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A B S T R A C T   

The ecosystem services that forests provide depend on tree species composition. Therefore, it is important to map 
not only forest extent and its dynamics, but also composition. Open access to Landsat has resulted in considerable 
improvements in remote sensing methods for mapping tree species, but most approaches fail to perform when 
there is a shortage of clear observations. Our main goal was to map forest composition with Landsat imagery in 
various data availability conditions, and to investigate how the missing data, either due to clouds or scan line 
problems affect classification accuracy. We tested a data driven approach that is based on multi-temporal 
analysis of the tree species’ spectral characteristics making it applicable to regional-scale mapping even when 
the gap-free imagery is not available. Our study area consisted of one Landsat footprint (26/28) located in 
Northern Wisconsin, USA. We selected this area because of numerous tree species (23), heterogenic composition 
of forests where the majority of stands are mixed, and availability of high-quality reference data. We quantified 
how classification accuracy at the species level was affected by a) the amount of missing data due to cloud cover 
and Scanning Line Corrector (SLC) gaps, b) the number of acquisitions, and c) the seasonal availability of images. 
We applied a decision tree classifier, capable of handling missing data to both single- and a three-year Landsat-7 
and Landsat-8 observations. We classified the dominant tree species in each pixel and grouped results to forest 
stands to match our reference data. Our results show four major findings. First, producer’s and user’s accuracies 
range from 46.2% to 96.2% and from 59.9% to 93.7%, respectively for the most abundant forest types in the 
study area (all types covering greater than 2% of the forest area). Second, all tree species were mapped with 
overall accuracy above 70% even in when we restricted our data set to images having gaps larger than 30% of the 
study area. Third, the classification accuracy improved with more acquisitions, especially when images were 
available for the fall, spring, and summer. Finally, producer’s accuracies for pure-stands were higher than those 
for mixed stands by 10 to 30 percentage points. We conclude that inclusion of Landsat imagery with missing data 
allows to map forest types with accuracies that previously could be achieved only for those rare years for which 
several gap-free images were available. The approach presented here is directly applicable to Landsat-like ob-
servations and derived products such as seasonal composites and temporal statistics that miss 30% or more of the 
data for any single date to develop forest composition maps that are important for both forest management and 
ecology.   

1. Introduction 

Forests cover about one third of the Earth’s land surface and provide 
numerous services, but these services depend on their tree species 
composition. For example, tree species vary in their responses to the 
environmental processes such as climate change (Bergh et al., 2003), 
nutrition cycling in soils (Finzi et al., 1998; Hobbie et al., 2007), and in 
their effects on the chemistry of soils and stream waters (Lovett et al., 
2002). At global scales, tree species modulate the rates of climate change 

(Bonan, 2008). At local scales, they provide habitats for wildlife (Lee 
and Rotenberry, 2005; Wood et al., 2012) and affect biodiversity 
(Barbier et al., 2008). Knowledge about the location of certain tree 
species is important for their conservation and to model distributions of 
related wildlife species (Loiselle et al., 2003). Last but not least, tree 
species differ greatly in both their timber value and susceptibility of 
forests to disturbance causing a range of economic effects depending on 
the future shifts in their distributions (Hanewinkel et al., 2012). 

Field-based mapping of tree species for large areas is generally cost- 
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prohibitive. However, recent technological developments in remote 
sensing make it possible to develop forest composition maps using a 
variety of data types (Fassnacht et al., 2014), including hyperspectral 
(Modzelewska et al., 2020), and airborne laser scanning data (Lindberg 
et al., 2021; Shi et al., 2018), even at level of individual trees (Shi et al., 
2021). However, for large area mapping applications these data types 

are not as widely available as multispectral imagery. Tree species can be 
successfully separated by analyzing the differences in the surface 
reflectance absorption characteristics captured with multispectral in-
formation collected in the time of the year crucial to phenology. The 
mapping accuracy increases when analyzing multi-temporal acquisi-
tions that capture differences in tree phenology between seasons. For 

