Description

NP Forests with >70% basal area (BA) of Nothofagus pumilio, where the remaining
30% may be composed of other associated native tree species.

NA Forests with >70% BA of N. antarctica, where the remaining 30% may be
composed of other associated native tree species.

N-MIX
Pure and mixed deciduous Nothofagus forests, where >70% BA belongs to
other deciduous Nothofagus species such as N. obliqua and N. alpina, where
the remaining 30% may be composed for other associated native tree species.

N-EVE
Pure evergreen Nothofagus forests, where >70% BA belongs to evergreen
Nothofagus species such as N. dombeyi and N. betuloides, and the remaining
30% may be composed of other associated native tree species.

CON

Pure and mixed coniferous forests, where >70% BA belongs to Austrocedrus
chilensis, Araucaria araucana, Fitzroya cupressoides, Pilgerodendron uviferum, and
other native coniferous species, where the remaining 30% may be composed
of other associated native tree species.

EVE

Pure and mixed broadleaved evergreen forests, where >70% BA belongs to
Maytenus boaria, Lomatia hirsuta, Luma apiculata, Myrceugenia exsucca, and
other native broadleaved species, where the remaining 30% may be
composed of other associated native tree species.

MIX Mixed forests combining native broadleaved and deciduous tree species,
where none exceeds 70% BA, and which do not fit into the above categories.

We selected stands (>2 ha) from the different forest types for soil sampling (Figure 1)
based on their accessibility, conservation status, and lack of strong transformation or
degradation (e.g., basal area <15 m2 ha−1). In total, we sampled 1320 stands, reaching one
sampled stand for every 22.8 km2 of forest cover (Table 2). The sampling effort is presented
in Table 2 considering the different forest cover types and the forest cover of each province.
The sampled stands covering the native forest distribution in Patagonia along the main
climate and topographic gradients, e.g., the Andes mountains, run in the N–S direction in
the mainland but turn to the W–E direction in the Tierra del Fuego archipelago, defining
precipitation and temperature greatly [1].

2.2. Soil Sampling and Calculation of Soil Organic Carbon

For each stand, we extracted soil samples (n = 4–9 in randomly selected areas covering >200 cm2

of cover at each stand) using a hand soil sampler including the first 30 cm depth below litter
layer. The soil sampler has a known volume (200–300 cm3), making it possible to calculate
soil bulk density (SBD). The calculations were conducted with air-dried samples, with any
particles >2 mm removed previously by sieving (roots, stones, coarse woody debris).

To conduct chemical analyses, we pooled the individual soil samples of each stand,
while maintaining the identity of the soil depth layers. The fine-earth fractions were
used for laboratory analyses using two different methods: (i) C-concentration derived
from dry combustion (induction furnace) using a LECO auto-analyzer (St. Joseph, MI,
USA), and (ii) determination of organic matter by gravimetric technique after mass loss
on ignition using dry combustion, which was used to model the C concentration in a
sub-sample of plots. The dependent variable in models, SOC, was estimated using two
different techniques: 500 ◦C for 24 h [31], and 500 ◦C for 2–3 h, following the methods of
IRAM-SAGPyA 29571-1-2008 (Argentina). SOC was calculated with the C concentration
(one of the two previously described methods) and the SBD for the first 30 cm soil layer
(ton C ha−1).
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Table 2. Sampling effort for the modeling, showing the area (km2) of the different forest types (see
Table 1) and number of plots (stands) in each province (TDF = Tierra del Fuego, SC = Santa Cruz,
CHU = Chubut, RN = Río Negro, NQN = Neuquén). Sampling effort compares the percentage of
forest area and percentage of plots in each category, where (+) indicates over-sampling relative to
extent of forest type, and (−) indicates under-sampling.

