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A B S T R A C T   

Detailed maps of forest structure attributes are crucial for sustainable forest management, conservation, and 
forest ecosystem science at the landscape level. Mapping the structure of broad heterogeneous forests is chal-
lenging, but the integration of extensive field inventory plots with wall-to-wall metrics derived from synthetic 
aperture radar (SAR) and optical remote sensing offers a potential solution. Our goal was to map forest structure 
attributes (diameter at breast height, basal area, mean height, dominant height, wood volume and canopy cover) 
at 30-m resolution across the diverse 463,000 km2 of native forests of Argentina based on SAR Sentinel-1, 
vegetation metrics from Sentinel-2 and geographic coordinates. We modelled the forest structure attributes 
based on the latest national forest inventory, generated uncertainty maps, quantified the contribution of the 
predictors, and compared our height predictions with those from GEDI (Global Ecosystem Dynamics Investiga-
tion) and GFCH (Global Forest Canopy Height). We analyzed 3788 forest inventory plots (1000 m2 each) from 
Argentina’s Second Native Forest Inventory (2015–2020) to develop predictive random forest regression models. 
From Sentinel-1, we included both VV (vertical transmitted and received) and VH (vertical transmitted and 
horizontal received) polarizations and calculated 1st and 2nd order textures within 3 × 3 pixels to match the size 
of the inventory plots. For Sentinel-2, we derived EVI (enhanced vegetation index), calculated DHIs (dynamic 
habitat indices (annual cumulative, minimum and variation) and the EVI median, then generated 1st and 2nd 
order textures within 3 × 3 pixels of these variables. Our models including metrics from Sentinel-1 and 2, plus 
latitude and longitude predicted forest structure attributes well with root mean square errors (RMSE) ranging 
from 23.8% to 70.3%. Mean and dominant height models had notably good performance presenting relatively 
low RMSE (24.5% and 23.8%, respectively). Metrics from VH polarization and longitude were overall the most 
important predictors, but optimal predictors differed among the different forest structure attributes. Height 
predictions (r = 0.89 and 0.85) outperformed those from GEDI (r = 0.81) and the GFCH (r = 0.66), suggesting 
that SAR Sentinel-1, DHIs from Sentinel-2 plus geographic coordinates provide great opportunities to map 
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multiple forest structure attributes for large areas. Based on our models, we generated spatially-explicit maps of 
multiple forest structure attributes as well as uncertainty maps at 30-m spatial resolution for all Argentina’s 
native forest areas in support of forest management and conservation planning across the country.   

1. Introduction 

Accurate, large-area yet fine-resolution information on forest re-
sources is needed by global, national, and local agencies to support 
sustainable management and conservation planning (Coops et al., 2021; 
Moreno et al., 2016; Silveira et al., 2019a; Zald et al., 2016), to maintain 
ecosystem services (Matasci et al., 2018; Zald et al., 2016), and for 
scientific studies (White et al., 2014). Forest inventories are conducted 
to collect forest structure attributes (Wulder et al., 2020) such as 
diameter at breast height (DBH), dominant height, and canopy cover, 
and these metrics are used to predict wood volume, aboveground 
biomass (AGB), carbon storage, wildlife habitat, and biodiversity value 
(Beaudoin et al., 2014; Blackard et al., 2008; Coops et al., 2021; Hyde 
et al., 2006). However, detailed and accurate maps of forest attributes, 
especially for large areas, are rare because extensive field data and 
reliable predictors are needed. 

One of NASA’s GEDI (Global Ecosystem Dynamics Investigation 
Lidar) mission goals is to map forest attributes for large areas. GEDI 
measures forest vertical structure using 25-m diameter footprints sepa-
rated by about 600 m across flight tracks within a ~ 4.2 km swath. From 
this sample a 1-km resolution grid of mean canopy height is derived 
(Dubayah et al., 2020, 2021b), as well as aboveground biomass 
(Dubayah et al., 2021a). While these GEDI products are valuable, they 
have limits for forest management because the gridded maps are rela-
tively coarse (1-km) (Silva et al., 2021), do not cover high latitudes 
(between 51.6◦N and 51.6◦S) and represent a point sample of a limited 
portion of the land area (Potapov et al., 2021). Also, there is high- 
frequency noise in the GEDI data itself, and substantial geolocation 
uncertainty (Roy et al., 2021) as well as reduced accuracy in terrain 
height estimates for steep slopes and in dense forests, which may lead to 
inaccurate estimates of canopy height (Liu et al., 2021). Furthermore, 
GEDI products have only been validated with field data from a few 
countries (Dubayah et al., 2020), and it is unclear how accurate height 
predictions are for those parts of the globe that did not contribute field 
data to the GEDI validations. 

To overcome the problem that GEDI data itself is only a sample of the 
Earth’s surface, which means that only coarse-scale grids can be derived 
from GEDI data by themselves, these data have been combined with 
Landsat multitemporal surface reflectance data to generate a 30-m res-
olution global map of forest canopy height for the year 2019, the GFCH 
(Global Forest Canopy Height) product (Potapov et al., 2021). However, 
any errors in the GEDI data propagate into the GFCH dataset, and the 
GFCH provides only canopy height information, not other forest struc-
ture attributes. Thus, both GEDI and GFCH provide global data on forest 
structure, but there remains a need to validate them over large areas, 
including a range of forest ecosystems and types and topographic 
conditions. 

In general, mapping forest structure for large areas requires 
combining field-based measurements with data from passive or active 
remote sensors, plus other available auxiliary information, such as 
elevation (Saatchi et al., 2011), environmental and terrain-related data 
(Silveira et al., 2019b) or geographic coordinates (Matasci et al., 2018). 
As part of that framework, remote sensing provides proxies that can be 
used to model forest attributes and provide accurate measurements over 
large areas at much lower cost than traditional field inventories (Bouvier 
et al., 2015). However, most of the forest structure maps developed at 
continental or nation level are based on coarse-resolution imagery 
(Avitabile et al., 2016; Baccini et al., 2008; Silveira et al., 2019c), or only 
on optical imagery, such as medium-resolution Landsat data (Matasci 
et al., 2018). For example, in Finland and Sweden, as part of the national 

forest inventory, 10,000 field plots are measured annually and are 
combined with satellite data, and other georeferenced digital data to 
produce volume of the growing stock at a pixel size of 25-m (Tomppo 
et al., 2008). In Canada, remotely-sensed derived maps of forest struc-
ture are available at 30-m resolution (Matasci et al., 2018) while for the 
conterminous US, Alaska and Puerto Rico, such maps are available at 
250-m (Blackard et al., 2008) and 1 ha spatial resolution (Yu et al., 
2022). 

Optical satellite data are suitable for mapping vegetation types 
(Silveira et al., 2022) and retrieving vegetation structure. Features 
derived from Sentinel-2 optical data alone can predict forest structure 
attributes including AGB (Castillo et al., 2017; Majasalmi and Rautiai-
nen, 2016; Puliti et al., 2020), wood volume (Chrysafis et al., 2017; 
Puliti et al., 2018), DBH, basal area, height (Astola et al., 2019; Lang 
et al., 2019; Wittke et al., 2019), and canopy cover (Eskandari et al., 
2020; Korhonen et al., 2017). However, optical sensors have limitations 
including saturation problems in high biomass forests, and the influence 
of weather conditions, atmosphere, moisture, and vegetation phenology 
(Lu et al., 2016). For example, differences in vegetation phenology due 
to environmental conditions are an important consideration when 
selecting image acquisition date for evaluations of the relationships 
between forest structure and spectral data in subtropical dry forests of 
Argentina (Gasparri et al., 2010; Gasparri and Baldi, 2013). While op-
tical sensors can capture some aspects of horizontal vegetation structure, 
integration of lidar and optical data (e.g., Landsat) using empirical 
modelling procedures greatly improves estimate and maps of forest 
canopy height and other forest structure attributes (Hudak et al., 2002). 
In many countries airborne laser scanning (ALS) plays a major role. The 
combination of national forest inventory, ALS and other remotely sensed 
data improves models of forest structural variables (Hauglin et al., 
2021), however, ALS is not always available. 

