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Scalable Semiparametric Spatio-temporal
Regression for Large Data Analysis
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With the rapid advances of data acquisition techniques, spatio-temporal data are
becoming increasingly abundant in a diverse array of disciplines. Here, we develop
spatio-temporal regression methodology for analyzing large amounts of spatially refer-
enced data collected over time, motivated by environmental studies utilizing remotely
sensed satellite data. In particular, we specify a semiparametric autoregressive model
without the usual Gaussian assumption and devise a computationally scalable procedure
that enables the regression analysis of large datasets. We estimate the model parame-
ters by maximum pseudolikelihood and show that the computational complexity can be
reduced from cubic to linear of the sample size. Asymptotic properties under suitable
regularity conditions are further established that inform the computational procedure to
be efficient and scalable. A simulation study is conducted to evaluate the finite-sample
properties of the parameter estimation and statistical inference.We illustrate ourmethod-
ology by a datasetwith over 2.96million observations of annual land surface temperature,
and comparison with an existing state-of-the-art approach to spatio-temporal regression
highlights the advantages of our method.
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1. INTRODUCTION

With the rapid advances of data acquisition techniques, spatio-temporal data are becom-
ing increasingly abundant in a diverse array of disciplines including the physical, biological,
and social sciences (see, e.g., Cressie and Wikle 2011; Dutilleul 2011; Anselin 2013; Agir-
bas et al. 2017; Belgiu and Stein 2019;Wikle et al. 2019; Zhang and Cressie 2020; Guinness
2021). Herewe consider developing novel spatio-temporal regressionmethods for analyzing
large amounts of spatially referenced data collected over time, motivated by environmental
studies utilizing remotely sensed satellite data.

For illustration, we consider an environmental study of the land surface temperature
(LST),whichquantifies thermal energyflowamong land surface, atmosphere, andbiosphere,
and thus characterizes local environmental conditions. Changes inLSThavemultiple causes,
but LST is strongly related to air temperature, which is currently increasing due to global
warming (IPCC 2021; NOAA 2021). Monitoring LST and understanding drivers of the
observed changes are critical for agriculture, biochemical processes, bioecology, economy,
and health (Hanewinkel et al. 2013; Asseng et al. 2015; Hu et al. 2016; Gasparrini et al.
2017; Zhao et al. 2017; Thompson et al. 2018).

In the USA alone, increasing temperatures contribute to crop insurance losses [($27.0
billion for the 1991–2017 period (Diffenbaugh et al. 2021)], drive the spread of tree pests
(Lesk et al. 2017), and elevate risks of wildfires (Westerling et al. 2006; Mueller et al. 2020).
Notably, the increase in LST temperature is not spatially uniform because it is shaped by
many factors including differences in received solar radiation and the dominant land-cover
type (Chakraborty et al. 2020; Yan et al. 2020). For example, urban areas have experienced
relatively rapid increases in LST over the past decades (Fu and Weng 2016; Oleson et al.
2018), particularly during nighttime (Sarangi et al. 2021), whereas shrub encroachment
in the Southwest United States has had a cooling effect (Shen et al. 2022). Consequently,
investigation of time trends of LST across the USA (and elsewhere) is essential to better
understand ongoing changes and provide needed management and mitigation strategies.

To examine spatio-temporal trends in LST, we analyze the nighttime LST derived from
2001 to 2019 MOD11A2 version 6 data (Wan et al. 2014), which we resampled to annual
averages at 8km spatial resolution. We selected the nighttime LST over the daytime mea-
surements to limit the direct impact of solar radiation; because nighttime LST is produced
by the reradiation of thermal infrared radiation generated largely through heating during the
day, it gives a synoptic measure of heating that affects vegetation water stress and other vari-
ables used in ecological modeling. Because LST is related to environmental conditions, we
analyzed time trends in LST in relation to latitude and longitude, which regulate vegetation
zonation and amount of incoming solar radiation energy. Furthermore, to capture regional
variability in LST trends, we used Level III ecoregions (Fig. S.3) defined as areas with
similar landform, soil, vegetation, land use, wildlife, and hydrology (Omernik and Griffith
2014).

We could cast this research on LST in a spatio-temporal regression framework, regressing
LST on the predictor variables of time trend, ecoregion classes, and interactions between the
time trend and ecoregions, as well as the environmental covariates of elevation and latitude.
However, there are multiple challenges with using the existing spatio-temporal regression
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methods. First, the sample size of the dataset is large. With T = 19 years and N = 155,900
image pixels per year, there are over 2.96 million LST observations in the dataset. The
traditional spatio-temporal regression models with a regression mean and a spatio-temporal
covariance functionwould be infeasible to implement, as the computations are on the order of
O(N 3T 3) for evaluating the likelihood function andO(N 2T 2) for memory usage (see, e.g.,
Cressie 1993; Cressie and Wikle 2011). There is ample room for innovations to reduce the
computational burden and to make spatio-temporal regression analysis feasible for practical
applications.

Second, although spatio-temporal statistics have advanced greatly in the past twodecades,
most of the state-of-the-art methods focus on the spatio-temporal dependence structure and
the prediction (i.e., kriging) of the underlying spatio-temporal processes. Even when the
mean function is considered, the computation of the regression coefficients is of secondary
interest and may not be scalable for large data, calling for further research on the statistical
inference of the mean function (see, e.g., Wikle et al. 2019).

Third, the distribution of the data is not necessarily Gaussian as is assumed by the tradi-
tional spatio-temporal models. Indeed, the histograms depicted in Fig. S.5 in Supplementary
Materials suggest a possible departure of the LST distribution from Gaussian.

