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A B S T R A C T   

Historical land use strongly influences current landscapes and ecosystems making maps of historical land cover 
an important reference point. However, the earliest satellite-based land cover maps typically date back to the 
1980s only, after 30-m Landsat data became available. Our goal was to develop a methodology to automatically 
map land cover for large areas using high-resolution panchromatic Corona spy satellite imagery for 1964. 
Specifically, we a) conducted a comprehensive analysis on the feature selection and parameter setting for large- 
area classification processes for 2.5-m historical panchromatic Corona imagery for a full suite of land cover 
classes, b) compared the pixel-based and object-oriented methods of classifying the land cover, and c) examined 
the benefits of adding a digital elevation model for the pixel-based and object-oriented land cover classifications. 
We mapped land cover in parts of the Caucasus Mountains (158,000 km2), a study area with great variability in 
land cover types and illumination conditions. The overall accuracies of our pixel-based and object-oriented land 
cover maps were 63.0 ± 5.0% and 67.3 ± 4.0%, respectively, showing that object-oriented classifications per-
formed better for Corona satellite data. Incorporating the digital elevation model improved the overall accuracy 
to 75.3 ± 3.0% and 78.7 ± 2.5%, respectively. The digital elevation model was especially useful for differen-
tiating forest and snow-and-ice from lakes in mountainous areas affected by cast shadows. Our results highlight 
the feasibility of accurately and automatically classifying land cover for large areas based on Corona spy satellite 
imagery for the 1960s. Such land cover maps predate the earliest 30-m Landsat land cover classifications by two 
decades, and those from high-resolution satellite imagery by four decades. As such, we demonstrate here that 
Corona imagery can make important contributions to global change science.   

1. Introduction 

Current landscape structure is strongly affected by past human ac-
tivities (Munteanu et al., 2017; Wu et al., 2013) and many vegetation 
types change slowly over time (Barichivich et al., 2013; White et al., 
2009). This means that historical information is valuable when assessing 
current ecosystem patterns and processes (Foster et al., 2003). Similarly, 
land cover classifications are essential for environmental science (Alt-
maier and Kany, 2002), because they provide information on the status 
of both natural ecosystems and human land use (Balzter et al., 2015; Yin 
et al., 2020; Zhu and Woodcock, 2014). The earliest land cover maps 
typically only date back to the 1980s when 30-m satellite data became 
available. However, images captured by American spy satellites during 
the 1960s and ‘70s provide an opportunity to obtain land cover data for 
earlier decades (Saleem et al., 2018; Stratoulias and Kabadayı, 2020). 

The earliest high-resolution satellite imagery (< 5 m resolution) 
dates back to the early 1960s, when the first Corona spy satellites were 
launched (Peebles, 1997). The Corona satellite missions started a series 
of US reconnaissance satellites operated by the US Air Force and the US 
Central Intelligence Agency (CIA) (Altmaier and Kany, 2002; Norris, 
2007; Peebles, 1997). While designed and launched for military pur-
poses, Corona satellite images also contain valuable information about 
the environment and archaeology (Beck et al., 2007; Casana et al., 2012; 
Conesa et al., 2015). For example, Corona images can reveal historical 
urban development patterns (Fekete, 2020; Kennedy, 1998; Lasaponara 
et al., 2018), lithological structures in the Arctic (Lorenz, 2004), and the 
retreat of glaciers in Nepal (Bolch et al., 2008). Corona data have also 
been useful in detecting individual wadi trees in Eastern Desert in Egypt 
(Andersen, 2006), wild mammal species' occurrences, such as the bur-
rows of the bobak marmot (Marmota bobak) in the 1960s (Munteanu 
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et al., 2020). Additionally, Corona has captured long-term dynamics of 
ant colonies (Klimetzek et al., 2021), and wildlife habitat information, 
such as recolonization of new growth forests by capercaillie (Tetrao 
urogallus) (Stăncioiu et al., 2021). 

Among its many uses, Corona imagery provide especially valuable 
information on land cover. For example, Corona images capture the 
reforestation of abandoned agricultural fields (Jabs-Sobocińska et al., 
2021), high conservation value forests (Munteanu et al., 2021), wide-
spread logging after the World War II in the Romanian Carpathians (Nita 
et al., 2018), and 1960s forest cover in parts of the US and Brazil (Song 
et al., 2015) and Canada (Franklin et al., 2005). The imagery captures 
forest loss due to agriculture and settlements in Thailand (Kusanagi 
et al., 2003), Senegal (Tappan et al., 2000), the Ramganga river basin in 
India (Gurjar and Tare, 2019), and the Tarim river basin in northwestern 
China (Veroustraete et al., 2011). Corona images have also been used to 
identify forest loss due to industrial operations in arctic Russia (Rigina, 
2003) and eastern China (Zhang et al., 2020), and forest regrowth along 
the border of Latvia and Russia (Rendenieks et al., 2020). However, 
most prior studies of Corona imagery analyzed only small study areas, 
and the question remains how to map land cover accurately for large 
areas from Corona imagery. 

Large-area land cover maps require both efficient georectification of 
many Corona images and accurate classification algorithms. For the 
georectification of Corona imagery, the analysis of forests in Romania by 
Nita et al. (2018) represented a major breakthrough because it provided 
a new approach to geo-rectify Corona imagery by applying structure- 
from-motion algorithms (Nita et al., 2018). However, only forest and 
non-forests were distinguished, and forest patches were hand-digitized 
(Nita et al., 2018), as was the case for a study based in Canada 
(Franklin et al., 2005). Successful pixel-based classifications have been 
conducted based on image texture metrics (Shahtahmassebi et al., 2017; 
Song et al., 2015, 2021), unsupervised classification (Kusanagi et al., 
2003), and two-dimensional convolutional neural networks (Deshpande 
et al., 2021). Object-oriented classifications of Corona imagery has only 
been tested twice: to map forest cover in Latvia (Rendenieks et al., 
2020), and agricultural and urban expansion in India (Gurjar and Tare, 
2019). However, the former examined forest cover only, not a full suite 
of land cover classes, and the latter applied considerable manual effort 
to improve classification accuracy. So, given that prior classifications 
were either for small areas or classified forests-non-forests only, our first 
question was how to classify a full suite of land cover classes for a large 
area automatically from Corona imagery? 