Radar data can also support the estimation of vertical vegetation 
structure, such as canopy height. Synthetic aperture radar (SAR) sensors 
provide information on the backscattered energy from the illuminated 
target, which means that they penetrate the forest canopy, and are 
weather-independent (Saatchi, 1997). SAR Sentinel-1C-band satellite 
data, for example, penetrates through leaves and is scattered by small 
branches (Ghasemi et al., 2011). SAR Sentinel-1 data are available in C- 
band HH (horizontal transmit-horizontal) + HV (horizontal transmit- 
vertical) or VV (vertical transmit- vertical) + VH (vertical transmit- 
horizontal) polarizations. Time series from SAR Sentinel-1 and 
derived-metrics (e.g., backscatter, slope, correlation coefficients, and 
texture metrics) can be used to predict forest structure variables 
(Bruggisser et al., 2021; Periasamy, 2018), however the C-band does not 
penetrate deep into the canopy (Karjalainen et al., 2012), which limits 
the accuracy of forest structure maps in dense vegetation (Nizalapur 
et al., 2010). The backscattering of radar is affected by surface param-
eters (e.g., soil moisture and surface roughness) and geometric factors 
related to the surface attributes of targets (Dobson et al., 1995). For 
example, slopes facing towards the radar will have small local incidence 
angles, causing relatively strong backscattering to the sensor, which 
results in a bright-toned appearance in an image, complicating the 
estimation of forest attributes. 

However, the combination of SAR and optical imagery offers exciting 
opportunities for accurate forest structure maps for large areas (e.g., 
Forkuor et al., 2020; Navarro et al., 2019; Pötzschner et al., 2022). In 
particular, the complementary information provided by SAR Sentinel-1 
and Sentinel-2 (Nuthammachot et al., 2020), enhances the accuracy of 
forest attribute predictions (Forkuor et al., 2020; Morin et al., 2019). 
When modelling mangrove plantation aboveground biomass in Senegal, 

E.M.O. Silveira et al.                                                                                                                                                                                                                           



SAR Sentinel-1 (VH backscatter) outperformed Sentinel-2 (spectral 
bands and vegetation indices), but the combination of the two per-
formed best (Navarro et al., 2019). In tropical savannas and woodlands, 
Sentinel-2 outperformed SAR Sentinel-1, but again the combination of 
the two produced the best results (Forkuor et al., 2020). In addition to 
the pixel-level metrics from either SAR Sentinel-1 polarizations or 
Sentinel-2 spectral indices, it is advantageous to calculate textures 

metrics (Haralick et al., 1973) within moving windows. For example, 
textures accurately predicted aboveground biomass in China (Chen 
et al., 2018), and basal area, height, and tree density in a Pinus pinaster 
forest located in France (Morin et al., 2019). However, the empirical 
evidence that combining SAR Sentinel-1 and 2 can map forest attributes 
accurately is limited to small study areas so far, and it is not clear if data 
from these two satellite sensors can also map forest attributes accurately 

Fig. 1. (a) Location of Argentina’s forest regions: Bosque Andino-Patagónico (BAP), Delta e Islas del Río Paraná (DEL), Espinal (ESP), Monte (MON), Parque 
Chaqueño (PCH), Selva Paranaense (SPA), and Yungas (YUN), (b) forest inventory field plots, (c) elevation and (d) slope. 
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for large areas and across a wide range of forest types. 
Our goal was to evaluate SAR Sentinel-1 and Sentinel-2 and their 

derivatives for mapping multiple forest attributes across the 463,000 
km2 of Argentina’s forests. Specifically, we tested the combination of 
metrics derived from VV and VH polarizations of SAR Sentinel-1 data 
and from vegetation metrics derived from Sentinel-2 data to map six 
forest structure attributes: DBH, basal area, mean height, dominant 
height, wood volume and canopy cover. Our objectives were to: (1) 
model forest structure attributes based on forest inventory data, metrics 
derived from SAR Sentinel-1, Sentinel-2 and geographic coordinates to 
generate high spatial resolution maps of forest structure attributes 
across Argentina’s forests; (2) map uncertainty for each forest structure 
attribute; (3) quantify the relative contribution of the predictors to 
models of forest structure attributes; and (4) compare the accuracy of 
our height predictions with the accuracies of predictions from GEDI and 
GFCH using forest inventory plots as validation. 

2. Methods 

2.1. Study area 

We analyzed the native forest landscape of Argentina (~463,000 
km2) as delineated by the national government (Dirección Nacional de 
Bosques, 2021), in South America, between 20◦S and 60◦S latitude, and 
50◦W and 80◦W longitude. This map of native forest areas was devel-
oped by Argentina’s government as part of the National Native Forest 
Monitoring System and is based on satellite imagery (mainly Landsat 
and Sentinel-2) and ground-truth data. Argentina’s national forest law 
26,331 and complementary regulations define native forest as natural 
woods where trees are dominant species reaching >3-m height at 
maturity, and where canopy cover is >20% in a minimum 0.5 ha area 
(Fig. 1a). 

The country has seven regions of native forests (Peri et al., 2021): (1) 
Bosque Andino-Patagónico, (2) Delta e Islas del Río Paraná, (3) Espinal, 
(4) Monte, (5) Parque Chaqueño, (6) Selva Paranaense, and (7) Yungas 
(Fig. 1a). Bosque-AndinoPatagónico includes temperate forests with 
low-diversity tree species assemblages of different types including 
broadleaved deciduous, evergreen species, and coniferous species. 
Espinal, Monte and Parque Chaqueño are mostly comprised of sub- 
tropical and dry deciduous or evergreen broadleaved forests. Selva 
Paranaense and Yungas are subtropical rainforests which include 
different types of evergreen and deciduous trees in a variety of moisture 
and elevational contexts. Finally, Delta e Islas del Río Paraná forests are 
located along the main rivers of the region and include subtropical 
rainforests, deciduous and evergreen broadleaved forests (Matteucci 
et al., 2021). Among regions, there is strong topographic contrast be-
tween the mountainous western and flat eastern parts of the country 
(Fig. 1c-d). 

2.2. Data 

2.2.1. Forest attributes 
To obtain the multiple forest attributes, we analyzed a total of 3788 

circular field plots (1000-m2), which are systematically distributed over 
the forested area (Fig. 1b), as part of Argentina’s Second Native Forest 
Inventory (Dirección Nacional de Bosques, 2021). Given the long-time 
window of the forest inventory survey (2015–2020), we checked for 
deforested areas from 2015 to 2020, and excluded 27 deforested plots 
based on the Global Forest Change map (Hansen et al., 2013). 

Inventory plots were designed based on a grid of 10-km by 10-km, 
and on this grid the selection was made with high resolution satellite 
images where there were forests. Then, when the plots were established, 
exact coordinates were collected with a GPS unit at the center of the 
plot. A photo of the GPS was taken in order to verify that the coordinates 
had been typed correctly when loading the data. The GPS error was 
between 3 and 8 m. During the field survey, technicians measured the 

diameter at breast height (DBH, 1.3 m) and the total height of all trees 
with a minimum DBH of 5 or 10-cm (with different DBH thresholds 
depending on the region) (Table S1). To check if these different 
thresholds affected nation-wide analysis, we recalculated the plot-level 
forest attributes in those regions where the smaller threshold was 
adopted (i.e., ESP, MON, PCH), based on a) all trees, and b) only trees 
>10 cm DBH. We found only miniscule differences suggesting that the 
5–10 cm DBH trees did not affect plot-level estimates of the six forest 
attributes, and hence our subsequent model results, noticeably 
(Table S2). In the field, technicians also measured canopy cover (%) as 
the projection of tree canopies based on a north-south transect crossing 
the center of the plot (Fig. S1). 