Fig. 1. Study area: a) location of the footprint path: 26, row: 28, b) forest pixels indicated by NLCD 2011, c) the forest types in RECON polygons.  
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example, Immitzer et al. (2016) reported overall accuracy of 66.2% for 
temperate forests in Germany as a result of classification of a single 
Sentinel-2 image while multi-temporal observations from Sentinel-2 
resulted in accuracies ranging from 75.6% to 88.2% (Hościło and Lew-
andowska, 2019; Persson et al., 2018). Similarly, the use of Landsat data 
covering multiple stages of forest phenology resulted in mapping accu-
racy ranging from 83% to 96% depending on the number of tree species 
(Townsend and Walsh, 2001; Zhu and Liu, 2014). In rare cases, high 
classification accuracy can be achieved with only a few images from 
spring, summer, and fall (Mickelson et al., 1998). However, a larger 
number of acquisitions is an advantage as long as the additional imagery 
provides novel information on differences in tree phenology (Axelsson 
et al., 2021; Wolter et al., 1995; Zhu and Liu, 2014). Lastly, certain 
approaches are based on capturing phenology patterns from multi-year 
data (Pasquarella et al., 2018), and deriving spectral-temporal statistics 
(Grabska et al., 2020; Hemmerling et al., 2021; Schindler et al., 2021). 

When the goal is to map tree species for large areas, Landsat and 
Sentinel-2 imagery are the only viable choices because of their spatial 
and temporal resolution, spectral ranges essential for monitoring tree 
phenology, radiometric stability, and open access to image archives. 
First, the 10–30 m ground sampling distance of the sensors collecting the 
imagery globally allows to map tree species for large areas because the 
images capture differences in reflectance from a sufficiently small 
number of trees that the dominant species for each pixel can be assessed 
(Wolter et al., 1995). Second, the five to eight day acquisition frequency 
of two Landsat satellites, plus additional Sentinel-2 images since 2015, 
make it possible to capture rapid changes in canopy development during 
the growing season that reflect phenological differences among species 
(Mickelson et al., 1998). Third, the radiometric quality of Landsat bands 
is largely stable over the entire historical archive (Wulder et al., 2012) 
making it possible to use multi-year observations from various sensors 
on different Landsat missions (Pasquarella et al., 2018). Finally, the data 
is openly available which reduces the costs of mapping activity. 

The challenge is that existing approaches to mapping tree species 
with Landsat data can be limited by the availability of gap-free acqui-
sitions or low numbers of annual per-pixel observations, which is typical 
for large portions of individual scenes (Wulder et al., 2016). For 
example, having two images from spring is highly desirable, because 
bud burst is often rapid and differences in its timing among tree species 
can be subtle (Lechowicz, 1984), but the probability of two cloud-free 
observations from a single Landsat satellite within a 16-day window is 
low for the conterminous United States (Ju and Roy, 2008). Most images 
have gaps due to clouds, their shadows, and Scan Line Corrector (SLC) 
failure issue on Landsat 7. These gaps preclude the use of many mapping 
approaches that require input data to be completely gap-free, including 
those that employ image thresholds (Dymond et al., 2002; Wolter et al., 
2008, 1995), statistical classifiers (Mickelson et al., 1998), as well as 
non-parametrical approaches such as Random Forests and Support 

Vector Machines (Grabska et al., 2019; Hemmerling et al., 2021; Hościło 
and Lewandowska, 2019; Zhu and Liu, 2014). Even those approaches 
relaying on band compositing (Grabska et al., 2020) or modelling multi- 
year per pixel observations (Pasquarella et al., 2018) to provide gap-free 
data for larger extents can suffer if there is not enough observations for: 
1) the compositing process or 2) the modelling of multi-year phenology 
patterns. Moreover, the use of multi-year data covering long time pe-
riods can introduce problems resulting from the variability in the 
phenology timing caused by interannual shifts in climate, land cover 
changes, or climate change (Garcia and Townsend, 2016). 

One way to address the shortage of gap-free Landsat observations is 
to employ a machine learning algorithm that can handle missing data. 
Indeed, Landsat data with gaps have been successfully used when 
mapping general land cover categories (Schneider, 2012), as well as tree 
species (Wiscland 2 Land Cover User Guide, 2016). The same is also true 
for partially cloudy imagery from Formosat-2 satellites (Sheeren et al., 
2016). What is less known however is how the magnitude of missing 
data, both in terms of the number of acquisitions and the seasons for 
which imagery is available affects tree species classification accuracy. 
To this end, our main goals were: 1) to improve mapping of tree species 
aggregated to forest types with Landsat imagery when data availability 
is limited, and 2) to evaluate the usefulness of a machine learning 
classifier when classifying imagery is affected by gaps due to both cloud 
cover and SLC failure. Our specific objectives were to assess the effects of 
a) the amount of missing data, b) the number of image acquisitions, and 
c) the seasonality of the imagery on classification accuracy. 