Object-oriented classifications, also known as object-based image 
analysis (OBIA) or geographical object-based image analysis (GEOBIA), 
typically outperform pixel-level classifications of high-resolution imag-
ery (Blaschke et al., 2000) because objects can be classified based on 
both spectral and spatial characteristics. Since the first commercial high- 
resolution satellites were launched in the early 2000s, their images have 
been widely used for land use and land cover mapping (Lackner and 
Conway, 2008; Li et al., 2019; Moser et al., 2012). However, large-area 
(100,000 to 1,000,000 km2) land cover mapping with high-resolution 
imagery remains uncommon (Khare and Ghosh, 2016, but see Rob-
inson et al., 2019 [160,000 km2]), most likely because the imagery is 
often costly, data volumes are large, and algorithms are computationally 
intensive. While object-oriented approaches work well for small study 
areas (Ma et al., 2017), it is less clear how well they perform for large 
areas in general, and especially for classifications of a full suite of land 
cover classes for a large area based on Corona imagery. So, our second 
question is whether the pixel-based or object-oriented classifications 
performed better for land-area land cover mapping based on Corona 
imagery? 

Another open question when classifying Corona imagery is if 
including ancillary data, such as a digital surface model improves clas-
sification accuracy. Because Corona images are panchromatic and lack 
the different spectral bands that 21st century high-resolution satellite 
sensors provide, elevation information may be especially valuable. One 

source of elevation information can be the Corona imagery itself, 
because for many areas the Corona imagery was obtained as stereo-
scopic that allow extraction of high-resolution historical digital surface 
models (Altmaier and Kany, 2002; Galiatsatos et al., 2008; Mészáros 
et al., 2008). However, where Corona data is not fully stereoscopic, such 
as in our study area, other digital elevation data may improve classifi-
cation accuracy. 

Our main goal was to develop a methodology to map land cover 
automatically for a large area from panchromatic Corona satellites im-
agery. Our objectives were to a) conduct a comprehensive analysis on 
the feature selection and parameter setting for large-area classification 
processes for 2.5-m historical panchromatic Corona imagery for a full 
suite of land cover classes; b) compare the pixel-based and object- 
oriented methods of classifying the land cover; c) examine the benefits 
of adding a digital elevation model (DEM) for the pixel-based and object- 
oriented land cover classification. We expected that object-oriented 
image analysis would outperform pixel-level classifications, and that 
adding elevation information would improve classification accuracy 
substantially. 

2. Methods 

2.1. Study area 

We classified 1964 land cover for a 158,000 km2 study area that 
included parts of the Greater and Lesser Caucasus, and territories of 
southern Russia, Armenia, Azerbaijan, Georgia, and eastern Turkey 
(Fig. 1). The elevation in the study area ranges from − 6 to 5633 m above 
sea level, peaking at Mount Elbrus. The Caucasus ecoregion is a global 
biodiversity hotspot (Myers et al., 2000; Zazanashvili and Mallon, 2009) 
that includes ecosystems ranging from arid and semi-arid to sub-nival 
and nival zones. Accordingly, the Caucasus ecoregion has highly het-
erogeneous landscapes with strong environmental gradients and high 
variability in elevations and land cover, which makes it a challenging 
place to map land cover, and a good test site for our study goal. 

2.2. Data 

Our study area was frequently photographed by Corona spy satellites 
because of its high strategic importance during the Cold War. We 
selected data from one KH-4A Corona mission number 1011 (October 8, 
1964) because it had only sparse cloud cover. The focal length camera 
was equal to 610 mm. The Petzval f.3/5 panoramic lenses of Corona 
satellites moved through a 70◦ arc perpendicular to the direction of 
orbit. To capture stereoscopic images, both front and back cameras had a 
15◦ tilt forward and backward, respectively. The orbit altitudes were 
approximately 180–185 km, and the resolution varied across image, 
ranging from 2.7 to 7.6 m with the finest located in the center. The 
images are providing 70% overlap between consecutive image frames 
and were scanned with 7 μm resolution. We analyzed both forward- and 
backward-facing photographs as separate sets, and jointly by concate-
nating the two images into one with two bands, and tested if the com-
bination of the two bands resulted in an improvement in classification 
accuracy. Because our imagery was recorded in October, >20,000 km2 

area (about 12.9% of our study area) was covered by snow. During 
summer, many of these areas, especially right above the treeline are not 
covered by snow, but by October, winter had already arrived in the 
mountains. Our source of digital elevation data was the Shuttle Radar 
Topography Mission (SRTM) (Farr et al., 2007). We present our work- 
flow in Fig. 2 and the processing environments for each step in Table S1. 

2.3. Orthorectification 

We acquired 59 scanned Corona images from the United States 
Geological Survey (USGS, 2019). Each image covered an area of 
approximately 17 × 232 km. To orthorectify the images, we applied 
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Fig. 1. a. Study area in the Caucasus ecoregion, which includes parts of Russia, Armenia, Azerbaijan, Georgia and Turkey, with one Corona image strip highlighted in 
the yellow frame; b. Location of the study area on a world map; c. Elevation map in the study area; and zoomed in examples of our different land cover classes d. 
forest; e. grassland; f. cropland; g. lake; h. barren; i. wetland; j. urban; k. river; l. snow-and-ice. The location of these examples are indicated with yellow letters in the 
full Corona image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Structure from Motion (SfM) algorithms (Song et al., 2015; Ullman, 
1979) and the Corona georectification approach developed by Nita et al. 
(2018) in AgiSoft Metashape software (AgiSoft, 2021). First, we 
co-aligned the raw strips and generated a point cloud. Second, we 

assigned coordinates to this point cloud based on high-resolution Google 
Earth and Bing imagery and generated orthophotos with 2.5 m resolu-
tion. During the mosaicking, the processing pipeline implements a data 
division approach, which splits the data into several frequency domains, 

59 raw Corona filmstrips Google Earth & Bing

SfM-based geo-rec�fica�on (Nita et al., 2018)

Two Corona layers

30-m SRTM

Object-oriented analysisPixel-based analysis

Accuracy assessment

Pixel-based texture metrics

Segmenta�onTraining data collec�on

Object-oriented 
texture metrics

Accuracy assessment

mean
st. devia�on
ang. second 

moment
entropy
homogeneity

Eleva�on data

Corona image ortho-georec�fica�on

Object-oriented 
geometry metrics

eleva�on
slope
Aspect (TRASP)

correla�on
dissimilarity
variance

Land cover classifica�ons

eleva�on
slope
Aspect (TRASP)