Type TDF SC CHU RN NQN Total

Area

NP 4054.0 2104.4 4232.4 1835.2 4001.2 16,227.3
NA 2007.3 260.2 2239.1 747.7 1023.8 6278.0

N-MIX 0.0 30.2 14.4 7.2 253.6 305.5
N-EVE 1013.7 0.0 1013.4 546.4 1198.2 3771.8
CON 0.0 0.1 521.7 318.4 956.2 1796.5
EVE 0.0 0.0 26.3 9.6 15.3 51.2
MIX 217.4 75.0 344.0 275.9 729.1 1641.4

Total 7292.4 2469.8 8391.4 3740.5 8177.6 30,071.7

N Plots

NP 709 44 27 3 3 786
NA 243 74 48 0 11 376

N-MIX 0 3 1 1 20 25
N-EVE 24 0 2 3 2 31
CON 0 1 21 14 36 72
EVE 0 0 3 2 3 8
MIX 5 5 5 2 5 22

Total 981 127 107 25 80 1320

Sampling
effort

NP 16.7% −50.6% −25.2% −37.1% −45.2% 5.6%
NA −2.8% 47.7% 18.2% −20.0% 1.2% 7.6%

N-MIX 0.0% 1.1% 0.8% 3.8% 21.9% 0.9%
N-EVE −11.5% 0.0% −10.2% −2.6% −12.2% −10.2%
CON 0.0% 0.8% 13.4% 47.5% 33.3% −0.5%
EVE 0.0% 0.0% 2.5% 7.7% 3.6% 0.4%
MIX −2.5% 0.9% 0.6% 0.6% −2.7% −3.8%

Total 50.1% 1.4% −19.8% −10.5% −21.1%

2.3. Remotely Sensed Predictor Variables and Auxiliary Information

We used a combination of climate, topography, and vegetation productivity measures
as predictors in our SOC model. We obtained mean annual precipitation (1 km resolution)
from WorldClim [52], elevation (30 m resolution) from The Shuttle Radar Topographic Mis-
sion (SRTM), and four variables derived from Landsat-8 (30 m spatial resolution) available
in Google Earth Engine [53] from 2018 to 2021. Specifically, we analyzed Landsat-8 surface
reflectance, which was atmospherically corrected using LaSRC [54] and included a cloud,
shadow, water, and snow mask produced using CFMASK [55]. From this, we calculated the
EVI and generated a monthly time series that represented average conditions in each month
from 2018 to 2021. To do so, first we selected the highest EVI value in each month of each
year. Second, we selected the median monthly values across all years to reduce the effects
of extreme years. Then, we calculated multi-layer composite of Landsat-8 Dynamic Habitat
Indices (DHIs). We calculated the cumulative DHI as the sum of the monthly values, the
minimum DHI, and the variation DHI as the coefficient of variation. We also calculated
90th percentile of EVI (EVI_p90) to capture peak-growing season greenness [26,56,57]. Ad-
ditionally, EVI_p90 excludes extreme outliers that could strongly influence the cumulative
productivity estimate. The DHIs summarize the productivity of vegetation in three ways:
(i) annual cumulative productivity of DHI (CumDHI), as a measure of available energy,
which integrates the productive capacity over a year; (ii) minimum productivity of DHI
(MinDHI), as a measure of resource limitation; and (iii) annual variation of DHI (VarDHI),
that captures potential seasonality effects [46,47]. From Landsat-8, in addition to DHIs,
we also obtained the land surface temperature (LST) from Band 10 of the thermal infrared
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sensor (TIRS), and calculated median LST values for available observations from 2018
to 2021.

2.4. Modeling and Mapping the Soil Organic Carbon

We used random forest regression [58] to model the SOC. This algorithm parameterizes
a large number of decision trees (the ‘forest’), and the final prediction value corresponds to
the averaged output of all individual decision trees. We used the randomForest package [59]
available in R [60]. For calibration and training, we randomly selected 70% of the field
plots balanced across the Patagonia forest region according to the data histogram of SOC
(10 classes), including all class intervals in the training dataset. The remaining 30% were
used for validation data. We selected optimal values of the hyperparameters (ntree and
mtry) for the random forest model employing the random search method to tune the
hyperparameters [61]. For validation, we computed the coefficient of determination (R2, %)
and the root mean square error (RMSE). We also generated uncertainty maps of the relative
RMSE (%) and absolute RMSE (ton C ha−1) as follows: (i) we binned the predicted SOC
values into 10 bins (based on natural breaks) and computed the RMSE (both percentage
and absolute) for each bin; and (ii) we fitted a regression model to the 10 RMSE bin values
and the predicted mean values of each variable across the entire range of a given forest
attribute [62,63]. Based on this regression model, we then mapped the two RMSEs. To
quantify the relative contribution of predictors in the SOC model, we ranked the variables
based on the increase in the mean square error (IncMSE). IncMSE (%) reflects the average
increase in the variable’s contribution to the mean square error (MSE), divided by its
measure of variability. An auto-validation analysis was also conducted to obtain the global
estimation errors. Finally, to map the SOC, we applied the random forest regression models
to each pixel to predict SOC based on our predictor variables’ values. The predictions
were mapped at 30 m spatial resolution using geographic coordinate system and datum
World Geodetic System (WGS) 1984, integrated into a geographical information system
(GIS) using ArcMap 10.0 software (ESRI, Redlands, CA, USA) [64].