Then, to obtain our forest structure attributes, for DBH and height, 
we calculated mean values inside each plot, expressed in cm and m, 
respectively. We calculated height of dominant trees (expressed in me-
ters), defined as the mean height of the 20% tallest trees. We also 
calculated basal area (m2/ha), and total wood volume (m3/ha). is 
Detailed information on the forest inventory is at SGAyDS-Secretaría de 
Gobierno de Ambiente y Desarrollo Sustentable de la Nación (2019). 
Descriptive statistics of the forest attributes are shown in Table 1. 

2.2.2. Remotely sensed predictor variables and auxiliary information 
We derived thirty-six (36) remotely-sensed predictors from the 

Copernicus mission satellites Sentinel-1 and Sentinel-2 at 10-m spatial 
resolution as well as auxiliary information (two extra variables: latitude 
and longitude). For SAR Sentinel-1, we used high-resolution ground 
range detected products (GRD), which we acquired in the Interfero-
metric Wide (IW) swath mode in descending pass direction, available in 
Google Earth Engine (“COPERNICUS/S1_GRD”). We used both VV 
(vertical transmitted and vertical received) and VH (vertical transmitted 
and horizontal received) backscatter polarizations from 2015 to 2020 to 
match the forest inventory survey dates. Backscatter is the portion of the 
outgoing radar signal that the target redirects directly back towards the 
radar antenna. It is a measure of the reflective strength of a radar target. 
We did not test HH-HV polarizations because these polarizations are 
generally used for sea-ice detection and in polar regions (Wang and Li, 
2021). 

Thus, based on VV and VH backscatter polarizations, we calculated 
median values and applied a 3 × 3 moving window to calculate 1st and 
2nd order image texture metrics (Table 2). We chose that window size to 
match the field plot size of 1000 m2. That area is equal to that of a 35.68 
by 35.68 m square. Given that each Sentinel pixel size is 10 by 10 m, we 
summarized the satellite data in a moving window of 3 × 3 pixels, or 30 
by 30 m, to approximate the area of the field plots (900 versus 1000 m2) 
(Fig. S2). All analyses, including both the model fitting, and the model 
predictions, were done at the 30-m resolution. The 1st order texture 
metrics are statistical summaries of pixel gray-levels within the pro-
cessing extent, while 2nd order texture metrics are derived from the 
gray-level co-occurrence matrix (GLCM) (Haralick et al., 1973). We 

Table 1 
Descriptive statistics of the forest structure attributes from the 3788 forest in-
ventory plots (1000 m2). SD = standard deviation; CV = coefficient of variation; 
DBH = diameter at breast height; BA = basal area; H = mean height (H); DH =
dominant height; WV = wood volume (WV); CC = canopy cover.  

Statistic DBH 
(cm) 

BA (m2/ 
ha) 

H 
(m) 

DH 
(m) 

WV (m3/ 
ha) 

CC 
(%) 

Minimum 5.0 0.1 2.3 2.3 0.2 0.0 
1st quartile 14.5 5.2 5.4 7.9 21.8 36.6 
Mean 19.5 12.0 7.4 11.2 73.4 61.4 
Median 17.2 8.9 6.4 10.1 44.1 64.8 
3rd 

quartile 
21.6 14.4 8.0 12.8 82.7 90.1 

Maximum 92.2 106.9 34.4 44.0 1379.8 100.0 
SD 8.5 11.6 3.4 5.1 104.9 31.1 
CV (%) 43.4 96.5 46.2 45.2 143.0 50.7  
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selected six texture metrics that are not strongly correlated (less than +
− 0.7) (mean, standard deviation, homogeneity, uniformity, correlation, 
shade). For 2nd order textures calculations, we rescaled values to 8-bit 
(GLCMs with dimensions of 256 rows × 256 columns) to avoid zeros 
in the matrix that occurred in 16-bit imagery (65,536 rows × 65,536 
columns). 

For Sentinel-2, we acquired surface reflectance data, available in 
Google Earth Engine (“COPERNICUS/S2_SR”) from 2015 to 2020. The 
Sentinel-2 processing includes an atmospheric correction applied to 
Top-Of-Atmosphere Level-1C orthoimage products computed by 
running sen2cor (Müller-Wilm, 2016). We used the Sentinel-2 scene 
classification band to mask the pixels that were labelled as cloud, 
shadow, and snow. We calculated the enhanced vegetation index (EVI) 
and generated a composite image by calculating EVI median values for 
2015–2020. In addition to EVI median values, we also calculated annual 
composite DHIs (dynamic habitat indices) based on EVI times series 
from 2015 to 2020. The DHIs summarize productivity of vegetation in 

three ways: (i) annual cumulative productivity (cumulative DHI), a 
measure of available energy and integrates productive capacity over a 
year; (ii) minimum productivity (minimum DHI), a measure of resource 
limitation; and (iii) annual variation or seasonality (variation DHI), that 
captures seasonality (Berry et al., 2007; Coops et al., 2009; Duro et al., 
2007). To calculated DHIs, first, we selected the highest EVI value in 
each month, to reduce artifacts. From these, we selected the median 
monthly values for the six years, to reduce the effects of extreme years. 
Based on the median monthly values, we calculated the cumulative DHI 
as the sum of the monthly values, the minimum DHI, and the variation 
DHI as the coefficient of variation. We then calculated the 1st and 2nd 
order texture metrics within a moving window of 3 × 3 pixels (Table 2). 
For 2nd order textures calculations, we rescaled values to 8-bit. 

As auxiliary information, we included latitude and longitude co-
ordinates in our model to capture trends associated with the regional 
temperature and precipitation gradients across the country (Matasci 
et al., 2018). We did not use temperature or precipitation as predictors 
because the climate dataset across Argentina is at 1-km spatial resolu-
tion (Fick and Hijmans, 2017), and thus too coarse for our predictions at 
30-m spatial resolution. 

2.3. Analysis 

2.3.1. Random forest models and uncertainty maps 
Machine learning techniques such as k-nearest neighbor (k-NN; 

Dudani, 1976) and random forest (RF; Breiman, 2001) have been suc-
cessfully used to model forest structure attributes (Latifi and Koch, 2012; 
Silveira et al., 2019c; Tomppo et al., 2008). The principle of k-NN is to 
predict the target variable based on the closest observations in the 
training dataset, while the RF algorithm is based on decision trees. In 
models of forest structure attributes, RF performed better than k-NN in 
some studies (Fassnacht et al., 2014; Latifi and Koch, 2012; Tompalski 
et al., 2019). In addition, k-NN technique is computationally intensive 
when there is a large number of plots (Tomppo et al., 2008). In addition, 
RF provides the ‘Variable Importance’ to evaluate the importance of 
predictors, is less sensitive to noise in the training data, can accommo-
date many predictor variables without overfitting, and tends to result in 
more accurate predictions than other regression frameworks (Baccini 
et al., 2008; Shataee et al., 2012). Because of these advantages, we 
selected RF for our models. 

We used the randomForest package (Liaw and Wiener, 2002) avail-
able in R (R Core Team, 2021). For calibration and training, we 
randomly selected 70% of the field plots balanced across Argentina’s 
forest regions (according to the data histogram, capturing all class in-
tervals for training). Based on the training data, we selected optimal 
values of the hyperparameters (ntree and mtry) for each random forest 
model and employed the random search method to tune the hyper-
parameters (Bergstra and Bengio, 2012). The remaining 30% were our 
validation data. For validation, we generated scatterplots and computed 
the coefficient of determination (R2, in %), the root-mean- square error 
(RMSE) and mean error (ME). 