2. Materials and methods 

2.1. Study area 

The study area was in northern Wisconsin and consisted of the 
forested areas of a single Landsat footprint (path 26, row 28) (Fig. 1a). 
The area is divided into three ecoregions: Lake Superior Lowland, 
Northern Highland, and western part of Central Plain (Martin, 1965). 
Forests cover just over 1.6 million hectares (roughly 30% percent of the 
footprint) (Fig. 1b). The local climate is temperate continental and 
influenced by three air masses passing over the area: the cold and dry 
arctic, warm and moist subtropical, and very dry continental. The flat 
topography, mostly a rolling plain shaped by glaciers during the Pleis-
tocene, provides no natural obstacles for air masses causing character-
istic zonal distribution of vegetation (Curtis, 1959). In addition to air 
masses, climate is influenced by Lake Superior in the north causing local 
temperature gradients. 

The composition of forest tree species in our study area is mixed. 
Most abundant tree species include aspen spp. (Populous), oak spp. 
(Quercus), pine spp. (Pinus), spruce spp. (Picea), maple spp. (Acer), and 
miscellaneous hardwoods, accompanied by tamarack (Larix larcina), 

Table 1 
The list of the acquisitions used in this study.   

Landsat 7 ETM+ Landsat 8 OLI 

2014           

Winter 7-Jan 23-Jan 8-Feb 24-Feb  15-Jan 31-Jan 16-Feb   
Spring 12-Mar 28-Mar 31-May   4-Mar 20-Mar 5-Apr 21-Apr  
Summer 16-Jun 2-Jul 18-Jul 3-Aug  24-Jun     
Fall 4-Sep 20-Sep 6-Oct 22-Oct  14-Oct 15-Nov    
2015           
Winter 10-Jan 27-Feb    3-Feb 19-Feb    
Spring 31-Mar 16-Apr 2-May   7-Mar 23-Mar 10-May   
Summer 19-Jun 5-Jul 21-Jul 6-Aug 22-Aug 27-Jun 13-Jul 29-Jul 14-Aug 30-Aug 
Fall 7-Sep 23-Sep 9-Oct 25-Oct 10-Nov 15-Sep 1-Oct 17-Oct 18-Nov  
2016           
Winter 14-Dec     5-Jan 22-Dec    
Spring 1-Mar 2-Apr 4-May 20-May  25-Mar 10-Apr    
Summer 21-Jun 7-Jul 8-Aug 24-Aug  15-Jul 31-Jul 16-Aug   
Fall 9-Sep 12-Nov 28-Nov   1-Sep 3-Oct 19-Oct 4-Nov 20-Nov  
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eastern hemlock (Tsuga canadensis), and white cedar (Thuja occidentalis). 
Contemporary tree species distributions have been shaped mainly by 
land use, and differs substantially from the period prior to onset of Eu-
ropean settlers in the mid-19th century (Curtis, 1959; Radeloff et al., 
1999; Rhemtulla et al., 2009, 2007). 

2.2. Data 

We focus here on Landsat data only and analyzed observations from 
Landsat-7 and Landsat-8 acquired from 1/1/2014 to 12/31/2016. In 
total, 82 acquisitions, out of 133, provided at least some clear pixels over 
the study area. Specifically, we analyzed the USGS Collection-1 Surface 
Reflectance product; bands 2–7 of Landsat-8 OLI, and bands 1–5 and 7 of 
Landsat-7 ETM+ (Table 1). The Landsat-7 data were processed via the 
Landsat Ecosystem Disturbance Adaptive Processing System (Schmidt 
et al., 2013; Department of the Interior U.S. Geological Survey, 2017) 
and the Landsat-8 data via the Landsat Surface Reflectance Code 
(Department of the Interior U.S. Geological Survey, 2020). We removed 
pixels that were: a) flagged as clouds, cloud shadows, or water based on 
the quality band, b) that exceeded the valid range from 0 to 10,000 
scaled surface reflectance, and c) all non-forest pixels according to the 
2011 National Land Cover Database (NLCD, (Homer et al., 2015), 
Fig. 1b). 

We used the Reconnaissance forest inventory data (RECON) of the 
Wisconsin Forest Inventory & Reporting System (WisFIRS) provided by 
the Wisconsin Department of Natural Resources and County Forests 
(State of Wisconsin Department of Natural Resources, 2013) as ground 
reference data (Fig. 1c). This dataset provides stand-level information on 
forest types (Appendix B): primary tree type (≥50% of the basal area), 
secondary tree type, understory type, tree height, tree density, total 
basal area, year of stand establishment, and year of the last field ex-
amination. We separated pure stands, where primary, secondary, and 
understory vegetation type were all of the same tree species, from mixed 
stands, which included all remaining stands. The dataset does not pro-
vide detailed information on the composition of tree species in the mixed 
stands. The majority of the RECON forest stands were examined in the 
field after 2000, <16 years before the satellite observations used here 
(Fig. 2). 