2.5. Data Extraction and Output Analyses

Based on our SOC map, we characterized Patagonian forests according to the de-
fined categories, which was used as a mask. We calculated C stocks (million ton C) and
related them to those variables used during the modeling: (i) total C stocks for Patago-
nian forests; (ii) SOC versus latitude and longitude of each plot; (iii) SOC versus average
mean annual temperature (◦C) and mean annual rainfall (mm yr−1) of each plot; (iv) SOC
versus elevation (m a.s.l.) of each plot; (v) SOC by forest type (Table 1); (vi) SOC for
each province using the limits informed by Instituto Geográfico Nacional (IGN) of Ar-
gentina (www.ign.gob.ar, accessed on 12 June 2021) (TDF = Tierra del Fuego, SC = Santa
Cruz, CHU = Chubut, RN = Río Negro, NQN = Neuquén); (vii) SOC classified by status
protection according OTBN [6]: red (high conservation value forests for ancestral uses,
gathering of non-timber forest products, scientific research, conservation plans, ecolog-
ical restoration), yellow (medium conservation value forests for sustainable productive
activities and tourism under the guidelines of management and conservation plans), and
green (low conservation value forest where land-use change is allowed) [1]; and (viii) SOC
in the existing reserve network according to the Administración de Parques Nacionales
(APN) of Argentina (www.argentina.gob.ar/parquesnacionales, accessed on 12 June 2021)
(NAT = National Parks, PRO = provincial reserves, UNP = unprotected). For each category
and combinations, we calculated mean SOC values and the standard deviation (SD).

3. Results
3.1. Performance of the Soil Organic Carbon Model

Our random forest model captured SOC variability across a broad latitudinal extent
and the seven categories of forest types well (R2 = 0.60, RMSE = 22.1%) (Figure 2). Scat-
terplots showed a good distribution of the plots, with some over-estimation of the lower

www.ign.gob.ar
www.argentina.gob.ar/parquesnacionales
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SOC values and under-estimation in the higher SOC values. Among our predictors, the
most important ones were climatic variables (mean annual rainfall and temperature; In-
cMSE = 44.08 and 39.00, respectively), followed by topography (elevation; IncMSE = 34.55),
and remotely sensed vegetation productivity measures (VarDHI_90 percentile EVI, and
CumDHI) (Figure 3).
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organic carbon content (SOC, ton C ha−1) across the Patagonia region. RAI = mean annual rainfall,
LST = land surface temperature, ELE = elevation, VarDHI = annual variation of Landsat-8 Dynamic
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The SOC map across Patagonian forests highlighted the power of combining vegeta-
tion productivity measures and LST from Landsat-8 together with climate and topography
variables (e.g., rainfall, and elevation) to capture the broad-scale patterns at high spatial
resolution (Figure 4). Our map of SOC shows strong spatial patterns, with highest SOC
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values in the valleys of the Andes and in southern Tierra del Fuego, ranging from 53.5 to
277.8 ton C ha−1. An auto-validation analysis showed an average error of 1.2 ton C ha−1,
which represents 0.8% of the mean value estimation for all regions. The accuracy varied
among provinces (TDF > CHU > RN > NQN > SC) and forest types (NP > NA > EVE >
N-MIX > CON > N-EVE > MIX).
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Uncertainty, indicated by both relative RMSE (%) and absolute RMSE (ton C ha−1),
was well captured by our regression models (R2 = 0.82 and 0.71, respectively) (Figure 5). In
general, RMSE (%) decreased as SOC increased (reaching a maximum of 12%), while abso-
lute RMSE (ton C ha−1) increased as SOC increased (reaching a maximum of 15 ton C ha−1)
(Figures 6 and 7).
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3.2. Soil Organic Carbon Stocks in Patagonian Forests