Object-oriented 
eleva�on data

area
height
width
perimeter
shape

mean
st. devia�on
ang. second      

moment
entropy
homogeneity

Land cover classifica�ons

Fig. 2. Flowchart of the pixel-based and object-oriented land cover classification procedure. In the row of the different land cover classifications we highlight that we 
compared to each other in different colors. In blue are the pixel-based and object-oriented classifications with five texture metrics, in red those with five texture 
metrics and elevation information. We also highlight in green the pixel-based classifications with eight texture metrics with and without elevation information, 
respectively; and in brown the object-oriented classifications with five texture metrics and five object geometry information metrics with and without elevation 
information. Additionally, we present the processing environments for each step in Table S1. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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which are blended independently. The highest frequency component is 
blended along the seamline only, and each further step away from the 
seamline results in a lower number of domains being subject to blending. 
Therefore, any differences (e.g., due to the effect of the bidirectional 
reflectance distribution function [BRDF]), which were still persistent 
after image normalization between overlapping images, were removed 
by these steps. We grouped the 59 raw images into 30 pairs, given the 
decreasing overlap between the forward and backward stereo-medium 
photographs. Unfortunately, because the images were only ‘stereo--
medium’, we could not extract a high-resolution continuous digital 
surface model from the Corona data, but only the one with gaps in areas 
where the raw photographs did not overlap, so we used instead the 
SRTM to generate the orthophotos (Nita et al., 2018). When processing 
mosaics from a sequence of Corona stereo images, there are two types of 
overlap: the overlap between successive frames of a Corona camera, and 
the overlap between the two images of the stereo pair. In our imagery, 
there was an overlap of approximately 8% between successive frames at 
the center of the format, which relates directly to the camera scan rate, 
which is determined by the ratio of the satellite velocity to its height 
above ground (NRO, 1967). The overlap within the stereo pairs varies 
somewhat among acquisitions and with orbital elevation but is typically 
approximately 90% for stereo photographs named in metadata as 
‘stereo-high’ and approximately 70% for ‘stereo-medium’ (USGS, 2019). 
Our data were stereo-medium and that meant that the successive stereo 
images have little overlap, which results in a small overlap between their 
DEMs (Goerlich et al., 2017). Therefore, only 30 pairs could be formed. 
However, this did not affect our SfM procedures because the pairs were 
processed separately and bundle adjusted in the end, according to 
methodology published by Nita et al. (2018). As demonstrated in pre-
vious studies (Nita et al., 2018; Rendenieks et al., 2020) an average of 
20–26 independent check ground control points (GCP) per strip is suf-
ficient for an accurate orthorectification, but this number depends 
somewhat on topography, clouds, and image characteristics (e.g., 
sharpness, illumination, etc.). We selected the GCPs as visible points (e. 
g., crossroads, visible landmarks etc.) that did not change over time. 
Accordingly, we assessed the root mean square errors of the resulting 
images using an average number of 26 GCPs per stereographic pair, for a 
total of 802 GCPs. 

2.4. Pixel-based classification 

For our pixel-based supervised land cover classification, we calcu-
lated the first- and second-order texture metrics. Second-order texture 
metrics were based on the grey-level co-occurrence matrix (GLCM,. 
glcmTexture). We set the offset distance of the GLCM textures calculated 
within Google Earth Engine (GEE) platform at the default of one pixel 
and retained the original quantization of 8 bits. We calculated the 
second-order texture metrics over east-west and north-south directions 
and averaged those for each metric to create single multi-directional 
texture metrics. In order to determine the best window size for the 
texture calculation, we conducted tests in several smaller subsets of our 
study area with variety of elevations and land cover types using 3 × 3 
and 7 × 7 pixel windows. We selected the 7 × 7 window size because 
differences between different land cover types were more distinct than 
for the 3 × 3 window size. Validation of the classification maps for those 
subset areas using 3 × 3 and 7 × 7 window size resulted in overall ac-
curacies of 69.5 ± 5.0% and 70.2 ± 5.3%, respectively. To compare the 
pixel-based and object-oriented classifications, we calculated mean and 
standard deviation as first-order metrics, and angular second moment, 
entropy, and homogeneity as second-order texture metrics, all within 7 
× 7 pixel windows (Conners et al., 1984; Haralick et al., 1973), and used 
these for a first classification. To test if they would improve the pixel- 
based classifications, we also calculated second-order texture metrics 
of correlation, dissimilarity, and variance (Farwell et al., 2021) for a 
second classification. 

We performed pixel-based Random Forest classifications (. 

smileRandomForest) setting the tree size to 100 and applied a 10-fold 
Monte Carlo (Picard and Cook, 1984) Random Forest classification 
with majority voting (Cui et al., 2018). Ten folds are most commonly 
used (Ruiz Hernandez and Shi, 2017; Song et al., 2017), because it en-
sures a sufficient number of folds and sufficient number of training 
points in each fold (Kuhn and Johnson, 2013; Molinaro et al., 2005). We 
calculated metrics, and conducted the Random Forest classification in 
GEE (see below, Gorelick et al., 2017). To determine how important 
each of the chosen metrics (Table S2) were for our classification, we ran 
importance tests within R software (R Core Team, 2022) and calculated 
the mean decrease in accuracy, which represents the difference in 
overall accuracy if a given metric is removed. 

2.5. Object-oriented classification 

For our object-oriented supervised classification, we also applied a 
10-fold Monte Carlo (Picard and Cook, 1984) Random Forest classifi-
cation with majority voting (Cui et al., 2018) within GEE (.smileR-
andomForest) setting the tree size to 100. Prior to the classification, we 
performed the segmentation (described in the following section) and 
calculated the objects' geometry information: area, perimeter, width, 
height (Gorelick et al., 2017), shape (Li et al., 2007; Nghi and Mai, 
2008), as well as the texture. The width and height were calculated 
based on the bounding box. We calculated object-oriented first- (mean 
and standard deviation), and second-order texture metrics (angular 
second moment, entropy, and homogeneity) by applying the same 
texture calculation parameters as in pixel-based classification (Conners 
et al., 1984; Farwell et al., 2021; Haralick et al., 1973), but with a 7 × 7 
pixel moving window within each object obtained from the segmenta-
tion. We clipped the original images by the segment borders and applied 
a 7 × 7 moving window. Along the edges of segments where the win-
dows extended beyond the segment boundaries, we treated outside 
pixels as ‘no data’, and calculated texture metrics for the inside pixels 
only. We also summarized the elevation data for the objects obtained 
during the segmentation. We conducted one classification using only the 
texture metrics so that we could compare that classification with the 
pixel-based classification, but also performed an object-oriented land 
cover classification that also included the object geometry information 
to test whether it would help improve the final accuracy results. Again, 
we calculated importance of metrics based on the mean decrease in 
accuracy for each scenario. 