Understanding pixel-level uncertainty is critical to understanding the 
utility of the predictive maps. However, because Random forest is a non- 
parametric approach, there is no direct quantification of prediction 
uncertainty at the pixel level. Some studies that assessed forest structure 
attributes, and their related uncertainties, did so based on model- 
assisted (e.g., Gregoire et al., 2011; Saarela et al., 2015), or model- 
based inference (Magnussen, 2015), or via Monte Carlo simulation 
(Coulston et al., 2016). However, these methods require a fairly large 
probability sample of field data and tend to underperform in sparse areas 
of the distribution (Coulston et al., 2016). One alternative is to provide 
uncertainties in terms of RMSE (Csillik et al., 2019, 2020; Dos Reis et al., 
2020; Saarela et al., 2015). The RMSE is a key performance metric when 
modelling forest attributes (Coops et al., 2021). Thus, we generated 
uncertainty maps of each forest structure attribute to assess the corre-
spondence between what was predicted and what was observed in each 

Table 2 
SAR Sentinel-1 and Sentinel-2 derived features and their derivation from first 
and second order texture measures. VV = vertical transmitted and received; VH 
= vertical transmitted and horizontal received; SD = standard deviation; HOM 
= homogeneity; CORR = correlation; SH = shade. EVI = enhanced vegetation 
index.  

Satellite Polarization Metric Feature 

Sentinel- 
1 

VV 1st - Mean S1_VV_MEAN 
1st - Standard 
deviation 

S1_VV_SD 

2nd - 
Homogeneity 

S1_VV_HOM 

2nd - Uniformity S1_VV_UNI 
2nd - Correlation S1_VV_CORR 
2nd - Shade S1_VV_SH 

VH 1st - Mean S1_VH_MEAN 
1st - Standard 
deviation 

S1_VH_SD 

2nd - 
Homogeneity 

S1_VH_HOM 

2nd - Uniformity S1_VH_UNI 
2nd - Correlation S1_VH_CORR 
2nd - Shade S1_VH_SH 

Sentinel- 
2 

EVI_median 1st - Mean S2_EVI_median_MEAN 
1st - Standard 
deviation 

S2_EVI_median_SD 

2nd - 
Homogeneity 

S2_EVI_median_HOM 

2nd - Uniformity S2_EVI_median_UNI 
2nd - Correlation S2_EVI_median_CORR 
2nd - Shade S2_EVI_median_SH 

EVI_DHI_Cumulative 1st - Mean S2_EVI_DHI_Cum_MEAN 
1st - Standard 
deviation 

S2_EVI_DHI_Cum_SD 

2nd - 
Homogeneity 

S2_EVI_DHI_Cum_HOM 

2nd - Uniformity S2_EVI_DHI_Cum_UNI 
2nd - Correlation S2_EVI_DHI_Cum_CORR 
2nd - Shade S2_EVI_DHI_Cum_SH 

EVI_DHI_Minimum 1st - Mean S2_EVI_DHI_Min_MEAN 
1st - Standard 
deviation 

S2_EVI_DHI_Min_SD 

2nd - 
Homogeneity 

S2_EVI_DHI_Min_HOM 

2nd - Uniformity S2_EVI_DHI_Min_UNI 
2nd - Correlation S2_EVI_DHI_Min_CORR 
2nd - Shade S2_EVI_DHI_Min_SH 

EVI_DHI_Variation 1st - Mean S2_EVI_DHI_Var_MEAN 
1st - Standard 
deviation 

S2_EVI_DHI_Var_SD 

2nd - 
Homogeneity 

S2_EVI_DHI_Var_HOM 

2nd - Uniformity S2_EVI_DHI_Var_UNI 
2nd - Correlation S2_EVI_DHI_Var_CORR 
2nd - Shade S2_EVI_DHI_Var_SH  
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pixel. For this, we calculated both the absolute RMSE (Eq. (1)) and 
relative RMSE (i.e., the RMSE as a proportion of the mean; Eq. (2)). 

To calculate RMSE, first we grouped the predicted values of each 
forest structure variable into 10 bins (based on natural breaks) and then 
computed the RMSE (both absolute and relative) for each bin. Second, 
we fitted polynomial regression models using the 10 RMSE bin values 
and the predicted mean values of each variable per bin. Based on these 
regression models we then mapped the RMSE of each forest attribute. 
Based on the relative uncertainty maps, we also evaluated results by 
forest types, elevation and slope gradients. For forest types we used a 
phenocluster map of Argentina at 30-m spatial resolution where forests 
are characterized based on land surface phenology and climate patterns 
(Silveira et al., 2022). Elevation and slope were derived from the SRTM 
(shuttle radar topography mission). 

RMSE absolute =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(predicted − observed)2

N

√

(1)  

RMSE relative =
RMSE absolute

∑
observed

N

*100 (2) 

To quantify the relative contribution of the predictors to models of 
each forest structure attribute, we employed the RReliefF algorithm 
(Kononenko et al., 1996). RReliefF is a classic filter-based method 
suitable for regression tasks with continuous output values and calcu-
lates a feature score which ranks each feature for selection, improving 
the performance of the algorithms (Chandrashekar and Sahin, 2014; Dos 
Reis et al., 2020). RReliefF estimates the quality of attributes in 
regression problems and gives higher scores to higher quality attributes 
(Kononenko et al., 1996; Urbanowicz et al., 2018). Based on the ranking 
attributees, we used the function cutoff.biggest.diff to identify the subset 
of predictors which were top contributors to model performance (R Core 
Team, 2021). In addition to our initial models based on variables from 
Sentinel-1 plus Sentinel-2 plus geographic coordinates, we also tested 
models based on subsets of predictors derived from (1) Sentinel-1, (2) 
Sentinel-2, (3) Sentinel-1 plus Sentinel-2. 

2.3.2. Forest structure attribute maps 
To map the forest structure attributes DBH, basal area, mean height, 

dominant height, wood volume and canopy cover, we applied the 
random forest regression models to each pixel containing the selected 
features’ continuous values. Because the original remotely-sensed pre-
dictors are 10-m spatial resolution, we resampled the selected features’ 
continuous values to 30-m spatial resolution (900-m2 pixel) to approx-
imately match resolutions. All maps are in geographic coordinate system 
and datum World Geodetic System (WGS) 1984. One of the challenges 
when generating independent models for each forest attribute is that the 
different predictions for a given pixel may not match, e.g., there may be 
cases with a high predicted basal area, but low predicted volume. To 
check for this, we randomly distributed 2000 points over the study area, 
and calculated Pearson correlation between the different variables both 
in the sampling plots, and in our 2000 randomly points. We found strong 
positive correlations (e.g., height and dominant height), moderate pos-
itive correlations (e.g., basal area and height) and low positive corre-
lations (e.g., diameter at breast height and canopy cover) for both plot- 
level estimates and predicted locations. For the correlations between 
basal area, mean height, dominant height, wood volume and canopy 
cover, we found no differences in the correlations for plots and predicted 
locations suggesting that nonsensical predictors were not an issue 
(Fig. S3). Only the correlations between DBH and the other forest at-
tributes were lower for the predicted locations, suggesting that DBH 
predictions may not be quite as consistent with the other variables. 

2.3.3. Height predictions versus GEDI and GFCH 
We compared our predictions of mean height with predictions from 

GEDI and GFCH. The objective of this analysis was to evaluate which 

height estimate is most accurate in Argentina. To do so, first we down-
loaded GEDI 3 Gridded Land Surface Metrics, in which mean canopy 
height is provided, calculated as the mean of values within each 1-km 
cell, from 2019 and 2020. Canopy height is provided as the mean 
height (in meters) above the ground of the received waveform signal 
that was the first reflection off the top of the canopy (RH100) (Dubayah 
et al., 2020). Accordingly, we expected that the GEDI canopy height 
would correlate most strongly with dominant height. Because the orig-
inal GEDI dataset is an Equal-Area Scalable Earth (EASE)-Grid projec-
tion in datum WGS 1984 we converted it to geographic coordinates to 
match our dataset. Second, we downloaded the GFCH (Potapov et al., 
2021), a 30-m spatial resolution global forest canopy height map for 
2019, derived from GEDI extrapolation based on Landsat multitemporal 
metrics (Potapov et al., 2019, 2020). To obtain the GFCH estimates, for 
each footprint, a set of relative height metrics (RH75, RH90, RH95, and 
RH100) are extracted and the mean RH metric is calculated for each 
footprint (Potapov et al., 2021). We expected that the GFCH estimates 
would correlated most strongly with mean height. 