The total SOC in the top 30 cm of soil across the native forests of Patagonia was
404.2 million ton C for the first 30 cm of soil (Table 3). The mean value of SOC across all
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Patagonian forests was 134.4 ± 25.2 (SD) ton C ha−1, and ranged from 125.4 ± 16.1 ton
C ha−1 in SC province to 158.1 ± 27.9 ton C ha−1 in TDF. SOC content varied considerably
among forest types, ranging from 116.4 ± 22.9 to 145.5 ± 32.0 ton C ha−1 in coniferous forest
and pure evergreen Nothofagus forest, respectively (Figure A3). Mean annual temperature
and mean annual precipitation, two of the most important variables in models, were also
strongly affected by latitude and longitude, respectively, generating different SOC across
the landscape, e.g., SOC increases from N to S, and from E to W (Figure A4). The forest
types that contributed the most to the SOC stocks of Patagonia were NP (54%) followed by
NA (20%) and N-EVE (14%) (Table 3). Regional climate also affected SOC in the different
provinces, where southern provinces with more rainfall had higher contents (e.g., TDF with
158.1 ton C ha−1). Accordingly, across Patagonia, TDF contributed 29% of SOC followed
by CHU > NQN > RN > SC. With regard to protection status, 30% of the SOC stocks were
in the highest protection class of the OTBN (National Law 26,331/07), and 35% of the
SOC stocks were within protected areas (National Parks or Provincial Reserves). Detailed
classification of the different categorizations is presented in Tables A1–A3.

Table 3. Forest cover (FC, km2), soil organic carbon content (SOC, ton C ha−1) and standard deviation
(SD, ton C ha−1) to calculate the total C stock of Patagonian forests (million ton C), classified by forest
types (see Table 1), provinces (TDF = Tierra del Fuego, SC = Santa Cruz, CHU = Chubut, RN = Río
Negro, NQN = Neuquén), protection status according to national law 26.331/07 (OTBN), and reserve
networks (NAT = National Parks, PRO = Provincial Reserves, UNP = Unprotected).

Type FC
(km2)

SOC
(ton C ha−1)

SD
(ton C ha−1)

Total SOC
(million ton C)

Total 30,071.7 134.4 25.2 404.2

Forest types

NP 16,227.3 134.8 23.1 218.7
NA 6278.0 131.7 23.0 82.7

N-MIX 305.5 128.7 18.6 3.9
N-EVE 3771.8 145.5 32.0 54.9
CON 1796.5 116.4 22.9 20.9
EVE 51.2 124.0 17.9 0.6
MIX 1641.4 136.6 24.9 22.4

Province

TDF 7292.4 158.1 27.9 115.3
SC 2469.8 125.4 16.1 31.0

CHU 8391.4 127.6 17.3 107.1
RN 3740.5 128.5 16.2 48.1

NQN 8177.6 125.6 20.7 102.7

OTBN

Red 8791.3 139.0 27.3 122.2
Yellow 10,200.7 136.2 26.2 139.0
Green 489.8 131.5 18.9 6.4

Unclassified 10,589.9 129.0 21.3 136.6

Reserve
networks

NAT 9986.5 131.5 16.3 131.3
PRO 889.1 129.3 19.1 11.5
UNP 19,196.1 136.2 28.8 261.4

SOC content of the different forest types (Figure A1) was more strongly related to
mean annual temperature and elevation than to rainfall. Forest types growing at lower
temperatures (e.g., NP, N-EVE, MIX, NA) had higher SOC contents than those growing
in warmer areas. Forest types growing at higher rainfall (e.g., N-EVE, MIX) had higher
SOC content than those growing in drier areas, as well as those forest types that occurred
at higher elevation. For example, pure Nothofagus stands (e.g., N-EVE) are at higher
elevation and their soils have higher carbon content than conifers (e.g., CON), which grow
at lower elevation. These trends were related to the habitat areas of the different forest
types (Figure A2), which greatly varied across the landscape (latitude, longitude, rainfall,
temperature and elevation).
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4. Discussion
4.1. Advantages and Limitations of the Modeling