2.5.1. Segmentation 
We performed image segmentation in order to outline image objects 

prior to our classifications (Haralick et al., 1973; Kressler et al., 2003). 
For the segmentation, we used the Simple Non-Iterative Clustering (. 
SNIC) algorithm (Achanta and Süsstrunk, 2017). The SNIC algorithm is 
computationally efficient, while allowing control over the number and 
compactness of output segments (Achanta and Süsstrunk, 2017). The 
compactness parameter represents the ratio between a segment's 
perimeter and square root of its area (Happ et al., 2010). We performed 
the segmentation within GEE. 

Classification results of object-oriented classifications depend on the 
quality of segmentation (Blaschke, 2010; Clinton et al., 2010; Kavzoglu, 
2017; Kavzoglu and Tonbul, 2018), and hence how segmentation pa-
rameters are set. We selected the segmentation parameters after con-
ducting numerous tests in a variety of altitudes and land cover types. We 
present the results of these tests in Table S3. The selected parameters 
were best in merging the information of each land cover class into a 
separate segment. We set the distance between the seeds represented by 
‘seed grid’ parameter to 40 pixels, the connectivity parameter to 4 
neighbors, and the compactness factor at 0.1, which ensured a low ratio 
of the area of a segment to its perimeter (Achanta and Süsstrunk, 2017). 
This avoided overly convoluted segments. We quantified the segmen-
tation results by separating the objects into four categories: homoge-
neous segments (100% of the dominant class); segments with 75–100% 
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of the dominant class; segments with 50–75% of the dominant class and 
segments with several classes (no class covering 50%) (Table S4). The 
segments were the objects for our object-based classification, and we use 
the two terms ‘segment’ and ‘object’ synonymously. 

2.6. Training and validation data 

To collect both our training and our validation data, we applied a 
systematic sampling design and generated a 5 × 5 km point grid of 4828 
points for our study area. We opted for a systematic sampling design to 
limit the effects of spatial autocorrelation by maximizing the distances 
between points, and to ensure that all countries and ecoregions in our 
study area had the same sampling density. Our systematic sampling 
design is comparable to the sampling design for the LUCAS land use 

dataset of the European Union (LUCAS, 2022). We based our choice of 
distance between points in the grid on the need to balance the advantage 
of a higher sample size, with the feasibility of collecting the data. We 
used Corona data for each point to visually identify the dominant land 
cover class of the segment the point belonged to, and assigned the 
dominant class in the segment to the grid point. The high resolution of 
the Corona imagery allowed unambiguous visual differentiation be-
tween the classes in almost all cases (Fig. 1). All points were labeled by 
one expert (A.R.) for consistency. The point grid took approximately one 
month of full-time work to classify into forest, grassland, cropland, 
barren, wetland, urban, river, lake, and snow-and-ice (Fig. 1, Table S5). 
We also determined if segments included more than one class (e.g., 
Fig. 3). We removed grid points in such segments from the training data, 
but retained them if they were part of the validation dataset (see below). 

Fig. 3. Results of the SNIC segmentation algorithm on the panchromatic Corona imagery. Shown are examples of a heterogeneous segment that is over-segmented 
(a); and homogeneous segments that are under-segmented (b), or correctly segmented (c-i). 
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For classes that were rare, or were misclassified in initial runs, we 
manually added training points (Table 1, Table S4) but did not use these 
added points for validation. Thus, we had 5126 points total for training 
and validation. We used the same training and validation data for both 
the pixel-based and object-oriented classifications. 

For training, we used 80% of the points located in homogeneous 
segments, as well as the additionally collected training data. For vali-
dation, we used the remaining 20% of the points associated with ho-
mogeneous segments, plus 20% of the points within heterogeneous – 
missegmented or shifted objects. Some of the missegmented or shifted 
objects occurred due to errors in orthorectification so that the two 
concatenated images captured by forward- and backward-facing camera 
did not co-align perfectly. For our accuracy assessment, we used 10-fold 
validation from randomly split training and testing data. We did not 
manually add points to the validation dataset. These steps resulted in 10 
sets, each totalling 3684 points: 2719 for training and 965 for validation. 
In order to determine whether the number of the points was sufficient 
for our classifications, we ran tests with fewer points. Namely, we 
selected 66% and 50% of both the training (1795 and 1360) and vali-
dation (637 and 483) points to classify our land cover and calculate map 
accuracies. The rationale was that if accuracies for the smaller subsets 
are similar to that for the full set, then that suggests that the full set was 
sufficiently large and more points would not have improved classifica-
tion accuracy greatly. We used the same 10 sets of training and vali-
dation points for both the pixel-based and the object-oriented 
classifications, so that the individual training pixels were only derived 
from homogeneous segments. 

2.7. The effect of the DEM 

To test the effect of adding elevation data on classification accuracy, 
we resampled the 30-m SRTM elevation model to 2.5-m to match the 
remaining metrics using nearest neighbor resampling method, and 
calculated slope and aspect. To overcome the problem that when 
calculating aspect, the two opposite ends of the range both refer to 
North, we normalize the aspect variable by calculating topographic ra-
diation aspect index (TRASP) proposed by Maxwell and Shobe (2022) 
(Table S2). We then added slope and TRASP plus elevation as input 
metrics for both the pixel-based and object-oriented classifications. For 
our classifications of the Corona imagery plus the elevation data, we 
followed all the steps described above, and used the same sets of training 
and validation data. 