To compare our predictions with GEDI, we resampled our mean 
height map to 1-km spatial resolution. Then, we selected the validation 
plots (i.e., the remaining 30% plots that were not used to train our 
random forest models) that also intersected with GEDI gridded metric 
(total 240 plots). Based on these plots, we computed Pearson correlation 
(r) and the root-mean square error (RMSE) between (1) mean height of 
240 validation plots versus our mean height predictions, and (2) mean 
height of 240 validation plots versus GEDI predictions. To compare our 
predictions with the GFCH, we used our mean height map at 30-m 
spatial resolution. We also selected the validation plots that also inter-
sected with the GFCH map (total 550 plots). Based on these plots, we 
also computed Pearson correlation (r) and the root-mean square error 
(RMSE) between (1) mean height of 550 validation plots versus our 
mean height predictions, and (2) mean height of 550 validation plots 
versus GFCH predictions. Finally, we analyzed the influence of elevation 
and slope on the differences between GEDI and GFCH versus our vali-
dation plots. To do so, we computed Pearson correlation between GEDI/ 
GFCH residual errors with elevation and slope (obtained from SRTM) 
and generated boxplots by forest region. 

In a second evaluation, we repeated the previous analysis by 
comparing our measure of dominant height (instead of mean height) to 
GEDI and GFCH. However, because mean and dominant height are 
highly correlated (r = 0.92), and the results were very similar, we pre-
sent this extra analysis based on dominant height in our supplementary 
material (Fig. S4). 

3. Results 

3.1. Random forest models 

The models of forest structure attributes captured varying levels of 
attribute variability. Mean and dominant height models had the best 
performance when considering the R2 (0.71 and 0.70, respectively) and 
RMSE (24.5% and 23.8%, respectively) together. The model R2 metrics 
ranged from 0.35 (canopy cover) to 0.74 (wood volume) and relative 
RMSE values ranged from 23.8% (dominant height) to 70.3% (wood 
volume). RMSE was lower than or equal to 50% for DBH, mean height, 
dominant height, and canopy cover. However, for basal area and wood 
volume RMSE reached 51.0% and 70.3%, respectively. Scatterplots 
showed that the relationships with predictions for basal area, mean 
height, dominant height, and wood volume were close to the 1:1 line 
(R2 = 0.73, 0.71, 0.70 and 0.74, respectively), while DBH and canopy 
cover deviated more from the 1:1 line (R2 = 0.50 and 0.35, respectively) 
(Fig. 2). 

3.2. Forest structure attributes spatial distribution 

Our forest structure maps at 30-m spatial resolution across 
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Argentina’s forests demonstrate the potential of combining SAR 
Sentinel-1, vegetation metrics from Sentine-2 and geographic co-
ordinates to capture detailed forest structure patterns at landscape level 
(Fig. 3). Overall, all forest structure attributes values were higher in 
Bosque Andino-Patagónico, Yungas and in Selva Paranaense and lower 
in Parque Chaqueño, Espinal and Monte. Across Argentina, according to 
our predictions, DBH ranged from 5 to 42-cm, while basal area and wood 
volume ranged from 1 to 106 m2/ha and 1–1240 m3/ha, respectively. 
Mean height and dominant height ranged from 2 to 31-m and 3–32-m, 
respectively and canopy cover ranged from 0 to 98% (Fig. 4). 

The main descriptive statistics (min, mean, max and standard devi-
ation) of the observed (field plots) and predicted values (our maps) 
matched relatively closely across the country (Table 3). According to our 
predictions, mean values across Argentina’s forests of DBH, basal area 
and wood volume were 20.1 cm, 13.8 m2/ha and 82.14 m3/ha, 
respectively. Predicted mean height and dominant height were 7.5-m 
and 11.5-m, respectively, while canopy cover was 62% on average. 

3.3. Uncertainty maps 

To generate uncertainty maps, we used the polynomial models for 
both the relative RMSE (%) and the absolute RMSE. Those models 
generally had a good fit, with the R2 ranging from 0.74 to 0.95 for the 
relative RMSE (Fig. 5a) and from 0.63 to 0.94 (for the absolute RMSE 
(Fig. 5b). Overall, the highest relative errors were mostly in Delta e Islas 
del Río Paraná, Espinal, Monte and in Parque Chaqueño, forest regions 
(Fig. 6; Fig. S5), where trees are small, while the highest absolute errors 
were concentrated in Bosque Andino-Patagónico, Selva Paranaense and 
Yungas, and forest regions (Fig. 7; Fig. S6), where trees are dense and 
tall. The exception was canopy cover, which also had higher absolute 
RMSE in all forest regions. 

In evaluating relative RMSE, the uncertainties in DBH were <50% 
and the highest errors were in predicted values of DBH lower than 15 cm 
(mostly in Espinal and Monte forest regions). For basal area, relative 
uncertainties were higher than 50% where values were higher than 40 
m2/ha, mainly in Parque Chaqueño, Espinal and Monte forest regions. 

For mean and dominant height, uncertainty was <40% and the highest 
errors we found in predicted values of height lower than 5 m (mostly in 
Monte region). The relative uncertainties in wood volume were higher 
than 50% for lower predicted values of wood volume (< 400 m3/ha), 
especially in Parque Chaqueño, Espinal and Monte. For canopy cover, 
uncertainties were higher than 50% for predictions lower than 60%, in 
Espinal and Monte (Fig. 5a; Fig. 6). 

Regarding absolute RMSE, the uncertainties in DBH were >6-cm for 
predicted values of DBH higher than 30-cm, in Bosque Andino- 
Patagónico, Yungas and Selva Paranaense. For basal area, absolute un-
certainties were higher than 6 m2/ha where basal areas were higher 
than 40 m2/ha, such as in Yungas, Bosque Andino-Patagónico and in 
Selva Paranaense forest regions. For height and dominant height, we 
found uncertainties of >3-m where trees were taller than 15-m (e.g., 
Yungas, Bosque Andino-Patagónico and Selva Paranaense). Finally, the 
absolute uncertainties for wood volume were higher in Bosque Andino- 
Patagónico, where values were higher than 300 m3/ha (Fig. 5b; Fig. 7). 

When analyzing relative RMSE by forest type, results showed that six 
phenoclusters mainly represented by riparian forests (phenoclusters 14, 
17, 18, 20, 21 and 23) within Delta e Islas del Río Paraná and Espinal 
forest regions presented the highest errors for all predicted forest attri-
butes. For DBH, basal area and wood volume, lower relative RMSE are in 
Bosque Andino-Patagónico where broadleaved forests are dominant. For 
height and dominant height, lower relative RMSE are within the 
broadleaved forests of Bosque Andino-Patagónico, but also in degraded 
forests in Selva Paranaense. In addition, canopy cover had higher rela-
tive RMSE in degraded Calden forests in the Espinal forest region 
(Fig. S7-S12). 

When analyzing relative RMSE by elevation, forest structure attri-
butes had low errors in flat terrain (0–100-m), and highest errors in 
higher altitudes (500–1000-m) (Fig. S13). Regarding slopes gradients, 
intermediate classes of 3–5◦ and 10–15◦ had the lowest uncertainty 
(Fig. S14). 

Fig. 2. Scatterplots for the regression model of forest structure attributes: (a) diameter at breast height (DBH), (b) basal area, (c) mean height, (d) dominant height 
(DH), (e) wood volume and (f) canopy cover. 1:1 line in solid black and fitted line in dashes. R2 = coefficient of determination; ME = mean error; RMSE = root-mean- 
square error. 
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3.4. Predictor variable importance 

The optimal subset of predictor variables included eight (8) of our 
thirty-eight (38) initial predictors. Of the eight predictors, two were the 
geographic coordinates latitude and longitude, and the remaining six 
were mean derived texture metrics from Sentinel-1 and Sentinel-2 
(Fig. 8). The remaining 1st order texture metric (standard deviation) 
and the 2nd order textures homogeneity, uniformity, correlation and 
shade derived from both SAR Sentinel-1 and Sentinel-2 were not 
selected in models of any forest attribute. Latitude and longitude 
improved the r-square relative to models based on Sentinel-1 and 2 only 
by 2.1 to 5.7 percentage point (Table S3). 