There has been much research on the development of statistical methodology for analyz-
ing spatio-temporal data (see, e.g., Huang and Cressie 1996; Zhang et al. 2003; Johannesson
et al. 2007; Lu et al. 2009; Cressie et al. 2010; Lee and Yu 2015; Zhang et al. 2015; Chu et al.
2019). Cressie andWikle (2011) andWikle et al. (2019) give excellent reviews. ForGaussian
errors, Cressie et al. (2010) proposed a fixed-rank filtering method for spatio-temporal data
focusing on fast computation by dimension reduction spatially and fast smoothing, filtering,
or forecasting over time, which in principle can be adapted to perform regression analysis
but in practice is not quite feasible yet for the scale of our LST data. Guinness (2021) devel-
oped a Gaussian process (GpGp) method that scales up more readily and can be adapted to
spatio-temporal regression analysis. GpGp type of methodology approximates the full like-
lihood of a Gaussian process by a product of conditional likelihoods on subsets, where the
subsets are formed by reordering and grouping the data (see, e.g., Vecchia 1988; Guinness
2018; Katzfuss and Guinness 2021). For non-Gaussian errors, Chu et al. (2019) and Lee
and Yu (2015) proposed semiparametric models which can be applied to spatio-temporal
regression, but both emphasized modeling the spatio-temporal dependence and the sample
size needs to be kept at a modest size (in the thousands, not millions) for the methods to be
computationally feasible. Alternatively, statistical modeling and inference can be carried out
under a Bayesian framework and the computational challenges are addressed by, for exam-
ple, dimension reduction (Brynjarsdóttir and Berliner 2014), predictive processes (Banerjee
et al. 2008; Finley et al. 2012), latent Gaussian Markov random field on an auxiliary lattice
(Xu et al. 2015), and Laplace approximation (Rue et al. 2009, 2017).

Here, we take a frequentist approach and aim to develop a novel computationally scalable
procedure that enables the regression analysis of large datasets, while guided by asymptotic
theory and computational complexity analysis. Our proposed method is semiparametric in
the sense that no explicit distributional assumption is made about the regression error and
we estimate themodel parameters bymaximizing a pseudolikelihood. In addition, wemodel
the spatio-temporal dependence by autoregression. While the autoregression modeling idea
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is widely used particularly in econometrics, most existing methods are not computationally
scalable to the size of our LST data (see, e.g., Yu et al. 2008; Mariella and Tarantino 2010;
Lee and Yu 2015; Shi and Lee 2017; Chi and Zhu 2019; Li and Yang 2021). Although Guo
et al. (2016) and Gao et al. (2019) considered autoregressive models in a high-dimensional
setting, their analyses focus on the estimation of coefficient matrices for zero-mean autore-
gressive processes without addressing the regression or computational complexity in detail.
Furthermore, we adopt advanced computational techniques including efficient data prepro-
cessing, constrained sequential quadratic programming (SQP), and implicit parallel com-
puting. These computational innovations enable the computation to be linear in the sample
size N T and thus are feasible for the LST data example.

The remainder of this paper is organized as follows. Section2 presents the model and its
estimation. Section3 establishes the asymptotic properties of the maximum pseudolikeli-
hood estimates of the model parameters. Section4 provides a fast computational procedure
for estimation and inference. The finite-sample properties of the estimators are assessed by
simulation studies in Sect. 5, and the LST data example is given in Sect. 6. Section7 con-
cludes the paper with a discussion of possible avenues for future research. Proofs of the theo-
retical results and other technical details including additional computational aspects, tables,
and figures are provided in Supplementary Materials. Data and code for this research are
publicly available and can be downloaded from https://doi.org/10.17605/OSF.IO/WT84X.

2. MODEL AND ESTIMATION

2.1. MODEL SPECIFICATION

At time t ∈ Z, let Y t = (Y1,t , . . . , YN ,t )
′ denote an N -dimensional real-valued vector

that contains the response variables from N cells that partition the study region of interest in
R
2. Let X t denote an N × k design matrix of k nonstochastic predictor variables. We model

the spatio-temporal evolution of Y t in relation to X t through the following spatio-temporal
regression model

Y t = X tβ + U t , t ∈ Z, (1)

where β denotes a k × 1 vector of regression coefficients. The spatio-temporal error U t is
stochastic and modeled by a spatio-temporal dynamic process such that

U t = λWU t + ρWU t−1 + γU t−1 + V t , (2)

where V t = (v1,t , . . . , vN ,t )
′ is an N ×1 vector of real-valued innovations that are assumed

to be iid, not necessarily Gaussian, with mean zero and variance σ 2IN and IN is the
N ×N identitymatrix. The spatio-temporal dependence parameters include the conventional
temporal lag effect γ , the contemporaneous spatial interactions effect λ, and the effect of
spatial diffusion that takes place over time ρ (see, e.g., Anselin 2013; Lee and Yu 2015; Chi
and Zhu 2019).

https://doi.org/10.17605/OSF.IO/WT84X
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Finally, the spatialweightmatrixW is an N×N nonstochastic symmetricmatrixwith zero
diagonals for a given spatial neighborhood structure (Cressie 1993). The symmetry ofW has
important implications on computation, which will be elaborated in later sections. Special
cases of the spatial weight matrix W include the block-diagonal structure and commonly
assumed first- or second-order neighborhood structures. For a block-diagonal structure,
W = Diag{w1, . . . ,w p}, where wi is a ni × ni matrix, with N = ∑p

i=1 ni (Case 1991).
On a regular square grid, the first-order neighbors are the four nearest cells whereas the
second-order neighbors are the eight nearest cells (Cressie 1993). In addition, the spatial
weight matrix could be used to construct the design matrix X t in order to capture the spatial
neighboring effects; for instance, let X t = (1N , Z1t , Z2t ), where Z2t = W̃ Z1t and W̃ is a
spatial weight matrix defined above.

Let θ = (λ, γ, ρ)′ denote the vector of the spatio-temporal dependence parameters. We
define R(θ) = ρW + γIN , S(λ) = IN − λW , and A(θ) = R(θ)S(λ)−1. We may then
rewrite the spatio-temporal dynamic process (2) as S(λ)U t = A(θ)S(λ)U t−1 + V t . That
is, the spatio-temporal error U t follows a vector autoregression model of order one and can
be shown to be weakly stationary under the assumption that S(λ) is nonsingular and the
eigenvalues of A(θ) are all strictly less than one in magnitude.

2.2. PARAMETER ESTIMATION

For the observed response vectors Y1, . . . ,Y T modeled by (1), we define the vector of
all the spatio-temporal errors U = (U ′

1,U
′
2, . . . ,U

′
T )′ and its matrix operator

B(θ) =

⎛

⎜
⎜
⎜
⎜
⎝

S(λ) 0 · · · 0 0
−R(θ) S(λ) · · · 0 0

...
...

...
...

...