2.8. Validation, accuracy assessment 

We conducted a thorough accuracy assessment of the resulting land 
cover maps and calculated the overall accuracy, user's accuracy and 
producer's accuracy following the best practices outlined in Olofsson 
et al. (2014). To capture variability among classifications, we calculated 
their standard deviation. Because the barren, wetland, urban, and river 
classes covered only small portions of our study region and had often 
only a few validation points, we merged them into one class named 
‘others’ when reporting the accuracies, but retained them as separate 
classes in our maps for visualization purposes. 

3. Results 

We successfully produced high-resolution land cover maps from 
1964 Corona imagery for our study area with nine major land cover 
classes (forest, grassland, cropland, lake, and snow-and-ice), plus four 
minor land cover classes (barren, wetland, urban, and river), which we 
grouped into ‘others’ for our accuracy assessment. 

3.1. Orthorectification 

Our orthorectification of the scanned Corona satellite images from 
1964 was highly accurate. Based on our 802 independent check ground 
control points, our geo-rectification had an absolute root mean square 
error of 16.3 ± 10.4 m. Co-registration errors were highest in areas with 
few stable ground features, such as buildings, rivers, and road in-
tersections (Fig. 4). Contrary to what we had expected, co-registration 
errors were not higher in the more mountainous parts of our study area. 

3.2. Importance tests for metrics 

Our importance tests showed that the most important metrics for the 
classifications were similar for all pixel-based and object-oriented clas-
sifications (Table 2). The most important were the mean of both 
panchromatic bands (6.6–9.6% and 7.4–11.3% decrease in overall ac-
curacy if the mean of backward-facing camera and forward-facing 
camera images were removed), and slope (6.8–12.6%). The least 
important were the object geometry metrics included for the object- 
oriented classification (0.9–2.0%), but they still improved the overall 
accuracy. 

3.3. Pixel-based classification of Corona imagery 

Our supervised pixel-based classification with five texture metrics 
(Fig. 5, Fig. 6) had an overall accuracy of 63.0 ± 5.0% (Fig. 7, Table 3, 
Table S6). Classification accuracy was lower for grasslands, croplands 

Table 1 
Number of points in our training and validation datasets. For each of our 10 
Random Forest classifications, training and testing points were randomly 
selected from the four different pool of grid points. For the number of points in 
each land cover class, please see Table S4 in the supplementary material.   

Total Training Testing 

Grid points in homogeneous segments 3026 2421 (80%) 605 (20%) 
Additional points 298 298 (100%) 0 (0%) 
Grid points in shifted segments 915 0 (0%) 183 (20%) 
Grid points in missegmented objects 887 0 (0%) 177 (20%) 
Total 5126 2719 965  

Fig. 4. Distribution of the ground control points for the orthorectification and 
their locational error after the rectification. 
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and lakes with 57.8 ± 9.0%, 54.7 ± 7.3%, and 41.4 ± 8.1% UA, and 
46.4 ± 6.7%, 55.6 ± 8.4%, and 67.5 ± 14.9% PA, respectively. In 
contrast, the accuracies for forest (68.5 ± 3.8% UA and 78.0 ± 2.4% PA) 
and snow-and-ice (85.0 ± 4.2% UA and 87.2 ± 3.4% PA) classes were 
considerably higher but they were sometimes confused with shadows in 
mountainous areas. The ‘others’ class, which included barren, wetland, 
urban, and river had low accuracy, but also covered only small areas 
within our study region. 

3.4. Object-oriented classification of Corona imagery 

3.4.1. Segmentation 
Our optimal segmentation parameters resulted in objects of 0.75 ±

0.52 km2 on average. We checked the quality of segmentation visually 
(Zhang et al., 2008) and found it overall to be accurate. We found that 
approximately 18.4% of the assessed objects (887 out of 4828 total) 
were missegmented and included more than one land cover class 
(Table 1, Table S4). Segmentation errors mainly occurred when there 
was high similarity in spectral signature between different classes, and 
sometimes when there were mis-registration problems between the 
forward and backward photos (915 out of 4828 total, Table 1, Table S4). 

3.4.2. Classification 
The supervised object-oriented classification with five texture met-

rics using Random Forest algorithm (Fig. 5, Fig. 6) yielded an overall 
accuracy of 67.3 ± 4.0% (Fig. 7, Table 3, Table S6). The forest, lake and 

snow-and-ice classes had the highest accuracies (72.6 ± 3.0%, 74.9 ±
9.0% and 88.5 ± 2.5% UA and 80.4 ± 2.2%, 84.1 ± 7.2% and 87.0 ±
2.7% PA, respectively). The grassland and cropland classes had the 
lowest accuracies (58.9 ± 8.3% and 62.8 ± 6.2% UA and 58.5 ± 4.6% 
and 55.6 ± 8.8% PA, respectively), largely because those two classes 
were frequently confused. Again, the ‘other’ class was not well classified. 

As a test, in a subset area we conducted the classifications for each 
band separately, and for both bands together. We found an improvement 
of about 2 percentage points in overall accuracies when classifying both 
bands together (77.6 ± 2.4%), compared to the single-band classifica-
tions (75.6 ± 3.2% for forward- and 75.7 ± 2.7% for backward-facing 
camera image). In all of these comparisons, we conducted object- 
oriented classifications, and included the DEM and object geometry 
information. 

3.5. Pixel-based vs object-oriented classification of Corona imagery 

The object-oriented classification had higher overall and user's ac-
curacies for each class than the pixel-based classification (Fig. 7, 
Table S6). The greatest improvement in class-level accuracies were for 
grassland, cropland, and lake classes. Both the pixel-based and object- 
oriented classifications had similar spatial patterns (Fig. 5). Croplands 
were dominant in the northeastern portion of our study area in both 
classifications. However, some classes, such as the snow-and-ice, were 
noticeably less common in the pixel-based classification. The forest class 
was better mapped in the object-oriented classification, especially in 

Table 2 
Importance of the metrics that we employed for the pixel-based and object-oriented land cover classifications for Corona satellite images captured by backward (B1) 
and forward (B2) camera. All texture metrics were calculated with a moving window size of 7 × 7 pixels.   