We ranked the eight predictors according to their relative impor-
tance in each model of forest structure attributes. The most important 
variable for modelling the forest structure attributes was the mean 
texture metric of VH polarization from SAR Sentinel-1 (S1_VH_MEAN), 
which was selected in all six forest structure attribute models Longitude 
was the 2nd most important variable, also included in all six models. For 

each forest attribute, at least one geographic coordinate, one polariza-
tion variable from SAR Sentinel-1 and one vegetation metric from 
Sentinel-2 was selected, but optimal predictors differed in their strength 
of association with each forest structure attribute. For DBH and basal 
area the VH polarization from SAR Sentinel-1 (S1_VH_MEAN) was the 
most important (relative importance of 38% and 26%, respectively). For 
mean height and dominant height, mean of minimum DHI from 
Sentinel-2 (S2_EVI_DHI_Min_MEAN) was the most important variable 
(relative importance of 20% and 34%, respectively%). For wood vol-
ume, median EVI from Sentinel-2 (S2_EVI_median_MEAN) was the most 
important predictor (relative importance of 27%) and for canopy cover 
the mean of VV polarization of Sentinel-2 (S1_VV_MEAN) had 31% of the 
relative importance of predictors in the model (Fig. 8). 

3.5. Height predictions versus GEDI and GFCH 

Our height predictions based on SAR Sentinel-1 combined with 
vegetation metrics from Sentinel-2 and geographic coordinates clearly 

Fig. 3. Example of detailed pattern of diameter at breast height (DBH), dominant height (DH) and wood volume (WV) within (a) Bosque Andino-Patagónico (BAP), 
(b) Yungas (YUN) and (c) Parque Chaqueño (PCH). Rows: (1) DBH; (2) DH; (3) WV and (4) Sentinel-2 bands 4, 3, and 2 in RGB. 
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outperformed GEDI and the GFCH predictions when compared with 
field-plot validation measures of mean height. Our predicted mean 
height values had a Pearson correlation of 0.89 with the field data versus 
0.81 for GEDI. In addition, GEDI had absolute and relative RMSEs of 4.0 
m and 53.5% while our mean height predictions had RMSEs of 1.5-m 
and 19.7% (Fig. 9a, b). When comparing our maps with the GFCH, 
our predicted mean height values had a Pearson correlation of 0.85, 
versus 0.66 for GFCH. The RMSE also revealed that our mean height 
predictions presented lower RMSE (1.7-m and 22.9% for relative and 
absolute, respectively) than the GFCH (3.3-m and 52.3%) (Fig. 9c, d). 

Topographic conditions affected GEDI and GFCH estimates. We 
found higher errors on steeper slopes and at higher elevations 
(Table S4). In addition, we found higher errors of both GEDI and GFCH 
estimates within BAP and YUN forest regions, which are characterized 
by mountain forests (Fig. S15). 

4. Discussion 

We modelled and mapped six forest structure attributes in Argentina 
using SAR Sentinel 1- and Sentinal-2 data, and R2 values ranged from 
0.48 to 0.74 with RMSE ranging from 23.82% to 70.33% when validated 
against native forest inventory plots. Texture metrics of SAR Sentinel-1 
polarizations combined with metrics of DHIs from Sentinel-2 were 
complementary in our models. The optimal subset of predictors differed 
for DBH, basal area, mean height, dominant height, wood volume and 
canopy cover, but the most important variable was the mean texture 
metric of VH polarization from SAR Sentinel-1 (S1_VH_MEAN). Our 
height predictions outperformed GEDI and the global forest canopy 
height product (GFCH), highlighting the potential of our predictors to 
map forest structure attributes, especially mean height, and dominant 
height, at broad scale more accurately than was possible previously 

Fig. 4. Estimates of (a) diameter at breast height (DBH), (b) basal area (BA), (c) mean height (H), (d) dominant height (DH), (e) wood volume (WV), and (f) canopy 
cover (CC) across Argentina’s forest regions. 
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based on GEDI and the GFCH. 

4.1. Forest structure modelling 

The combination of features from SAR Sentinel-1, Sentinel-2, 
geographic coordinates, and our high-quality field data, contributed to 
the high predictive power of our models. The optimal subset of predictor 
variables included metrics from both SAR Sentinel-1 and Sentinel-2, plus 
latitude and longitude, highlighting the gain of combining radar, optical 
data and geographic coordinates. 

Other studies that predicted forest attributes based on radar plus 
optical data also found complementarity of different features in top 
models (Chen et al., 2018; Forkuor et al., 2020; Laurin et al., 2018; 
Navarro et al., 2019; Pötzschner et al., 2022). While radar data can 
characterize structure information, optical data captures canopy density 
and foliage information (Forkuor et al., 2020). For example, for maps of 
aboveground biomass in tropical savannas and woodlands of Africa, the 
combination of SAR Sentinel-1 and Sentinel-2 data resulted in models 
with RMSE of 45.4% compared to 78.6% when only using SAR Sentinel- 

1 data, and 60.6% for Sentinel-2 data alone (Forkuor et al., 2020). 
Similarly, in the dry Chaco of Argentina, aboveground biomass models 
that combined radar and optical predictors had an RMSE of 15.1 ton/ha 
compared to 27.1 ton/ha for optical predictors only, and 25.8 ton/ha for 
radar predictors alone (Pötzschner et al., 2022). 

We found that our models of mean and dominant height performed 
best, whereas models of wood volume, basal area and DBH had lower 
predictive power (Fig. 2). Those findings match the results obtained for 
boreal forests in Southern Finland where mean height predictions based 
on Sentinel-2 data, had the lowest RMSE (30.4% compared to 24.5% in 
our results) and wood volume predictions the highest (59.3% compared 
to 70.3% in our results) (Astola et al., 2019). Similarly, models of forest 
growing stock volume based on Sentinel-2 data in a heterogeneous 
Mediterranean forest in northeastern Greece had an RMSE of 63.1 m3/ 
ha (Chrysafis et al., 2017), compared to 70.3 m3/ha in our result. In 
Sentinel-2 models of vegetation height in Gabon (tropical Africa) and in 
Switzerland, low absolute RMSE of 5.6 and 3.4-m, respectively were 
achieved (Lang et al., 2019) compared to 1.8-m in our models. Options 
to improve modelling of wood volume, basal area and DBH could be to 
include additional predictor variables, such as soils and elevation that 
may vary more by region (Silveira et al., 2019b). 

Among our predictors, the most important ones were the mean 
texture metric of VH polarization from SAR Sentinel-1 (S1_VH_MEAN) 
and longitude. In general, predictions of forest structure attributes based 
on radar data with HV and VH polarizations (cross-polarizations) yield 
better result than HH or VV polarizations (co-polarizations) (Rauste 
et al., 1994; Sinha et al., 2015). The reason is that co-polarized data are 
sensitive to the varying surface conditions and not as sensitive to radar 
scattering. Similar to our results, in Northeast China SAR Sentinel-1 VH 
polarizations had more robust and accurate results than VV polarization 
when mapping mean height and biomass (Liu et al., 2019). The VH 
polarization was also best for estimating tree height, basal area and total 
biomass in swamp forests in the coastal plains of southern Mississippi, 
USA (Wu and Sader, 1987). Similarly, in temperate forest of New En-
gland, USA, the VH polarization had higher potential than the VV po-
larization to estimate AGB (Huang et al., 2018). Longitude also plays an 
important role in our models, probably because it is correlated with 
temperature and precipitation gradients across the country (Matasci 
et al., 2018). 