2.3. Classification 

Our primary goal was to obtain an accurate pixel-level classification 
for 23 forest types and tree species considering a range of data 

availability conditions for the forested pixels indicated by the NLCD. To 
achieve this goal, we conducted a number of classifications to test how 
three aspects of data availability affect the classification accuracy: 1) the 
influence of missing data due to clouds and SLC gaps, 2) the influence of 
the number of image acquisitions, and 3) the usefulness of imagery from 
different seasons and their combinations. We repeated each test 10 times 
for the 2016-only imagery versus 2014–2016 imagery, as well as for 
pure stands only versus pure-plus-mixed stands. For each of the 10 it-
erations, we randomly divided the forest stands from the RECON into 
training and testing subsets, each time drawing 25% of the pure stands 
of each forest type into training and leaving remaining 75% of pure 
stands plus all mixed stands for testing. For each repetition, we built a 
classification model using pixels belonging to the training stands 
excluding the edge pixels, and applied the model to all pixels from the 
test stands. We determined edge pixels by applying a 30-m buffer inside 
the polygons. 

We used the C5.0 Decision Trees and Rule-Based Models, imple-
mented in the R statistical software, as our tool for classification (Kuhn 
et al., 2021). We selected this classifier mainly due to its ability to handle 
missing data, which is a strength over the widely-used C4.5 algorithm 
(Farhangfar et al., 2008; Quinlan, 1993). In similarly, other classifiers 
commonly used in remote sensing applications, such as SVM (Cortes and 
Vapnik, 1995) or Random Forest (Breiman, 2001), require the data to be 
complete and all gaps filled. We built each model using the C5.0 default 
settings (Kuhn et al., 2021), and ran 100 boosting trials, the maximum in 
C5.0, because higher numbers improved the classification accuracy in 
initial tests (results not shown). The actual number of trials varied be-
tween the models depending on the amount of data and the level of data 
gaps in the training data set. The classifier’s training procedure stops 
once the predictive power of a model is either highly effective or if it is 
generally ineffective (Kuhn and Johnson, 2016). The boosting procedure 
relies on fitting models sequentially and adjusting the case weights 
based on the sample’s prediction accuracy. The output predicted class is 
assigned based on the highest average confidence value from all 
boosting trials. 

2.4. Test 1: Missing data due to cloud cover and SLC gaps 

To evaluate the influence of data gaps on classification accuracy, we 
ran a series of classifications with imagery selected based on various 
thresholds for the minimum and maximum percentage of pixels affected 
by missing data (Fig. 3a-b). For example, the thresholds ≥ 50% and <
100% restricted the data set to 17 images for the year 2016 and 51 

Fig. 2. Dates of last field examination for forest stands in the reference data set.  
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images for the period 2014–2016. Spatially, each image in this subset 
was missing values for 50% or more of the pixels belonging to study 
area. The overall level of missing data for our study area in such image 
stacks was equal to 81% and 75% respectively. 

For each set of thresholds, we recorded: 1) the overall accuracy, 2) 
the number of images meeting the thresholds, 3) the percentage of pixels 
in the study area with at least one clear observation, 4) the percent ratio 
between the number of available observations and the number of the 
pixels in the study area (e.g., 100% means that on average there was one 

clear value for each pixel of the study area, but some pixels may have 
had multiple observations, and others none), and 5) the overall per-
centage of missing data within the image stack. In total, we tested 19 
thresholds separated by 10% steps. We started with the most incomplete 
imagery, where the data gaps affect ≥ 90% and < 100% of the pixels 
(Fig. 3a). Next, we decreased the threshold for minimal gap cover from 
90% to 0% in order to broaden the range of thresholds which resulted in 
addition of images less affected by the gaps. Once the threshold reached 
0% all acquisitions were included, containing from 0% to < 100% pixels 

Fig. 3. The data availability and classification accuracy for tests of mapping forest types with image stacks containing imagery from 2016 and 2014–2016 char-
acterized by data gaps of various extents: a) data availability when imagery containing fewer gaps is added, b) data availability when imagery with more gaps is 
removed, c) classification accuracy corresponding to data sets from chart a for pure forest stands only, d) classification accuracy corresponding to data sets from chart 
b for pure forest stands only, e) classification accuracy corresponding to data sets from chart a for both pure and mixed stands, f) classification accuracy corre-
sponding to data sets from chart b for both pure and mixed stands. 