Mean decrease in accuracy (%) for: 

Pixel-based classification Object-oriented classification 

Metrics with five 
textures 

with five 
textures and 
DEM 

with eight 
textures 

With eight 
textures and 
DEM 

with five 
textures 

with five 
textures and 
DEM 

with five textures 
and object 
geometry 
information 

with five textures, 
object geometry 
information and DEM 

First-order 
textures 

Mean Panchromatic 
B1 9.6 8.6 7.4 6.8 9.4 8.5 7.3 6.6 

Mean Panchromatic 
B2 

11.3 9.8 8.5 7.5 11.0 8.9 8.5 7.4 

Standard deviation 
B1 

3.4 3.7 2.3 2.6 4.5 4.0 3.3 2.7 

Standard deviation 
B2 2.3 2.6 1.7 1.8 4.2 4.0 3.0 2.7 

GLCM-derived 
second-order 

textures 

Angular second 
moment B1 2.8 2.9 1.8 2.0 6.5 6.0 4.9 4.4 

Angular second 
moment B2 

2.6 2.6 1.8 2.1 7.2 6.4 5.2 5.0 

Entropy B1 2.8 2.9 1.8 2.1 6.3 6.0 4.9 4.4 
Entropy B2 2.6 2.7 1.9 2.1 6.6 6.5 5.0 5.0 
Homogeneity B1 2.7 2.8 1.9 2.1 6.6 5.7 4.6 4.4 
Homogeneity B2 2.8 3.0 1.9 2.3 6.9 6.5 5.4 4.9 
Correlation B1*   1.1 1.1     
Correlation B2*   0.6 0.6     
Dissimilarity B1*   1.9 2.2     
Dissimilarity B2*   1.8 2.2     
Variance B1*   2.0 2.3     
Variance B2*   1.5 1.8     

Elevation data 

Elevation  7.8  5.9  8.5  6.6 
Slope  8.6  6.8  12.6  9.8 
TRASP (topographic 
radiation aspect 
index)  1.5  1.1  2.8  2.1 

Object 
geometry 

Area** NA NA NA NA   1.8 1.5 
Height** NA NA NA NA   1.1 0.9 
Width** NA NA NA NA   1.7 1.3 
Perimeter** NA NA NA NA   2.0 1.6 
Shape** NA NA NA NA   1.4 1.2  

* Calculated additionally for pixel-based classification. 
** Object-based metrics not applicable (NA) for pixel-based classification. 
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mountainous areas bordering snow-and-ice. 

3.6. Classifications of Corona imagery plus DEM 

Adding the DEM to both the pixel-based and object-oriented land 
cover classifications (Fig. 5, Fig. 6) increased overall accuracies to 75.3 
± 3.0% and 78.7 ± 2.5%, respectively (Fig. 7, Table 3, Table S6). In-
clusion of the DEM resulted in an increase of UA and PA of almost all 
land cover classes both for pixel-based and object-oriented classifica-
tions. The greatest improvements were in the lake class, which increased 
in UA from 41.4 ± 8.1% to 89.1 ± 6.0% and in PA from 67.5 ± 14.9% to 
92.5 ± 4.1% in pixel-based classifications and from 74.9 ± 9.0% to 94.4 
± 5.2% in UA and from 84.1 ± 7.2% to 95.2 ± 4.9% in object-oriented 
classifications. Similarly, when including the DEM, the cropland class 
had an increase in user's accuracy by 19.4 and 13.4 percentage points, 
and in producer's accuracy by 18.7 and 25.5 percentage points, in the 
pixel-based and object-oriented classifications, respectively. However, 
accuracy of snow-and-ice land cover class did not change noticeably 
(~85–91% in land cover maps from both classifications). Our accuracy 
assessment using only the grid points associated with homogeneous 
segments (Table 1, Table S4) yielded overall accuracies of 75.8 ± 2.1% 
and 81.7 ± 1.7% for pixel-based and object-oriented classifications, 
respectively. 

Our experiments using only 50% and 66% of the training and vali-
dation data for the object-oriented classification with DEM resulted in 

overall accuracies of 74.4% and 75.8%, respectively. This is quite close 
to the accuracy of 78.7% for the full dataset and suggests that accuracy 
had stabilized with our 3684 points and would not have increased 
substantially with a larger training dataset. 

Our object-oriented classification with the incorporation of the DEM 
also resulted in the classification that made visually the most sense. The 
greatest improvement occurred in areas of misclassification among 
spectrally similar classes, such as forest vs. lake, snow-and-ice vs. urban, 
as well as in cast shadow areas, which can make snow and grass in the 
high mountains appear dark. Thus, in our resulting map with highest 
overall accuracy (object-oriented with five textures and DEM), forest 
comprised 27.0%, grasslands – 30.4%, croplands – 27.5%, lakes – 1.3%, 
snow-and-ice – 12.9%, and others – 0.9% of the total study area. 

Our additional pixel-based classifications (Fig. 6, Fig. 8), with eight 
texture metrics did not improve our accuracy results by yielding only 
62.8 ± 5.0% and 74.4 ± 2.9% with and without DEM (Fig. 7, Table 3, 
Table S7). Similarly, we did not observe an improvement in object- 
oriented classifications when including the object geometry informa-
tion (Fig. 6, Fig. 8). The overall accuracies with and without DEM were 
67.9 ± 4.2% and 78.6 ± 2.2%, respectively (Fig. 7, Table 3, Table S7). 

4. Discussion 

We developed a new approach to conduct large-area land cover 
classifications from single-date, 2.5 m resolution panchromatic Corona 

Fig. 5. Our 1964 land cover maps for comparison of pixel-based and object-oriented classification methods. Highlighted in blue are classifications with five texture 
metrics, and in red those with five texture metrics and elevation information. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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Fig. 6. Zoomed in examples of a. original Corona imagery followed by the results of pixel-based classifications with: b. five (mean, standard deviation, angular 
second moment, entropy, homogeneity) and c. eight texture metrics (plus correlation, dissimilarity, variance) without DEM; and d. and e. with DEM; object-oriented 
classifications with: f. five texture metrics, g. plus object geometry information without DEM; and h. and i. with DEM. We compared the pairs highlighted in red frame 
to each other, as well as the pairs highlighted in blue frame. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

A. Rizayeva et al.                                                                                                                                                                                                                               



Remote Sensing of Environment 284 (2023) 113343

11

satellite imagery for 1964. We calculated both pixel-based and object- 
oriented metrics, from which we derived our land cover maps. Our 
object-oriented classification outperformed the pixel-based classifica-
tion, and classification accuracy was even higher when including a DEM 
(78.7 ± 2.5% overall accuracy). Ultimately, we showed that it is 
possible to conduct automated classifications from single-date 
panchromatic imagery for a full suite of land cover classes in large 
areas from high-resolution 1964 spy satellite imagery, thereby providing 
land cover information several decades prior to what is possible from 
multi-spectral earth observing satellites. 