0 0 · · · −R(θ) S(λ)

⎞

⎟
⎟
⎟
⎟
⎠

N T ×N T

(3)

such that B(θ)U = ((S(λ)U1)
′, V ′

2, . . . , V
′
T )′. The covariancematrix of B(θ)U isσ 2�(θ),

where �(θ) = Diag(K (θ),IN , . . . ,IN ) and K (θ) = ∑∞
j=0 A(θ) j A(θ)

′ j .
Let δ = (β ′, θ ′, σ 2)′ denote the vector of all the model parameters. Recall that the distri-

bution of the innovation V t is not necessarily Gaussian. However, to estimate δ, we proceed
as if V t followed a Gaussian distribution, i.e., N (0, σ 2IN), which yields the following log
pseudolikelihood function,

log L N T (δ) = − N T

2
log(2πσ 2) − 1

2
log det(K (θ)) + T log |det(S(λ))|

− 1

2σ 2 (Y − Xβ)′�(θ)−1(Y − Xβ), (4)

where Y = (Y ′
1, . . . ,Y

′
T )′ denotes the N T × 1 vector of all the response variables,

X = (X ′
1, . . . , X

′
T )′ is the corresponding N T × k design matrix, and �(θ)−1 =

B(θ)′(�(θ))−1B(θ) is the precision matrix. Denote by δ̂ the maximizer of the log pseu-
dolikelihood function log L N T (δ); that is, δ̂ = argmaxδ∈�δ

log L N T (δ), where �δ is the
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parameter space specified in Appendix A. Throughout this paper, we refer to δ̂ as our max-
imum pseudolikelihood estimator (PMLE) of the model parameters δ.

As illustrated by the LST data example in Sect. 1, our primary interest is statistical infer-
ence of the regression coefficientsβ, while the estimation of the spatio-temporal dependence
parameters θ is of secondary interest intended to account for spatio-temporal correlation
when drawing the inference about β.

3. INFERENCE

Under suitable regularity conditions, we may establish the asymptotic properties of the
PMLE δ̂, as the number of cells N → ∞ while the number of time points T can be either
fixed or T → ∞. Denote by δ0 = (β ′

0, θ
′
0, σ

2
0 )′ the vector of true model parameters. We

first consider the case that T is fixed.

Theorem 1. Suppose that W has more than two distinct eigenvalues, and Assumptions
(A.1)–(A.6) hold. Then, δ0 is identifiably unique and δ̂

p−→ δ0 as N → ∞.

Theorem 1 establishes that the PMLE δ̂ is a consistent estimator of the true parameter
vector δ0 in the sense that δ̂ converges to δ0 in probability, when N → ∞. The condition
that W has more than two distinct eigenvalues, along with Assumptions (A.1) and (A.2),
ensures that (θ , σ 2) can be uniquely identified from σ 2(B(θ)′(�(θ))−1B(θ))−1; that is,
σ 2(B(θ)′(�(θ))−1B(θ))−1 = σ 2

0 (B(θ0)
′(�(θ0))

−1B(θ0))
−1 if and only if σ 2 = σ 2

0 and
θ = θ0 (see Lemma S.4 in Supplementary Materials).

Next, under additional conditions about the higher-order properties of the log pseudo-
likelihood function, we derive the asymptotic distribution of the PMLE δ̂.

Theorem 2. Suppose that the conditions in Theorem 1 and additional Assumptions
(A.7) and (A.8) are fulfilled. Then,

√
N (̂δ − δ0)

d−→ N
(
0, 4

{
�

−1
1 + �

−1
1 �2�

−1
1

})
, (5)

where �1 = limN→∞ N−1�1,N , �2 = limN→∞ N−1�2,N , �1,N =
Diag(4σ−2

0 X ′�(θ0)
−1X, 2�N ) with �(θ0)

−1 = B(θ0)
′(�(θ0))

−1B(θ0) and �N defined
in (11), and �2,N is defined in (S.16) in Supplementary Materials. In particular, we have

√
N (β̂ − β0)

d−→ N
(
0,�

−1
β0

)
, (6)

where �β0
= σ−2

0 limN→∞ N−1X ′�(θ0)
−1X . Under the additional assumption that μ3 =

E(v3j,t ) = 0, β̂ is asymptotically independent of θ̂ and σ̂ 2.

Theorem 2 establishes that δ̂ converges to a multivariate Gaussian distribution at the
rate of

√
N . The asymptotic covariance matrix involves two matrices �1 and �2, which

can be replaced by their consistent estimators for evaluating the asymptotic distribution of
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δ̂ in practice. Since the primary interest is in the statistical inference about the regression
coefficients β, we present in (6) the asymptotic distribution of β̂ and its relationship to
the other parameter estimators θ̂ and σ̂ 2, which provides the basis for a computationally
efficient approach to the statistical inference aboutβ , as wewill detail in Sect. 4.2.Moreover,
the asymptotic distribution of β̂ remains unchanged regardless of the distribution of the
spatio-temporal innovations. In particular, when the innovation is symmetric (i.e., μ3 = 0,
which is satisfied by many commonly used distributions including Gaussian and Student-T
distributions), (6) establishes that β̂ is asymptotically independent of the spatio-temporal
dependence parameter estimators θ̂ and the variance component estimator σ̂ 2.

By Theorems 1 and 2, N−1�1,N and N−1�2,N with δ0 replaced by δ̂ converge in
probability to �1 and �2, respectively, as N → ∞. Thus, a consistent estimator of the
asymptotic covariance matrix of δ̂ can be obtained from

4
{
�−1

1,N + (�1,N )−1(�2,N )(�1,N )−1
}

(7)

evaluated at the PMLE δ̂. However, �1,N and �2,N are both challenging to compute when
N is large. One major challenge is that the calculation of �1,N and �2,N requires solving
large linear systems, or equivalently inverting large matrices, which is computationally
expensive. On the other hand, the upper left block of �1,N is σ−2

0 X ′�(θ0)
−1X , which can

be consistently estimated by σ̂−2X ′�(̂θ)−1X . Thus, a consistent estimator of the asymptotic
covariance matrix of β̂ is σ̂ 2(X ′�−1(̂θ)X)−1, and its computation can in fact be made
scalable (see Sect. 4).

In addition, the asymptotic results hold when T is either fixed or tends to infinity with
N at an arbitrary rate. That is, Theorems 1 and 2 can be readily extended to the case when
N and T both tend to infinity, in which case the rate of convergence in Theorem 2 becomes√

N T instead of
√

N , with corresponding adjustment of Assumptions (A.5), (A.6), and
(A.8), and the asymptotic covariance matrices.