The combination of climate, topography, and vegetation productivity predicted SOC
well in multiple forest types in our model. The optimal subset of predictor variables
included two climate variables (e.g., temperature and rainfall) which are influenced by re-
gional relief (e.g., elevation), plus vegetation indices based on DHIs. The climate predictors
are not direct observation data, and were extracted from WorldClim [52]. These data can
lead to possible errors in the SOC mapping, due to their being generated by the modeling
of Worldwide databases. Additionally, WorldClim variables have been successfully used
in many models in Patagonia [16,19,20,26,27,57]. Patagonian forests occur along a narrow
strip from the base and to high slopes of Andean mountains (north to south), and across
the Tierra del Fuego archipelago [50]. Temperatures are greatly influenced by latitude
and elevation, generating strong gradients that limit forest type ranging, e.g., from dry
forests bordering steppe grasslands up to high-elevation forests at the tree line, where
the altitude strongly varied with latitude [19,51]. Topography also controls precipitation
across Patagonia, with most rain falling on the Chilean side, due to predominant westerly
winds [65]. Topography also has strong effects in Tierra del Fuego, where it determines
climate gradients, and consequently vegetation patterns [66]. Furthermore, climate is the
main factor influencing forest development and decomposition processes in Patagonia,
both of which are directly linked to carbon stocks in these ecosystems [19,67]. SOC is also
directly related to above-ground vegetation biomass [35,68–70], making it an important
predictive variable in SOC models [19,71]. We found that the influence of the different
forest types on SOC is due to metrics describing annual vegetative cycles [26,47], which
is why vegetation productivity was an important variable in our model. SOC model pre-
sented accurate broad-scale estimates, but had some limitations (e.g., greater errors of
estimation) in some areas because sampling was not fully representative for all forest types
and provinces. These unbalanced samplings can generate over- and under-estimations
in the outputs [72]. These limitations must be considered when interpreting our model
results. For this reason, we have recommended that managers should also use the maps of
uncertainty (Figures 6 and 7) when making decisions [73].

4.2. Soil Organic Carbon Stocks in Patagonian Forests

The geospatial datasets that we developed are useful for general and specific applica-
tions for each forest type and province. For example, regional estimations of SOC stocks
complement the stand level estimates based on forest inventory data. The maps of SOC
can be used to identify areas that can benefit from management, and that are less resilient
to climate change [35,74,75], and are therefore in need for protection. SOC maps comple-
ment forest inventory data, which have historically been used to assess the productivity of
forests prior to harvesting, and are now also used to monitor biodiversity and ecosystem
services [4,51,76]. National-scale maps of both forest structure attributes and SOC can be
useful in supporting policy decisions [12,27].

By analyzing the relationships among climatic, topographic and vegetation variables
according to the SOC stocks in Patagonia, we were able to do both, the SOC map and the
identification of the most important variables affecting its patterns. Some authors who have
modeled SOC have suggested that high-latitude forests may become a carbon source due
to increased decomposition of soil organic matter resulting from rising temperature [23,77].
Rainfall also influences SOC greatly, as has been demonstrated by other authors [78], often
being more important than temperature [79,80], which matches our findings. The strong
relationship between rainfall and SOC stocks is likely due to higher vegetation productivity
when water availability is higher in soils. We also found that the DHIs were positively
related to SOC in the different forest types, and can influence other ecological processes
(e.g., decomposition rates) that can contribute to C soils [67,81].

The mean value of SOC in Patagonian forests was 134.4 ton C ha−1 (0–30 cm) which
is comparable to other forest ecosystems. For example, Domke et al. [82] provide SOC
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estimates (ton C ha−1 0–20 cm) for different forest ecosystems across the US and compare
them with NRCS Rapid Assessment of Soil Carbon [83]: (i) north-western forests with
80.4 vs. 188.7; (ii) Rocky Mountain forests with 72.2 vs. 90.6; (iii) northern Lake States
forests with 72.0 vs. 233.1; (iv) East and Central forests with 62.4 vs. 93.3; (v) South Atlantic
and Gulf forests with 40.9 vs. 78.2; (vi) north-eastern forests with 100.0 vs. 256.7; and
(vii) Atlantic and Gulf Coast Lowland forests with 68.3 vs. 213.3. Cao et al. [71] reported
similar values as those informed by Domke et al. [82], and Hoover et al. [84] informed for
the northern temperate forests in the US.