For the science of land use, it is important to develop robust methods 
to map land cover from 1960s Corona satellite data in order to expand 
the length of time series for land cover and land use change detection. 
Corona satellite images can extend the temporal baseline for land use 

studies to the mid-20th century. This allows capturing important his-
torical events, such as the peak of the Cold War between the USA and the 
USSR (McMahon, 2021), the green revolution (Evenson and Gollin, 
2003), as well as the continued expansion of mechanization and 
industrialization of agriculture (Crossley et al., 2021). Our study period 
also includes the era when human populations grew most rapidly 
(United Nations, 2019), which resulted in increased food demand and 
thus agricultural production. Thus, to evaluate the long-term effects of 
these historical events, Corona satellite images provide unique infor-
mation for land use science. 

There have been a handful of studies using the Corona spy satellite 
imagery for land cover classification but no study was conducted for a 
large area and a full suite of land cover classes. Some of the previous 
studies used pixel-based classification (Song et al., 2015) or object- 
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Fig. 7. Histograms of the user's and producer's accuracy of each land cover class and the overall accuracy for the pixel-based and object-oriented classifications with 
and without the DEM. The ‘error’ bars represent the standard deviation. 
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Fig. 7. (continued). 

Table 3 
Overall classification accuracy with confidence intervals resulting from each of the different set of input variables.  

Classification scenarios Overall accuracy 

Pixel-based classifications 1 with five textures 63.0 ± 5.0% 
2 with five textures and DEM 75.3 ± 3.0% 
3 with eight textures 62.8 ± 5.0% 
4 with eight textures and DEM 74.4 ± 2.9% 

Object-oriented classifications 5 with five textures 67.3 ± 4.0% 
6 with five textures and DEM 78.7 ± 2.5% 
7 with five textures and object geometry information 67.9 ± 4.2% 
8 with five textures, object geometry information and DEM 78.6 ± 2.2%  
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oriented classification for forest vs. non-forest (Rendenieks et al., 2020) 
and for smaller study areas (e.g., ~30 km2 in Shahtahmassebi et al., 
2017). The results of our land cover classification (78.7 ± 2.5%, 
158,000 km2) compare favorably with the previous results of Corona 
imagery classifications for smaller study areas (93% for 22,400 km2 in 
Gurjar and Tare, 2019), and forest-non-forest classifications (~95.5% in 
Song et al., 2015; ~90% in Song et al., 2021; ~92% in Rendenieks et al., 
2020). Our pixel-based classification yielded 75.3 ± 3.0%, which is 
comparable to accuracies of other studies using a pixel-based approach, 
but for two land cover classes only and smaller areas (95% for ~770 km2 

and 96% for 1240 km2 in Song et al., 2015). 
In general, there are few automated land cover classifications 

derived from high-resolution imagery that cover large areas (Khare and 
Ghosh, 2016). Similarly, automated classifications from Corona imagery 
are rare, and many of the previous studies applied a considerable 
amount of manual effort and hand digitization (Dittrich et al., 2010; 
Ruelland et al., 2011; Zhang et al., 2020). Our methodological 
advancement allowed for an efficient regional-scale land cover mapping 
of single-date 2.5-m panchromatic Corona imagery. We automated the 
classification process deriving a combination of texture and geometry 
metrics and classification along with the rigorous validation of the 
resulting maps. By ‘automated land cover classification’ we refer to the 
set of codes available freely on Google Earth Engine platform and 
GitHub (https://github.com/rizayeva/coronaClassification.git). Our 
codes can be used for a different sets of very high-resolution 

panchromatic imagery, and parameters that need to be adjusted are 
noted in the code description. We were able to overcome some issues 
caused by availability of only the single-date imagery, and we reached a 
classification accuracy of up to 78.7 ± 2.5%. We attribute the high ac-
curacy to our use of a combination of second-order texture metrics, as 
well as elevation information. However, because we analyzed only one 
image, and that image was from October, there was some misclassifi-
cation between the cropland and grasslands, which we had expected, 
and also croplands and forests, which surprised us. The reason why 
grasslands and croplands were not always correctly distinguished from 
each other is that neither have green vegetation in our study area in 
October, making it difficult to delineate crop fields from other classes in 
panchromatic images, especially when compared to spectrally rich sat-
ellite images (Wardlow and Egbert, 2003). This was especially a problem 
in our pixel-based classification, and we could remedy this issue partly 
in the object-oriented classification via the objects' geometry informa-
tion metrics. The confusion of croplands with forests occurred because 
the pixels with some freshly ploughed winter crop fields had low values, 
similar to forests. Our work focused on Corona spy satellite data with 
only two panchromatic images captured, one by forward- and one by 
backward-facing camera. For the modern era, higher classification ac-
curacies are possible with multi-spectral imagery, but for the 1960s, 
there are no other data, and that makes Corona imagery and our land 
cover classification approach valuable. As more high-resolution imagery 
becomes available with new commercial satellites with comparably rich 

Fig. 8. Our additional 1964 land cover maps produced in an attempt to improve the classification results for highlighted based on each method. In green are the 
pixel-based classifications with eight texture metrics with and without elevation information. In brown are the object-oriented classifications with five texture metrics 
and five object geometry information metrics with and without the elevation information. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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spectral information, our methods for classifying the large areas with 
Corona imagery may also be relevant for other high-resolution satellite 
images. 