Before closing this section, we remark onAssumption (A.2) provided in Appendix, while
discussions on the other assumptions are given in Supplementary Materials. A sufficient
condition for the matrix S(λ) = IN − λW being nonsingular and the eigenvalues of
A(θ) being less than one in magnitude is that the parameters λ, γ, ρ satisfy the following
inequality:

(λ2 − ρ2)d2j − 2(λ + γρ)d j + (1 − γ 2) > 0, j = 1, . . . , r, (8)

where {di , i = 1, . . . , r} are the nonzero eigenvalues ofW with the smallest eigenvalue (d1)
and the largest eigenvalue (dr ) of W having opposite signs. For (8) to hold, it is sufficient
to consider the following set,

{

(λ, γ, ρ) : −1 < γ < 1,
1 − γ

d1
< λ + ρ <

1 − γ

dr
,
1 + γ

d1
< λ − ρ <

1 + γ

dr

}

. (9)

In practice, we choose �θ as a compact subset of the above set.
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4. COMPUTATION

In this section, wewill develop a novel fast computation procedure and show that its com-
putational complexity is on the order ofO(N T ) for obtaining the PMLE δ̂ and the variance
estimate of β̂, which is linear to the sample size and thus is scalable to the size of the LST
dataset. The existing state-of-the-art methodology generally approximates the dependence
structure for computational ease, while our approach does not require an approximation
of the spatio-temporal dependence. Thus, our computational procedure provides a novel
and scalable alternative to the existing spatio-temporal modeling and inference without
approximating the likelihood function.

4.1. COMPUTATIONAL PROCEDURE

We obtain the PMLE, δ̂, and an estimate of its variance Var(̂δ) by bringing together a set
of computational techniques for nonlinear optimization and sparse matrix operations. An
overview of the procedure is visualized by a flowchart in Fig. 1. Specifically, the procedure
starts with the input of the spatial weight matrix W , the response variable Y , and the design
matrix X . We then preprocess the data by applying the reverse Cuthill–McKee (RCM)
algorithm (Gilbert et al. 1992). In particular, the RCM algorithm permutes the rows and
columns of W , which is a symmetric, generally sparse matrix, into a symmetric sparse
banded matrix with a small bandwidth. This effectively moves the nonzero elements of W
toward the diagonal while preserving the spatial neighborhood structure. The underlying
graph theory for the RCM algorithm views the spatial weight matrix as a graph with vertices
(of spatial locations) and edges that connect spatial neighbors specified in W . We then
reorder the rows of Y t and X t according to the Cuthill–McKee ordering of W for t =
1, . . . , T . For a given spatial weight matrixW , it is always possible to convert it into a sparse
banded matrix, without distorting the pre-specified spatial neighboring structure (Mafteiu-
Scai 2015). Thus henceforth we assume that W is a pre-specified symmetric sparse banded
matrix with bandwidth b, which eases the implementation of computational techniques for
banded matrices and enables a more precise account of computational complexity.

Next, the parameter vector δ is estimated by maximizing the log pseudolikelihood using
an iterative SQP (i.e., fmincon() in MATLAB) (see Chapter 18 of Nocedal and Wright
2006). At each iteration, the log pseudolikelihood function (4) and its gradient functions
are evaluated for optimizing (4) subject to a set of constraints on the parameter space
�δ . To ensure the scalability of SQP, however, care is needed in the evaluation of the
log pseudolikelihood function, as we will show in the next subsection. In addition, the
constraints on the parameters need to be checked, which we will refer to as feasibility
check. The standard feasibility check would require computational cost on the order of
O(N 2.4). Here we apply the sufficient condition (9) developed in Sect. 3, which requires
solving for the smallest (d1) and largest (dr ) eigenvalues of W . We thus preprocess W by
the Krylov–Schur algorithm, which is an iterative method for solving eigenproblems with
sparsity and belongs to the class of Krylov subspace methods (Stewart 2002). The Krylov–
Schur algorithm first generates a sequence of subspaces containing the approximations of
a subset of eigenvectors and eigenvalues of W . Then these approximations are extracted
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Start

(Cuthill-McKee) Reorder: , ,

(Krylov-Schur) Eigen problem: 

Numerical constrained op�miza�on (Sequen�al Quadra�c Programming)
Objec�ve func�on: log {( ′, ′, ̂ 2) ′}

- sparse matrix-vector/matrix mul�plica�on

- Incomplete LU decomposi�on (ILU)

Gradient func�on: ∇ log {( ′, ′, ̂ 2) ′}

∇ : sparse matrix-vector/matrix mul�plica�on

∇ : finite-difference approxima�on

Feasibility Θ check

- ILU

- linear to 1, ,

Input: , ,

̂ = ∈ log ( )

(̂ ): subsampling
( ̂ ): sparse matrix-vector/matrix mul�plica�on

1,

End

Figure 1. Flowchart for carrying out the proposed spatio-temporal regression and inference.

by applying the QR algorithm to the projection of W onto the subspaces and the subset of
eigenvalues is approximated iteratively through the Arnoldi method. A reordering of the
Schur decomposition in the previous step is considered to improve the standard Arnoldi
method (see Chapter 3 of Kressner 2005). Based on d1, dr , and the sufficient condition (9),
our feasibility check requiresO(1) operations, which is a significant improvement over the
O(N 2.4) operations and the O(N ) memory usage when a full eigendecomposition of W is
used for (8).

In addition, most of the computations can be parallelized and in particular, we enable the
implicit parallelism through maxNumCompThreads(), which distributes the computation in
multiple cores and utilizes the sparsity of matrices in our MATLAB code (Luszczek 2009).
Similar techniques can also be implemented in R and Python, for example through the Basic
Linear Algebra Subroutines (BLAS) or Linear Algebra Package (LAPACK) (Anderson et al.
1999; Blackford et al. 2002; Buluc and Gilbert 2011).
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4.2. COMPUTATIONAL COMPLEXITY

Direct evaluation of the log pseudolikelihood function (4) requiresO(N 3T 3) operations
and is computationally infeasible when N T is large. In the following, we show that our
computational procedure has the computational complexity of O(N T ).