In our results, evergreen forests had higher values than deciduous (e.g., evergreen
Nothofagus had 145.5 ton C ha−1 compared to 131.7 ton C ha−1 for deciduous N. antarctica
and 134.8 ton C ha−1 for deciduous N. pumilio). Similarly, Toro-Manríquez et al. [85]
reported for Tierra del Fuego an increased range of SOC from deciduous pure N. pumilio
(101.3 ton C ha−1) to mixed (101.5 ton C ha−1) to pure evergreen N. betuloides forests (103.8
ton C ha−1). The same pattern was found by Peri et al. [18,19] in southern Patagonia (pure
N. pumilio with 93.7 ton C ha−1 vs. pure N. antarctica with 120.9 ton C ha−1 vs. pure
evergreen Nothofagus with 125.2 ton C ha−1), and by Laclau et al. [24] in northern Patagonia
(Nothofagus forests with 88.5 ton C ha−1 vs. mixed conifer forests with 102.9 ton C ha−1).
Cao et al. [71] also reported that the highest predicted SOC occurred in three areas, all
of which are mostly dominated by conifers. Similarly, we found that forests in areas
with abundant precipitation presented higher SOC (124.0 to 145.5 ton C ha−1) than dry
forests close to the grassland steppes (116.4 ton C ha−1 in Austrocedrus chilensis forests).
Matching our findings, Satti et al. [86] reported differences in SOC for different forest
types across landscape gradients, e.g., pure and mixed conifer forests had 101.1 ton C ha−1,
evergreen broadleaved forests had 109.1 ton C ha−1, evergreen Nothofagus forests had
134.5 ton C ha−1, and deciduous Nothofagus forests had 137.2 ton C ha−1. Finally, there
are other SOC estimates that match those that we obtained from our model, e.g., pure
and mixed conifer forests in northern Patagonia with 85.9 ton C ha−1 [87], pure and
mixed Nothofagus forests with 98.38 ton C ha−1 [88], and pure N. pumilio forests with
102.5 ton C ha−1 [89].

4.3. Recommendations for Monitoring and Policy Makers

SOC content has not been addressed in current discussions about the monitoring
and assessment of global carbon stocks (as in REDD+) [77,90]. The main reason for this is
not that SOC is not important, but rather the lack of effective and affordable methods for
large-scale C assessment and monitoring. There are several initiatives that have proposed
standardized measurement protocols for SOC estimation across different biomes [77,83,91].
Modeling SOC based on geo-referenced sample data has been used to accurately estimate
above-ground biomass in many types of forests and woodlands [70,71,82,92], including in
Patagonia [19]. Our contribution here demonstrates that it is possible to obtain reliable SOC
predictions for large areas using relatively few freely available predictors, highlighting
the strength of our method. To date, few studies have measured SOC over time in forests
and woodlands, as well as changes in soil properties [75]. Thus, we propose that in the
future, assessment of SOC stocks and properties should be included in national forest
inventory surveys, so that changes over time can be detected. We recognize that the effort
required for detailed sampling is substantial, and may pose practical limitations. However,
the availability of these databases allows modeling SOC stocks and there is a growing
understanding of how human actions may affect them. Only with these tools, will it be
feasible to make recommendations to improve land use plans at different administrative
levels (provinces to region to country), and thereby contribute to achieving the international
agreements that has Argentina signed. Furthermore, the SOC map can contribute to land
use planning in Patagonia, e.g., by estimating the amount of C that can be lost due to the lack
of protection (green category in the OTBN, or forest in private lands under management)
(see Table 3). Last but not least, empirically estimated C stocks can be linked to payment
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for achievements in C emission and sequestration under the United Nations Framework
Convention on Climate Change (UNFCCC).

5. Conclusions

We successfully modeled and mapped soil organic carbon stocks (SOC) in the top
30 cm in native forests of Patagonia (Argentina) at 30 m resolution. The most important
variables predicting SOC were annual temperature and rainfall, elevation, and vegetation
productivity measures derived from Landsat-8 satellite data. Our map of SOC stock
in native forest types in Patagonia greatly improves the information on carbon stocks,
and can support many applications, including: (i) use of SOC stocks as predictors for
assessment design and modeling in different research areas; (ii) evaluation of the habitat
quality for species associated with soils, and identification of priority areas for conservation;
(iii) monitoring SOC over time to achieve sustainable forest management; and (iv) zoning
of native forests in multiple uses according to different management and conservation
criteria. These applications can strengthen the national forest monitoring system, support
compliance with national and provincial regulation, and provide information to achieve the
international agreements signed by Argentina. Understanding the causes of variation in
SOC stock across Patagonia is a first step in assessing the sustainability of land management
and conservation at a regional scale. We developed an approach for obtaining accurate
SOC maps at 30 m spatial resolution across large areas with highly heterogeneous and
diverse forest types, allowing us to characterize SOC in the different zones of current forest
land use plans (e.g., OTBN, National Law 26,331/07) and protected area network.