We found that our pixel-based and object-oriented classifications 
each had some costs and benefits. The pixel-based classification had 
considerably lower accuracy, and resulting maps had a ‘salt-and-pepper’ 
pattern. This may necessitate a substantial amount of post-classification 
noise removal (Zheng et al., 2014). However, the pixel-based classifi-
cations ran much faster (Duro et al., 2012), and did not require image 
segmentation and per-object texture calculation. The object-oriented 
classification had higher accuracy, but accuracies of object-oriented 
classifications depend highly on segmentation results, and while our 
segmentation was generally good, there were some over- and under- 
segmented objects. Ultimately, the selection of image segmentation 
parameters and the complexity of calculating within-object metrics 
required approximately ten-times longer processing times. Overall, the 
advantages of object-oriented classification far outweighed its draw-
backs. The segments contextualize grey levels within object parameters, 
and the resulting map has a more generalized appearance than the ‘salt- 
and-pepper’ pattern in the pixel-based classification. This is attractive 
for end users because a more generalized view adds to better visual 
differentiation of land cover types (Dorren et al., 2003; Duro et al., 2012; 
Stuckens et al., 2000). Interestingly, three studies that compared pixel- 
based and object-oriented classifications from medium-resolution sat-
ellite imagery (Landsat and SPOT) did not find significant differences 
(Duro et al., 2012; Prudente et al., 2017; Robertson and King, 2011). 
However, for post-2000 commercial high-resolution imagery, object- 
oriented classification clearly outperforms pixel-based classification 
with and without the DEM (Chen and Tian, 2020; Cleve et al., 2008), 
which is also what we found for classifications of Corona imagery. 

Highly heterogeneous mountain areas, such as the Caucasus region 
(Reinhold et al., 2016), presented a challenging test site for land cover 
classifications because of reflectance differences introduced by cast 
shadows in steep terrain, and overall highly variable illumination con-
ditions (Buchner et al., 2020; Chen et al., 2021). Generally, heteroge-
neous landscapes and land cover transition zones, along with spectrally 
similar land cover classes tend to result in lower accuracies (Song et al., 
2013). We achieved the highest classification accuracy by combining the 
DEM with our texture metrics. Using only spectral and texture infor-
mation, our classifications had some confusion between lakes and for-
ests. However, since lakes are flat, the ‘slope’ metric helped differentiate 
lakes from forests. Confusion between snow-and-ice and urban areas, as 
well as the barren class were also minimized by adding the DEM. Our 
results support the findings from other studies that including elevation 
data when mapping the land cover in mountainous regions can greatly 
improve land cover classifications (Balzter et al., 2015; Buchner et al., 
2020; Chen et al., 2017). 

The land cover in our study area in 1964 was diverse. The moun-
tainous areas in Georgia, which were partly covered by snow in our 
imagery, were heavily forested. Livestock production was historically 
one of the main sources of food and income in the Caucasus because 
grasslands were widespread (Hopkins et al., 2012). Croplands domi-
nated the mostly level areas of our study region in southern Russia. 
Agricultural policies introduced by the Soviet government in the 1960s 
resulted in rapid agricultural development in many regions of the Soviet 
Union (Taff et al., 2010), including the Caucasus region (McCauley, 
1976). To this date, similar to many Eastern European countries (Fer-
anec et al., 2016), agriculture remains an important component of the 
economy in the Caucasus (Worden and de Beurs, 2020). As a result, a 
large variety of crops are grown and there are many large gardens and 
orchards, which we included in the forest class because of their woody 
vegetation. 

While our overall classification accuracy was high, there were some 
notable errors and limitations in our datasets. One source of errors was 
noise and scanning errors in the Corona images (Gheyle et al., 2011). 
The accuracy of our image orthorectification depended to some extent 

on where current high-resolution imagery was available in Google and 
Bing. Previous studies (e.g., Shortridge and Messina, 2011) found that 
SRTM error magnitudes are generally larger for sites with higher forest 
cover and slope, as measured by the standard deviation of error, the 
RMSE, and the 90% error. The errors rise monotonically with increasing 
slope and forest cover percent. In our study, the geolocation mismatch 
between Corona image and SRTM varies from 5.9 to 26.7 m (lower than 
the size of a SRTM pixel). This can affect the extraction of elevation and 
slope in highly heterogeneous terrains, due to the rapid changes be-
tween neighboring pixels, and therefore the classification of small 
patches of land cover classes situated in those environments. Fortu-
nately, our study area had slopes steeper than 35◦ only in 6.8% of the 
area, and only 0.4% of forested areas occurred in small patches. 
Furthermore, we gathered our training and validation samples using 
only visual image interpretation because of the lack of independent data 
for 1964. However, the high resolution of Corona satellite data allowed 
in almost all cases to unambiguously identify the land cover for training 
and validation data (Pengra et al., 2020; Tarko et al., 2020). Lastly, our 
DEM was derived from satellite data recorded in 2000 and has a spatial 
resolution of 30 m, which may have affected the classification accuracy. 
However, the accuracy assessment showed nevertheless a strong 
improvement when adding the DEM. For further analyses of Corona 
images, we suggest extracting the high-resolution digital surface model 
from the Corona data itself whenever full stereoscopic coverage is 
available is worth considering (Ghuffar et al., 2022). Furthermore, it 
would be interesting to explore Corona image classifications using 
convolutional neural networks methods. We opted against them due to 
their need for very large training datasets, but high-resolution Corona 
imagery may be well suited for such deep learning approaches. In 
summary though, despite all of these challenges, our object-oriented 
land cover mapping with incorporation of the DEM was successful in 
mapping land cover in a highly heterogeneous and large area. 

Given the high accuracy of our final resulting map and the broad 
availability of historical Corona imagery, we suggest that our approach 
can facilitate large-area and long-term land use studies in many other 
regions across the globe. To map areas larger than our study area would 
require analyzing imagery from multiple Corona paths, and hence 
different dates and sometimes camera parameters. The extent to which 
training data signatures from one Corona path could be extended for use 
in a neighboring path is unclear, but in principle, even larger areas could 
be mapped. Our approach can advance long-term land use change an-
alyses by combining Corona-based classifications for the 1960s with 
more recent land cover classifications derived, for example, Landsat or 
Sentinel-2 imagery. However, due to differences in spatial and spectral 
resolution, such comparison of Corona data to more recent satellite 
images would require development and application of customized 
change detection methods, and just overlaying the different land cover 
classifications would not be valid. 

In conclusion, accurate land cover maps are crucial for land man-
agement and global change monitoring, and we demonstrated here that 
single-date panchromatic Corona satellite imagery can be classified 
accurately resulting in high-resolution land cover maps for the 1960s. 
Our results indicate that the object-oriented classification is best, and 
that including a DEM substantially improves classification accuracy. Our 
map of broad land cover types in a large and highly heterogeneous area 
shows the potential of our approach and suggests that similar maps 
could be made in most landscapes globally, thereby extending the 
temporal baseline for land use studies to the mid-20th century. 
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