The matrix operator B(θ) in (3) and the covariance matrix �(θ) are involved in the log
pseudolikelihood function (4). Storing the entirety of B(θ) and �(θ) during the process of
computing the precision matrix would require standard memory usage and operations to be
on the order ofO(N 2T ). Instead, we partition the matrix operator B(θ) and the covariance
matrix �(θ) in such a way that we only store the unique nonzero blocks of quadratic terms.
More specially, we rewrite the last term of the log pseudolikelihood function (4) as

(Y − Xβ)′�(θ)−1(Y − Xβ) = (Y − Xβ)′B(θ)′(�(θ))−1B(θ)(Y − Xβ)

= (Y1 − X1β)′S(λ)K (θ)−1S(λ)(Y1 − X1β) +
T∑

t=2

(Y t − X tβ)′S(λ)2(Y t − X tβ)

+
T −1∑

t=1

(Y t −X tβ)′R(θ)2(Y t −X tβ)−2
T −1∑

t=1

(Y t −X tβ)′R(θ)S(λ)(Y t+1−X t+1β).

(10)

The total number of nonzero elements (nnz) ofW isO(bN ). Since the product of two N ×N
banded matrices each with bandwidthO(b) is still banded with bandwidthO(b), it follows
that S(λ)K (θ)−1S(λ), S(λ)2, R(θ)2, and R(θ)S(λ) in (10) are all banded matrices with
bandwidth O(b). Thus, the computation of each quadratic form in the summand of (10)
involves sparse matrix–vector multiplications and requires O(nnz) = O(bN ) operations.
As a result, the computation of (10) has complexity O(bN T + k N T ).

The second and third terms of the log pseudolikelihood function (4) involve the evaluation
of two log determinants, log det(K (θ)) and log |det(S(λ))|, which is in general numerically
unstable and computationally infeasible when the sample size N T is large. To overcome
such challenges, we utilize the relationship between an LU decomposition and the deter-
minant. Recall that K (θ), given by

∑∞
j=0 A(θ) j A(θ)

′ j , is dense in general. Thus, it is
computationally challenging to compute its log determinant and invert the matrix, as these
operations involve solving large linear systems and infinite sum of matrices. Here, we over-
come the difficulty by taking full advantage of the symmetric spatial weight matrix and
noting the following identity: S(λ)K (θ)−1S(λ) = S(λ)2 − R(θ)2. After some algebra,
we have log(det(K (θ))) = log det(S(λ)2) − log det(S(λ)2 − R(θ)2), which converts the
computationally intensive task into sparse matrix multiplication and calculation of the (log-
)determinant of two positive definite matrices with bandwidth O(b). Furthermore, incom-
plete LU (ILU) decomposition of banded matrix takes advantage of the sparsity pattern
to speed up the LU factorization without compromising the accuracy (Saad 2003). This
reduces the computational cost from the standard O(N 2.4) to O(b2N ) (see, e.g., Section
2 of Kilic and Stanica 2013) and ensures the numerical stability of the calculation of log
determinant of banded matrices during the evaluation of log pseudolikelihood.
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The first term of the log pseudolikelihood function (4) would require O(N ) opera-
tions after profiling out σ 2 in (4). That is, by setting ∂σ 2 log L N T (δ) = −(2σ 2)−1N T +
(2σ 4)−1H(β, θ) to zero, we have σ̂ 2 = (N T )−1H(β, θ), where H(β, θ) = (Y −
Xβ)′�(θ)−1(Y −Xβ). Combining the results above, the overall computational complexity
for evaluating the log pseudolikelihood function (4) is O(bNT + kNT + b2N ).

To compute the gradient of (4), the computational cost is on the orderO(kbNT+ b2N ),
because the partial derivative of (4) with respect to β has a closed form

∂ log LNT(δ)

∂β
=2

[ T∑

t=1

X ′
t S(λ)2(X tβ − Y t ) +

T −1∑

t=2

X ′
t R(θ)2(X tβ − Y t )+

T −1∑

t=1

{
X ′

t R(θ)S(λ)(Y t+1 − X t+1β) + X ′
t+1R(θ)S(λ)(Y t − X tβ)

} ]

and requires O(kbNT) operations, due to the multiplication of sparse matrices. The com-
putational complexity of calculating the partial derivative of (4) with respect to θ using the
analytical form remains computationally expensive as it involves solving large linear system
requiringO(N 2.4) operations. Thus, we use finite difference approximations in the gradient
calculation, which reduce the computational cost fromO(N 2.4+kbNT) toO(b2N +kbNT).

With the results above combined, the estimation of δ̂ through numerical constrained
optimization would requireO(kbNT+ b2N ) operations. In other words, the computational
complexity of our method is linear to the total sample size (N T ) when k and b are fixed and
hence, is computationally feasible for large datasets even on the order of millions.

Last but not least, we turn to the computational cost involved in evaluating the estimate
of Var(̂δ). By a similar argument in the evaluation of the log pseudolikelihood, comput-
ing σ̂ 2(X ′�−1(̂θ)X)−1 requires only O(kbNT) operations and O(kNT + bN ) memory
usage, as opposed to O(N 2T ) operations and an extra O(N 2T ) memory usage with the
standard computation. Thus, our procedure facilitates the statistical inference about β with
large sample size. However, the computation of (7) is dominated by solving a large linear
system (Gilbert et al. 1992) in the calculation of �1,N and �2,N , which requires at most
O(N 2.4T 2.4) computations using the Coppersmith–Winograd algorithm (Coppersmith and
Winograd 1990). As such, for practical applications, it may be prudent to apply resampling
to compute the standard errors of the spatio-temporal dependence parameter estimates in θ̂ .
For example, spatial subsampling may be applied to overlapping or nonoverlapping spatial
blocks and provide replications of θ̂ for estimating the asymptotic covariance matrix (see,
e.g., Sherman 1996; Nordman and Lahiri 2004).

5. SIMULATION STUDY

5.1. SIMULATION SETUP

We conduct simulation experiments to assess the finite-sample properties of our pro-
posed methodology and evaluate its computational efficiency. For the design matrix X ,
we let k = 2 including the intercept and a covariate sampled from the standard Gaussian
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Table 1. Sample average bias (×10−4) and mean squared error (MSE, ×10−4) of δ̂ based on 1000 simulations,
and average computational time (in second) per simulation, with Gaussian innovations

N T Average bias ×10−4 Sample MSE ×10−4 Average
time

β0 β1 λ γ ρ σ 2 β0 β1 λ γ ρ σ 2

102 5 −22.80 9.21 −5.24 −50.05 −20.98 − 105.50 68.32 16.42 2.60 17.73 5.20 40.92 0.05
10 −14.23 −10.61 −11.03 −35.19 −6.29 − 56.64 34.28 8.32 1.51 8.42 2.51 20.72 0.05
20 −17.43 12.26 1.40 −15.47 −7.07 − 45.87 18.00 4.35 0.66 3.90 1.38 9.99 0.07
50 −9.01 −1.41 −2.64 1.08 −1.06 − 10.59 7.99 1.51 0.27 1.46 0.48 3.99 0.11