4.2. Height comparison with GEDI and the GFCH 

Our mean height predictions clearly outperformed those from GEDI 
and the GFCH. Our predictions based on SAR Sentinel-1, Sentinel-2, and 
geographic coordinates had considerably higher correlations (r = 0.89 
and 0.85 compared to 0.81-GEDI and 0.66-GFCH) and lower RMSE 
(19.7% and 22.9% compared to 53.5%-GEDI and 52.3%-GFCH) when 
related to independent validation plots. 

While some of the lower accuracy of the GEDI/GFCH data may be 
due to forest growth and disturbance in the period between GEDI/GFCH 
data (2019–2020) and forest inventory surveys (2015–2020), another 
reason may be geolocation errors of GEDI (Guerra-Hernández and 
Pascual, 2021; Pascual et al., 2021). In addition, the signals returned 
from vegetated surfaces are also influenced by topography and forest 
structure (Guerra-Hernández and Pascual, 2021). For example, tall, 
dense canopies and steep slopes are challenging for GEDI and other 
Lidar missions such as ICESat-2 (Duncanson et al., 2020). Indeed, GEDI 
canopy height predictions are affected by slope, vegetation height, and 
beam sensitivity in forests, such as the temperate forests in central 
Germany (Adam et al., 2020). In our study area, GEDI and GFCH errors 
were higher on steep slopes than on lower slopes (Pearson correlation of 
0.44 and 0.37, respectively; Table S4), corroborating previous studies. 

Thus, although GEDI and the GFCH provide great datasets for forest 
structure applications, topography, forest structure and the geolocation 
uncertainty must be taken into account when considering use of GEDI 
products (Fayad et al., 2021; Roy et al., 2021). For example, in spatially 

Table 3 
Summary statistics for observed and predicted forest attributes across Argentina. 
Mean DBH = diameter at breast height; Min = minimum; Max = maximum. 
DBH = diameter at breast height; BA = basal area; H = mean height (H); DH =
dominant height; WV = wood volume (WV); CC = canopy cover. Forest regions: 
Bosque Andino-Patagónico (BAP), Delta e Islas del Río Paraná (DEL), Espinal 
(ESP), Monte (MON), Parque Chaqueño (PCH), Selva Paranaense (SPA), and 
Yungas (YUN).  

Forest 
region 

Forest 
attribute 

Observed Predicted 

Min Mean Max Min Mean Max 

BAP DBH (cm) 10.4 37.6 92.2 15.3 36.8 42.74 
BA (m2/ha) 0.3 39.8 106.9 3.6 42.7 106.0 
H (m) 3.2 12.9 34.4 3.9 13.5 31.0 
DH (m) 3.5 17.7 44.0 5.7 18.4 32.0 
WV (m3/ha) 0.4 305.5 1379.8 4.3 287.6 1240 
CC (%) 0.0 66.7 100.0 0.0 65.4 86.9 

DEL DBH (cm) 11.6 19.3 31.3 14.2 19.3 22.7 
BA (m2/ha) 2.9 11.0 21.1 7.4 13.4 20.6 
H (m) 4.2 8.5 17.3 4.7 7.6 13.8 
DH (m) 4.9 11.3 21.0 5.0 10.9 19.0 
WV (m3/ha) 23.3 75.7 248.9 39.1 68.2 88.1 
CC (%) 14.1 50.4 97.2 0.0 56.3 75.9 

ESP DBH (cm) 7.6 18.7 51.0 9.0 16.9 35.7 
BA (m2/ha) 0.3 10.2 39.8 2.2 10.2 35.8 
H (m) 3.1 5.3 11.0 3.1 5.0 9.2 
DH (m) 3.5 7.4 16.7 4.0 7.5 18.1 
WV (m3/ha) 0.3 58.7 205.5 14.4 55.5 155.5 
CC (%) 0.0 51.7 100.0 0.0 46.6 92.7 

MON DBH (cm) 5.0 10.4 21.9 5.2 13.0 18.4 
BA (m2/ha) 0.5 5.2 16.7 2.2 4.6 14.8 
H (m) 2.3 3.7 6.0 2.9 3.7 5.2 
DH (m) 3.8 5.7 14.6 4.6 5.5 6.7 
WV (m3/ha) 0.6 6.5 29.1 6.3 9.6 25.9 
CC (%) 0.0 22.7 80.3 0.0 24.7 70.6 

PCH DBH (cm) 5.7 16.8 47.2 5.8 18.3 36.0 
BA (m2/ha) 0.1 9.2 63.8 0.9 11.0 54.9 
H (m) 2.3 6.3 17.5 2.3 6.4 14.0 
DH (m) 2.3 9.9 23.9 3.9 9.9 19.7 
WV (m3/ha) 0.2 47.9 1017.5 8.6 58.0 358.5 
CC (%) 0.0 60.1 100.0 0.0 61.5 94.4 

SPA DBH (cm) 12.6 27.9 57.6 14.4 23.7 49.5 
BA (m2/ha) 0.4 17.3 64.7 3.7 19.6 34.6 
H (m) 4.0 13.7 22.5 9.7 14.4 18.2 
DH (m) 4.5 20.2 33.9 16.5 22.1 25.6 
WV (m3/ha) 1.1 115.1 709.7 34.8 130.8 271.6 
CC (%) 0.0 66.2 100.0 0.0 76.3 93.3 

YUN DBH (cm) 10.1 28.7 59.0 14.6 24.2 48.4 
BA (m2/ha) 0.3 16.7 73.7 0.6 18.2 57.0 
H (m) 3.5 12.0 27.3 5.4 11.6 16.5 
DH (m) 3.5 17.8 36.3 7.0 17.6 30.5 
WV (m3/ha) 0.3 136.7 1016.0 23.5 141.3 554.7 
CC (%) 0.0 82.2 100.0 0.0 78.9 98.0  
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heterogeneous canopies (e.g., secondary forests), unreliable GEDI can-
opy height retrievals are likely to be associated with geolocation un-
certainty because of their spatially fragmented and heterogeneous three- 
dimensional structure. A recent preliminary assessment of the geo-
location of GEDI indicates a 1 σ horizontal geolocation error of 23.8-m 
instead the geolocation requirement of 10-m (Beck et al., 2021). This 
means that reported and actual GEDI footprint location can be different 
by more than a GEDI 25-m footprint diameter suggesting caution in the 

use of GEDI data acquired over spatially heterogenous canopies, such as 
small forest stands, over small and/or fragmented features in the can-
opy, and over forest edges (Roy et al., 2021). 

The future of mapping forest structure attributes is bright thanks to 
several upcoming satellite missions. For example, in 2023, the NASA- 
Indian Space Research Organization (ISRO) Synthetic Aperture Radar 
(NISAR) partnership mission plans to launch a SAR satellite sensitive to 
forest structure, which will provide an annual global land biomass map 

Fig. 5. Relative (a) and absolute (b) RMSE uncertainty of the predicted forest structure attributes with the polynomial function fitted.  
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at 1 ha spatial resolution with a RMSE of 20 Mg/ha for at least 80% of 
forests with AGB < 100 Mg/ha (given L-band limitations at higher 
biomass regimes) (Duncanson et al., 2020). Furthermore, the European 
Space Agency (ESA) Earth Explorer missions will include the BIOMASS 
mission. BIOMASS will implement the first P-band radar with multi- 
baseline interferometric and fully-polarimetric capabilities in space. 
This configuration will provide unprecedented sensitivity for charac-
terizing forest aboveground biomass, and penetration capability down 
to the underlying terrain. Planned products include global 200-m reso-
lution maps of both aboveground biomass and forest height, and a 50-m 
resolution map of forest disturbance (Quegan et al., 2019). Thus, in the 
near future, gains will be made by combining NISAR, BIOMASS, GEDI 
and other related data to predict forest structure attributes. 

4.3. Forest management and conservation implications 

Our method of combining remote sensing with field measurements to 
estimate large-scale forest attributes retains the advantages of the ac-
curacy of field measurements with the advantages of contiguous spatial 
coverage of remote sensing (Du et al., 2014; Wulder et al., 2008). Our 
approach results in relevant information for both forest management 
inventories (FMI) and national forest inventories (NFI). For example, 
FMI need accurate information of biometrics at stand level, which our 
30-m predictions can provide, while NFI requires consistent broad-scale 
information, which our nation-wide maps offer. 