Author Contributions: Conceptualization, G.M.P. and P.L.P.; methodology, G.M.P., E.M.O.S., M.V.L.
and P.L.P.; software, E.M.O.S., V.C.R. and A.M.P.; validation, E.M.O.S. and J.M.C.; formal analysis,
M.-C.A.A., E.M.O.S., V.C.R. and A.M.P.; investigation, M.V.L. and J.M.C.; resources, G.M.P., A.V.M.,
L.L.M., M.G.-P. and J.E.C.; data curation, M.-C.A.A. and J.M.C.; writing—original draft preparation,
G.M.P. and P.L.P.; writing-review and editing, E.M.O.S., A.V.M., L.L.M., M.G.-P., J.E.C., J.M.C., V.C.R.
and A.M.P.; visualization, E.M.O.S., V.C.R. and A.M.P.; supervision and project administration, G.M.P.
and M.V.L.; funding acquisition, P.L.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was conducted with the financial support of the following projects: (i) Proyecto
de apoyo para la Preparación de REDD+ en el marco del Fondo Cooperativo de Preparación para
el Carbono de los Bosques (FCPF TF019086) Ministerio de Ambiente y Desarrollo Sostenible de la
Nación Argentina (2021–2022), (ii) Proyectos de Desarrollo Tecnológico y Social (PDTS-0398) MINCyT
(Argentina) (2020–2023), (iii) Proyectos de Investigación Plurianual (PIP 2021-2023 GI) CONICET
(Argentina) (2022–2025), and (iv) Proyectos Interinstitucionales en Temas Estratégicos (PITES-03)
MINCyT (Argentina) (2022–2024).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: For the data employed in the modeling, the authors thank: Dirección
Nacional de Bosques of Argentina, the Global Forest Change (glad.earthengine.app/view/global-
forest-change), Google Earth Engine, Landsat-8 OLI/TIRS products. Availability of data and material:
At CADIC-CONICET (Argentina) repository. This supporting information can be requested from the
authors: raster-data of the outputs and raw-data used for modeling.

Acknowledgments: We want to give thanks for the support of Pablo Laclau, Carlos Buduba and many
other researchers who contributed to the database. We also want to thank Santiago Favoretti, Carina
Argañaraz and Yamina Micaela Rosas for the support during sampling and laboratory analyses.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Remote Sens. 2022, 14, 5702 14 of 21

Appendix A

Table A1. Forest cover (FC, km2), mean soil organic carbon content (SOC, ton C ha−1) and stan-
dard deviation (SD, ton C ha−1) to calculate total C stock (million ton C) classified by provinces
(TDF = Tierra del Fuego, SC = Santa Cruz, CHU = Chubut, RN = Río Negro, NQN = Neuquén) and
forest types (see Table 1).

Type FC
(km2)

SOC
(ton C ha−1)

SD
(ton C ha−1)

Total SOC
(million ton C)

TDF

NP 4054.0 158.5 22.7 64.2
NA 2007.3 141.1 22.3 28.3

N-MIX 0.0 – – 0.0
N-EVE 1013.7 186.3 29.9 18.9
CON 0.0 – – 0.0
EVE 0.0 – – 0.0
MIX 217.4 175.4 31.7 3.8

SC

NP 2104.4 125.2 15.7 26.3
NA 260.2 122.8 16.4 3.2

N-MIX 30.2 123.7 15.3 0.4
N-EVE 0.0 – – 0.0
CON 0.1 139.8 20.2 0.0
EVE 0.0 – – 0.0
MIX 75.0 142.0 17.5 1.1

CHU

NP 4232.4 124.5 13.7 52.7
NA 2239.1 130.2 21.6 29.1

N-MIX 14.4 118.7 18.7 0.2
N-EVE 1013.4 134.6 16.8 13.6
CON 521.7 125.2 17.8 6.5
EVE 26.3 127.2 18.5 0.3
MIX 344.0 134.0 16.1 4.6