202 5 −23.22 14.89 2.23 3.27 −12.63 − 45.95 15.87 4.49 0.63 4.00 1.38 10.66 0.10
10 16.95 0.09 −0.69 −10.73 −1.35 − 6.48 8.68 2.09 0.32 1.90 0.67 5.25 0.12
20 −0.21 1.18 1.11 −9.17 −1.73 − 8.68 4.99 1.01 0.16 0.93 0.29 2.58 0.17
50 3.58 1.33 −0.19 −1.55 0.24 − 2.55 1.89 0.41 0.07 0.40 0.10 0.94 0.24

502 5 −0.55 2.01 −0.32 0.82 0.00 − 4.31 2.57 0.65 0.11 0.61 0.22 1.69 0.43
10 −0.85 −0.58 0.94 −0.26 −2.54 − 9.74 1.34 0.34 0.05 0.31 0.09 0.83 0.54
20 −3.11 0.41 1.16 0.14 −1.53 − 0.69 0.75 0.16 0.02 0.15 0.05 0.40 0.65
50 −1.87 −0.64 2.06 −0.45 −1.31 − 1.51 0.29 0.06 0.01 0.06 0.02 0.16 0.96

1002 5 5.11 1.19 1.16 −1.89 −0.57 − 0.08 0.65 0.16 0.03 0.17 0.05 0.42 1.77
10 −0.85 0.27 1.86 0.73 −0.65 − 1.17 0.34 0.08 0.01 0.08 0.02 0.19 2.12
20 1.58 1.03 1.52 0.21 −0.98 − 0.60 0.19 0.04 0.01 0.04 0.01 0.10 2.67
50 1.81 0.43 1.78 0.59 −1.20 − 1.27 0.08 0.02 0.00 0.01 0.00 0.04 4.41

2002 5 3.33 −0.71 1.52 −0.53 −1.50 − 0.42 0.17 0.04 0.01 0.04 0.01 0.11 10.13
10 −0.50 0.63 1.58 0.05 −1.35 − 1.80 0.09 0.02 0.00 0.02 0.01 0.06 11.67
20 0.13 −0.37 1.75 0.15 −0.89 − 1.61 0.05 0.01 0.00 0.01 0.00 0.02 13.84
50 −1.18 0.02 1.84 0.13 −0.88 − 0.82 0.02 0.00 0.00 0.00 0.00 0.01 20.29

distributionN (0, 1). Once generated, X is kept fixed. The random innovations V t are sam-
pled independently from N (0, 1), t = 1, . . . , T . The true parameter vector δ0 is set at
(1, 0.5, 0.05, 0.5,−0.05, 1)′; that is, β0 = (1, 0.5)′, λ0 = 0.05, γ0 = 0.5, ρ0 = −0.05, and
σ 2
0 = 1. We also consider a two-dimensional spatial domain with the data taken at spatial

coordinates {(1, 1), . . . , (1, n), . . . , (n, n)} and the spatial weight matrixW is under a first-
order spatial neighborhood structure. To examine the effect of sample sizes, we consider
N = n2 ∈ {102, 202, 502, 1002, 2002} and T ∈ {5, 10, 20, 50}. For each combination of N
and T , 1000 simulations are generated.

The core computation is executed on an application server with dual Intel Xeon Sil-
ver 4116 2.1GHz 12-core (24 thread) processors and 512GB of RAM, running MATLAB
R2020a.

5.2. SIMULATION RESULTS

The PMLE δ̂ of the model parameter vector is obtained from maximizing the log pseu-
dolikelihood (4). To evaluate the finite-sample properties of the parameter estimates, we
compute the bias and mean squared error (MSE) by taking the sample average of the dif-
ferences and the squared differences between the estimate δ̂ and the true value δ0 over the
1000 simulations for different combinations of N and T (Table 1). Overall, both the bias
and the MSE decrease gradually as N or T increases for each of the parameters in δ0.

Next, we compare various estimates of the standard deviations of the regression coef-
ficients β̂ = (β̂0, β̂1)

′, which are of primary interest. Table 2 shows the sample standard
deviation (SD) of the estimates among 1000 simulations, the asymptotic SD approximated
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Table 2. Sample standard deviation (Sample SD), asymptotic standard deviation (Asy SD) at β0, plug-in standard
error (Plug-in SE) by (6) at β̂, average computational time (in second) per simulation for Plug-in SE,
and coverage probabilities of the confidence intervals for β0 and β1 under the nominal level of 95%
using Asy SD and Plug-in SE

N T Standard deviation/error Coverage probability
Sample SD ×10−2 Asy SD ×10−2 Plug-in SE ×10−2 Average

time
Asy SD Plug-in SE

β0 β1 β0 β1 β0 β1 β0 β1 β0 β1

102 5 8.266 4.053 7.979 4.067 7.907 4.044 0.002 94.2 94.9 93.1 94.7
10 5.856 2.884 5.954 2.936 5.897 2.930 0.003 95.6 95.6 95.3 95.3
20 4.241 2.083 4.331 2.097 4.323 2.094 0.004 95.3 95.2 95.4 95.1
50 2.826 1.228 2.793 1.244 2.792 1.243 0.008 95.3 94.5 95.3 94.5

202 5 3.978 2.116 4.001 2.085 3.992 2.080 0.005 95.8 94.1 95.1 94.0
10 2.943 1.447 2.984 1.424 2.980 1.423 0.006 95.9 93.7 96.2 93.7
20 2.235 1.005 2.170 0.999 2.168 0.999 0.011 94.4 95.0 94.2 95.1
50 1.373 0.638 1.397 0.634 1.397 0.634 0.021 94.7 95.1 94.8 95.1

502 5 1.603 0.805 1.604 0.825 1.605 0.825 0.023 94.0 95.8 94.0 95.8
10 1.157 0.581 1.194 0.570 1.193 0.570 0.031 96.1 94.5 96.1 94.6
20 0.866 0.394 0.868 0.401 0.868 0.401 0.047 94.7 96.2 94.5 96.2
50 0.538 0.246 0.559 0.252 0.559 0.252 0.083 95.5 96.2 95.5 96.2