Forest inventory data has historically been collected to assess the 
productivity of forests prior to harvesting, but now they are increasingly 
also used for monitoring wildlife habitat and forest biodiversity (Chirici 
et al., 2012; Corona et al., 2011; Lehtomäki et al., 2015). National-scale 
maps of forest structure attributes are also required to support science, 

Fig. 6. Uncertainty (RMSE, in%) maps for (a) diameter at breast height (DBH), (b) basal area (BA), (c) mean height (H), (d) dominant height (DH), (e) wood volume 
(WV) and (f) canopy cover (CC). 
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policy development and reporting obligations (White et al., 2014), 
which is another reason many countries have national forest inventories 
(NFIs). The products that we developed here (30-m resolution maps of 
DBH, basal area, mean height, dominant height, wood volume and 
canopy cover), amplify the value of the Second National Native Forest 
Inventory conducted by Argentine National Forest Service, and can 
support many applications including: (i) zoning of native forests in 
multiple uses according to different management and conservation 
criteria, (ii) evaluation of habitat quality for species associated with 
particular structures of the native forest; (iii) monitoring over time to 
achieve sustainable forest management; (iv) identification of priority 
areas for conservation or restoration; and (v) species distribution 
modelling. 

The products can be useful for specific applications in each forest 
region, especially in Bosque Andino-Patagónico, Selva Paranaense, and 
Yungas forest regions (characterized by dense and tall forests), where 

our approach had lower relative errors (Fig. 6; Fig. S5). For example, in 
Bosque Andino-Patagónico, the maps of forest structure can help to 
define the forested area in the province (e.g., tree-line forests), timber 
forests (e.g., up to 15-m dominant height and > 40 m2/ha of basal area), 
monitoring (e.g., forest recovery after harvest, fire and beaver impacts), 
silvopastoral planning (e.g., understory AGB based on dominant height 
and crown cover), and for identifying forest stands valuable for con-
servation purposes. Another specific application is in the Yungas region, 
where endemic threatened parrots depend on trees with cavities, and 
higher density of nests are found in forest stands with high DBH, basal 
area and tree height (Rivera et al., 2022). Thus, the information ob-
tained in this study can be useful to model high quality habitat for 
species and for developing conservation and management strategies 
accordingly. 

Fig. 7. Uncertainty (RMSE absolute) maps for (a) diameter at breast height (DBH), (b) basal area (BA), (c) mean height (H), (d) dominant height (DH), (e) wood 
volume (WV), and (f) canopy cover (CC). 
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5. Conclusion 

In summary, we demonstrated the utility of combining extensive 
field inventory measures with features from SAR Sentinel-1, vegetation 
metrics from Sentinel-2 and geographic coordinates to map multiple 
forest structure attributes across the 463,000 km2 of Argentina’s forests. 
We developed an approach to obtain accurate maps at 30-m spatial 
resolution across large areas with highly heterogeneous and diverse 
forests and derived uncertainty maps of each forest structure attribute. 

The best predictors of forest structure attributes were a combination of 
Sentinel-1 and 2, plus latitude and longitude. We predicted forest height 
at broad scale more accurately that available GEDI and GFCH datasets. 
Our models yielded reliable predictions of forest structure attributes, 
especially mean and dominant height, providing a strong basis for forest 
management and conservation planning across Argentina. The forest 
structure attribute maps are freely available at: http://silvis.forest.wisc. 
edu/webmaps/forest_structure_maps_for_argentina/ and at https://doi. 
org/10.5061/dryad.vx0k6djwg. 

Fig. 8. Relative importance of the predictor variables in random forest models of diameter at breast height (DBH), basal area (BA), mean height (H), dominant height 
(DH), wood volume (WV), and canopy cover (CC). 

Fig. 9. Scatterplots for the regression model of mean height from the second forest inventory survey versus predictions obtained from (a) 240 plots of Sentinel-1 plus 
Sentinel-2 derived features at 1-km resolution, (b) 240 plots of GEDI at 1-km resolution and (c) 550 plots of Sentinel-1 plus Sentinel-2 derived features at 30-m 
resolution, (d) and 550 plots of the GFCH at 30-m resolution. 
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Birk, A., Rondeux, J., Barsoum, N., Marchetti, M., 2012. National forest inventory 
contributions to forest biodiversity monitoring. For. Sci. 58, 257–268. 

Chrysafis, I., Mallinis, G., Siachalou, S., Patias, P., 2017. Assessing the relationships 
between growing stock volume and Sentinel-2 imagery in a Mediterranean forest 
ecosystem. Remote Sens. Lett. 8, 508–517. 

Coops, N.C., Tompalski, P., Goodbody, T.R.H., Queinnec, M., Luther, J.E., Bolton, D.K., 
White, J.C., Wulder, M.A., van Lier, O.R., Hermosilla, T., 2021. Modelling lidar- 
derived estimates of forest attributes over space and time: a review of approaches 
and future trends. Remote Sens. Environ. 260, 112477. 

Coops, N.C., Wulder, M.A., Iwanicka, D., 2009. Demonstration of a satellite-based index 
to monitor habitat at continental-scales. Ecol. Indic. 9, 948–958. 

Corona, P., Chirici, G., McRoberts, R.E., Winter, S., Barbati, A., 2011. Contribution of 
large-scale forest inventories to biodiversity assessment and monitoring. For. Ecol. 
Manag. 262, 2061–2069. 

Coulston, J.W., Blinn, C.E., Thomas, V.A., Wynne, R.H., 2016. Approximating prediction 
uncertainty for random Forest regression models. Photogramm. Eng. Remote Sens. 
82 (3), 189–197. 

Csillik, O., Kumar, P., Mascaro, J., O’Shea, T., Asner, G.P., 2019. Monitoring tropical 
forest carbon stocks and emissions using planet satellite data. Sci. Rep. 9, 1–12. 

Csillik, O., Kumar, P., Asner, G.P., 2020. Challenges in estimating tropical forest canopy 
height from planet dove imagery. Remote Sens. 12, 1–18. 

Dirección Nacional de Bosques, 2021. Datos del Segundo Inventario Nacional de Bosques 
Nativos de la República Argentina. Ministerio de Ambiente y Desarrollo Sostenible 
de la Nación. 

Dobson, M.C., Ulaby, F.T., Pierce, L.E., Sharik, T.L., Bergen, K.M., Kellndorfer, J., 
Kendra, J.R., Li, E., Lin, Y.C., Nashashibi, A., Sarabandi, K., Siqueira, P., 1995. 
Estimation of forest biophysical characteristics in northern Michigan with SIR-C/X- 
SAR. IEEE Trans. Geosci. Remote Sens. 33, 877–895. 

Dos Reis, A.A., Werner, J.P.S., Silva, B.C., Figueiredo, G.K.D.A., Antunes, J.F.G., 
Esquerdo, J.C.D.M., Coutinho, A.C., Lamparelli, R.A.C., Rocha, J.V., Magalhães, P.S. 
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Rauste, Y., Häme, T., Pulliainen, J., Heiska, K., Hallikainen, M., 1994. Radar-based forest 
biomass estimation. Int. J. Remote Sens. 15, 2797–2808. 

Rivera, L., Politi, N., Bucher, E.H., Pidgeon, A., 2022. Effect of forest logging on food 
availability, suitable nesting habitat, nest density and spatial pattern of a neotropical 
parrot. For. Ecol. Manag. 507, 120005. 

Roy, D.P., Kashongwe, H.B., Armston, J., 2021. The impact of geolocation uncertainty on 
GEDI tropical forest canopy height estimation and change monitoring. Sci. Remote 
Sens. 4, 100024. 

Saarela, S., Grafström, A., Ståhl, G., Kangas, A., Holopainen, M., Tuominen, S., 
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