RN

NP 1835.2 128.6 15.4 23.6
NA 747.7 129.4 19.6 9.7

N-MIX 7.2 127.5 20.7 0.1
N-EVE 546.4 128.8 13.6 7.0
CON 318.4 126.7 17.4 4.0
EVE 9.6 124.0 18.2 0.1
MIX 275.9 127.4 13.9 3.5

NQN

NP 4001.2 129.6 19.7 51.9
NA 1023.8 121.2 22.7 12.4

N-MIX 253.6 129.9 18.2 3.3
N-EVE 1198.2 126.9 13.3 15.2
CON 956.2 108.7 23.5 10.4
EVE 15.3 118.7 14.5 0.2
MIX 729.1 128.7 17.7 9.4

Table A2. Forest cover (FC, km2), mean soil organic carbon content (SOC, ton C ha−1) and standard
deviation (SD, ton C ha−1) to calculate total C stock (million ton C) classified by status protection
according national law 26.331/07 (OTBN) and forest types (see Table 1).

Type FC
(km2)

SOC
(ton C ha−1)

SD
(ton C ha−1)

Total SOC
(million ton C)

Red

NP 6070.4 135.3 22.0 82.1
NA 665.0 129.0 20.6 8.6

N-MIX 28.2 124.5 23.3 0.4
N-EVE 1259.5 163.6 37.0 20.6
CON 260.0 120.8 21.1 3.1
EVE 1.2 123.1 16.2 0.0
MIX 507.0 145.5 28.8 7.4
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Table A2. Cont.

Type FC
(km2)

SOC
(ton C ha−1)

SD
(ton C ha−1)

Total SOC
(million ton C)

Yellow

NP 4843.5 138.9 26.4 67.3
NA 3687.0 134.8 23.2 49.7

N-MIX 47.0 124.1 18.7 0.6
N-EVE 593.2 146.3 33.6 8.7
CON 717.8 117.5 22.5 8.4
EVE 8.0 122.1 15.6 0.1
MIX 304.1 136.6 27.4 4.2

Green

NP 99.2 134.6 21.5 1.3
NA 219.1 132.6 18.3 2.9

N-MIX 0.6 134.3 16.8 0.0
N-EVE 36.4 126.4 15.5 0.5
CON 102.3 128.7 17.8 1.3
EVE 8.9 128.0 17.1 0.1
MIX 23.3 130.2 20.5 0.3

Unclassified

NP 5214.2 130.4 20.1 68.0
NA 1707.0 125.8 22.7 21.5

N-MIX 229.6 130.1 17.6 3.0
N-EVE 1882.7 133.5 20.2 25.1
CON 716.4 112.0 23.4 8.0
EVE 33.1 123.4 18.6 0.4
MIX 806.9 131.3 19.2 10.6

Table A3. Forest cover (FC, km2), mean soil organic carbon content (SOC, ton C ha−1) and standard
deviation (SD, ton C ha−1) to calculate total C stock (million ton C) classified by reserve networks
(NAT = National Parks, PRO = provincial reserves, UNP = unprotected) and forest types (see Table 1).

Type FC
(km2)

SOC
(ton C ha−1)

SD
(ton C ha−1)

Total SOC
(million ton C)

NAT

NP 5466.7 132.2 15.6 72.3
NA 991.1 132.5 17.7 13.1

N-MIX 192.8 133.6 13.7 2.6
N-EVE 2020.7 131.1 15.4 26.5
CON 421.0 118.4 20.4 5.0
EVE 22.3 125.6 18.2 0.3
MIX 871.9 132.5 16.1 11.5

PRO

NP 381.3 133.7 17.3 5.1
NA 118.2 129.0 18.5 1.5

N-MIX 27.3 121.3 27.9 0.3
N-EVE 172.8 129.0 14.4 2.2
CON 123.3 117.9 24.1 1.5
EVE 0.2 125.1 9.5 0.0
MIX 66.1 129.5 16.1 0.9

UNP

NP 10,379.3 136.2 26.2 141.4
NA 5168.8 131.6 24.0 68.0

N-MIX 85.4 120.0 20.2 1.0
N-EVE 1578.3 165.8 37.6 26.2
CON 1252.2 115.6 23.5 14.5
EVE 28.7 122.7 17.7 0.4
MIX 703.5 142.5 32.3 10.0
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