1002 5 0.807 0.397 0.803 0.414 0.803 0.414 0.088 94.6 96.5 94.5 96.5
10 0.584 0.281 0.597 0.286 0.598 0.286 0.118 95.3 95.4 95.4 95.4
20 0.436 0.194 0.434 0.201 0.435 0.201 0.186 95.9 96.1 95.9 96.1
50 0.277 0.126 0.279 0.126 0.28 0.126 0.373 94.9 95.1 95.0 95.1

2002 5 0.406 0.208 0.401 0.207 0.402 0.207 0.520 94.6 95.0 94.6 94.9
10 0.301 0.143 0.299 0.143 0.299 0.143 0.636 94.5 96.0 94.6 96.0
20 0.218 0.099 0.217 0.100 0.217 0.100 0.778 94.9 94.9 94.9 94.9
50 0.140 0.063 0.140 0.063 0.140 0.063 1.465 94.9 94.6 94.9 94.6

by σ−2
0 N−1X ′�(θ0)

−1X , and the plug-in standard error (SE) developed in (6) evaluated β̂.
The sample SD can be viewed as the gold standard. Both the asymptotic SD and the plug-in
SE are close to the sample SD for different combinations of N and T , supporting the results
of (6).

We also evaluate the distributions of the estimated regression coefficients β̂. Both
(
σ−2
0 X ′�(θ0)

−1X
)1/2

(β̂ − β0) and
(
σ̂−2X ′�(̂θ)−1X

)1/2
(β̂ − β0) converge in distri-

bution to the standard bivariate Gaussian distribution by (6) and the Slutsky’s theorem. The
last four columns of Table 2 report the coverage probabilities of the confidence intervals
for β0 and β1 under the nominal level of 95% using the asymptotic SD and the plug-in
SE. The confidence intervals for β0 and β1 achieve the nominal coverage well for different
combinations of N and T . In addition, for different δ0 and W , the results are similar and
not shown here to save space.

The last column of Table 1 and the seventh column of Table 2 report the average time (in
second) required to obtain the PMLE δ̂ and the various measures of the variation of β̂. The
computation is reasonably fast. For example, when N is large (e.g., 2002), the parameter
estimation takes less than one minute per simulation. Moreover, the computation time is
empirically linear to the spatial dimension N as the length T of the time series is relatively
small. It is worthwhile to point out that the memory usage remains low (e.g., around 2GB
when N = 2002 and T = 50) in the computation.
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Assumption (A.3) only requires the innovations to have finite higher-order moments; in
other words, V t = (v1,t , . . . , vN ,t )

′ is allowed to have heavy tails as long as E(|v j,t |4+η) <

∞ for some η > 0. Thus, we also sample V t , t = 1, . . . , T , independently from the skewed
t5 distribution to check the robustness of our method against heavy-tailed distribution (Fer-
nández and Steel 1998). In addition, we include a comparison with the naive ordinary least
squares (OLS) and the state-of-the-art GpGp (Guinness 2021) in estimating the regression
coefficients and drawing inference. The results are summarized in Tables S.1 and S.3 for the
Gaussian innovations, and in Tables S.2 and S.4 for the skewed t5 distribution. Our proposed
method achieves a smaller mean squared error than OLS, especially for the skewed t5 inno-
vations. In terms of the coverage probability of the confidence intervals for β0 and β1, the
OLS has substantial under-coverage. Although GpGp produces more accurate estimators
than our method, the difference between the two methods becomes less pronounced when
N or T increases. On the other hand, the computation time for GpGp is much longer than
that of our method. For example, when N = 502 and T = 50, our method gives results
comparable to GpGp and takes 0.96 s to compute, whereas GpGp takes over 265s.

Overall, the simulation experiments corroborate the theoretical properties of δ̂ and the
computational complexity shown in Sects. 3 and 4, respectively.

6. DATA EXAMPLE: LAND SURFACE TEMPERATURE

As described in Sect. 1, to capture spatial variation in the LST arising from vegetation
zonation, amount of the incoming solar radiation energy, and regional differences in envi-
ronmental conditions, we regress the response variable of LST on the predictor variables
of time trend, ecoregion classes, and interactions between the time trend and ecoregions,
as well as the environmental covariates of elevation and latitude over T = 19 years and
N = 155, 900 image pixels per year. Thus, there are a total of k = 171 regression coeffi-
cients. To implement the proposed spatio-temporal regressionmethod, we construct a binary
spatial weight matrix, W = (wi i ′)N×N , such that wi i ′ = 1 if cell i ′ is a first-order neighbor
of cell i , and 0 otherwise. We then apply the computational procedure described in Sect. 4.

Themajority of the regression coefficients are significant after false discovery rate adjust-
ments, suggesting that, as expected, the mean LST values are different among different
ecoregion classes and the time trend in LST varies among ecoregions (Fig. S.6). The upper
left panel of Fig. 2 maps the estimated time trend across ecoregions for the LST. Overall,
there is an increasing time trend, especially in the southern and southeastern parts of the
USA, indicating that these regions are subject to more rapid increases in LST than the rest of
the continental US. This finding is consistent with previous findings that South and South-
east United States have warmed up the most in recent decades (Vose et al. 2017; Yan et al.
2020). Tables S.5 and S.6 give the estimated regression coefficients of elevation, latitude,
and the intercept (with respect to water), as well as the time trend of the five largest and
smallest ecoregions, respectively. The LST tends to decrease with elevation and latitude,
which are as expected. The estimates for σ 2, λ, γ , and ρ are 0.6061, 0.0360, 0.7273, and
−0.0247, respectively.
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Figure 2. Estimated regression coefficients by ecoregion using data from2001 to 2019 (upper left panel);Observed
land surface temperature (LST) in degree Celsius in 2019 (upper right panel); Predicted LST in 2019 based on
model fitting with data from 2001 to 2018 (lower left panel); and the prediction errors of LST in 2019 (lower right
panel).

For model diagnostics, we first assess the in-sample model fit. From Figs. S.1 and S.2,
the estimated LST in 2001 and 2019 as well as their difference are similar to those in
the observations, indicating that our method can well recover the mean function using the
covariates. We then evaluate the out-of-sample prediction by fitting the 2001–2018 data and
predicting the LST in 2019. Figure2 suggests that the predicted LST for 2019 match up
with the actual observations.

Finally, we compare our method with GpGp with the same set of covariates. The default
neighborhood structure and the exponential space-time covariance function are adopted for
fitting models using the R package GpGp. The estimated LST values from GpGp seem
to be quite different from the observed values (right panels of Fig. S.1), possibly due to
numerical instability with the large sample size N T . The root mean squared error for the
in-sample validation for GpGp is 2.02 and is 1.30 for our method. As for the out-of-sample
prediction, the root mean squared prediction error of GpGp and our method are 1.98 and
1.41, respectively. While the computational complexity and the programming languages are
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not directly comparable between GpGp and our method, it took GpGp more than four days
and our method within two hours to perform the regression analysis.

7. CONCLUSIONS AND DISCUSSION

In this article, we have developed a novel computationally scalable procedure that enables
regression analysis of large amounts of spatio-temporal data. We have estimated the model
parameters by maximizing a pseudolikelihood function. Asymptotic properties under suit-
able regularity conditions have been established that enable the computation to be efficient
and scalable for parameter estimation and inference.

In spatio-temporal statistics, it is popular to consider using spatio-temporal randomeffects
to account for spatio-temporal dependence (see, e.g., Wikle et al. 2019). The autoregres-
sive approach taken here offers an alternative and it would be interesting to explore the
connections between these two seemingly distinct approaches. Our spatio-temporal model
is semiparametric in the sense that no explicit distributional assumption is made about the
regression innovation. However, the proposed model is not able to readily handle binary
observations or count observations. One possible solution is to replace Model (1) with an
equation that links the logit (or logarithm) transformation of the expectation of Y t with
X tβ + U t , if Y t is binary (or count). This is not a trivial task and we will leave it for
future research. Moreover, our proposed framework is not designed to model observations
whose locations change over time. Although we do not encounter such an issue when ana-
lyzing the satellite data, when this framework is applied to data that are not observed at
each location across all time points, one could interpolate the “missing” observations via
Kalman filter (Katzfuss et al. 2016). In addition, the spatial weight matrix in Model (2) is
specified to be time invariant, which is reasonable when the spatial weight matrix is based
on the geographical information. However, when one constructs a spatial weight matrix
according to certain demographic characteristics or socioeconomic information, the matrix
may well change over time. Thus, a possible extension of the current framework is to make
the spatial weight matrix time varying. Finally, it is worth investigating the problem of non-
convex minimization of our PMLE. We leave this and other possible extensions for future
investigation.
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APPENDIX A: NOTATION AND ASSUMPTIONS

We first introduce some notation and conventions. Given an n × n matrix P = (pi j )n×n ,
we use tr(P) and det(P) to denote the trace and determinant of a square matrix P , and we
let vecD(P) denote the column vector formed by the diagonal elements of P . The (i, j)th
element of a matrix P is denoted by enti j (P). We define ‖P‖1 = max1≤ j≤n

∑n
i=1 |pi j |

and ‖P‖∞ = max1≤i≤n
∑n

j=1 |pi j |. We also let ‖P‖2 = {λmax(P ′P)}1/2 and ‖P‖F =
{tr(P ′P)}1/2 denote the spectral norm and the Frobenius norm, respectively. Let abs(P) =
(|pi, j |)n×n . A sequence of n × n matrix Pn is said to be uniformly bounded in row and
column sums (UB), if supn≥1 ‖Pn‖1 < ∞ and supn≥1 ‖Pn‖∞ < ∞. We also use 0 and
1 to denote a matrix or a vector with all elements equal zero and one, respectively. For a
real-valued function f (x), x = (X1, . . . , xk)

′ ∈ R
k , we let ∇ f (x) denote the gradient

vector and let ∇2 f (x) denote the Hessian matrix. The partial derivative of f with respect
to x j is denoted by ∂x j f (x) or ∂ f (x)

∂x j
, whereas the second partial derivative with respect to

x j is denoted as ∂x j x j f (x) (or ∂2 f (x)

∂x2j
).

In the following, we provide the regularity conditions for establishing the large sample
properties of the PMLE δ̂.
A.1 The spatial weight matrix W is nonstochastic and symmetric, with zero diagonal ele-
ments.
A.2 The parameter space �δ of δ = (β ′, θ ′, σ 2)′ is compact and is the product space of �β ,
�θ , and [σ 2, σ̄ 2], where �θ is a compact set such that the matrix IN − λW is nonsingular
and the eigenvalues of A(θ) are less than one in magnitude, while �β is a compact subset
of Rk . The true value δ0 = (β ′

0, θ
′
0, σ

2
0 )′ lies in the interior of �δ .

A.3 The vector of innovations V t = (v1,t , . . . , vN ,t )
′ ∼ i id(0, σ 2

0IN ) and E(|v j,t |4+η) <

∞ for some η > 0 for all j, t .
A.4 The precision matrix, infinite sum of power of A(θ0), and the design matrix are UB.
Namely,

(i) �(θ)−1 = B(θ)′(�(θ))−1B(θ) and S(λ)−1 are UB, ∀θ ∈ �.

(ii)
∑∞

h=1 abs(A(θ0)
h) is UB.

(iii) The N × k design matrix X t is nonstochastic with elements UB in N and t .

A.5 limN→∞ 1
N X ′�(θ)−1X = limN→∞ 1

N X ′B(θ)′(�(θ))−1B(θ)X is nonsingular, ∀θ ∈
�.
A.6 lim infN→∞ N−1 ∑N T

j=1 ∇2 f j (α) is nonsingular, where f j (α) = − log(λ j (θ)σ−2σ 2
0 )

+ λ j (θ)σ−2σ 2
0 , α = (θ ′, σ 2)′, and λ j (θ), j = 1, . . . , N T , are the distinct eigenvalues of

�(θ)−1�(θ0) in nonincreasing order.
A.7 �(θ), ∂θi (�(θ)−1), ∂2θi θ j

(�(θ)−1), and ∂3θi θ j θk
(�(θ)−1) areUB in θ = (θ1, θ2, θ3)

′ ∈ �.
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A.8 limN→∞ N−1�N is nonsingular, where

�N =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

tr(m2
λ) tr(mλmγ ) tr(mλmρ) − 1

σ 2
0
tr(mλ)

∗ tr(m2
γ ) tr(mγ mρ) − 1

σ 2
0
tr(mγ )

∗ ∗ tr(m2
ρ) − 1

σ 2
0
tr(mρ)

∗ ∗ ∗ N T
σ 4
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (11)

with mλ, mγ , and mρ defined in (S.14) in Supplementary Materials.
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