C. Konrad Turlej et al.                                                                                                                                                                                                                         



International Journal of Applied Earth Observation and Geoinformation 107 (2022) 102689

6

with missing values in any date. Finally, we narrowed the range by 
decreasing the threshold for maximal gap cover from 100% to 10% that 
resulted in removal of the most incomplete imagery from the analysis 
(Fig. 3b). We finished with the imagery with the least amount of missing 
data (0% to < 10% of the pixels in any acquisition), which included 
images only from 2016. 

2.5. Test 2: Number of image acquisitions 

To test the effects of number of images on classification accuracy, we 
extended the image acquisition time to three years (2014 to 2016), and 
repeated the tests with varying levels of data gaps as described earlier. 
For each threshold, we assessed the improvement in classification ac-
curacy when analyzing three years of data, and compared the differ-
ences in 1) the number of image acquisitions meeting current thresholds 
for data gaps, 2) the percent of pixels in the study area for which the data 
provided at least one clear observation, 3) the percent ratio between the 
number of clear observations and the number of the pixels in the study 
area, and 4) the overall percentage of missing data within the image 
stack. 

2.6. Test 3: Seasonality 

To determine the seasons most important for the forest types clas-
sifications, we performed 15 tests of all possible combinations of data 
from winter (December, January, February), spring (March, April, May), 
summer (June, July, August), and fall (September, October, November). 
We assigned the seasons to months roughly corresponding to major 
phenology processes (e.g., leaf-out, fall senescence) in our study area 
(Curtis, 1959), and made the time-windows wide to ensure that they 
captured these processes even in years with relatively early or relatively 
late phenology. We did so to ensure that, for example, leaf-out did not 
occur in some years in our spring, and in other years in our summer. We 
tested two data sets, one containing all images from 2016 and the other 
containing those from the period between 2014 and 2016. We recorded: 
1) the overall accuracy, 2) the number of image acquisitions meeting 
each of the data gaps thresholds, 3) the percent ratio between the 
number of gap-free observations and the number of the pixels in the 
study area, 4) the percent ratio between the total number of the pixels 
and the number of gap-free observations available, and 5) the overall 
percentage of missing data within the image stacks. 

2.7. Accuracy assessment, classification uncertainty 

We calculated the overall accuracy of all classifications for all iter-
ations of our tests and presented the detailed class-level accuracies for 
the classification generated with the model based on the best selection of 
image acquisitions. We aggregated pixel-level classification results to 
forest stands, labeling each stand based on the most frequently occurring 
category. However, to account for the area of each class we counted all 
of the pixels belonging to the test stands instead of operating with the 
stand counts for the accuracy assessments. We calculated: 1) the overall 
classification accuracy, 2) user’s, and 3) producer’s accuracy (Con-
galton, 1991). We derived graphs and error matrices to present the 
minimum, median, and maximum value of overall accuracy for each 
data set related to cloud cover and seasonal distribution of the imagery 
based on the full extents of forest stands. We presented the results for 
both: all stands and pure stands only. Finally, to estimate class-level 
accuracies at the forest-stand level, we calculated the accuracy for our 
best classification by using all 2,786,133 pixels for the 44,741 forest 
stands remaining for the accuracy assessment. We calculated accuracy 
separately for pure and mixed stands as well as for all stands together. 

As addition to the standard accuracy measures for the final map, we 
calculated a measure of uncertainty across the study area. We defined it 
at the pixel level as 100% minus the probability of the C5.0 pixel’s 
classification assignment. We compared its values for individual forest 
types in box and whisker plots and presented in form of a map depicting 
its spatial distribution. 

As a robustness check, we analyzed how the time since the last field 
examination of our reference stands affected the results of our classifi-
cation. To do so, we performed logistic regression of whether our clas-
sification at the stand level was correct or not (1 versus 0) as a function 
of the number of years from the last field visit for pure forest stands. 

3. Results 

We were able to classify forest types with high accuracy even when 
all the input data had large gaps. Our classification accuracy at the stand 
level reached 82.8% for pure stands and 71.4% for all stands when 
analyzing all available data from 2014 to 2016. The accuracies are 
slightly lower (81.4% for pure stands, and 70.1% for all stands) when 
using data for 2016 alone (Fig. 3c-d). 

3.1. Test 1 - missing data due to cloud cover and SLC gaps 

Several results emerged when we tested the added value of including 
imagery with gaps in the classifications. First, when gap-free images 
were available, the addition of imagery with gaps improved classifica-
tion accuracies only marginally (Fig. 3d). This was particularly impor-
tant when analyzing data for 2016 only, for which only two relatively 
gap-free images were available (Fig. 3b). Furthermore, once images 
with the least amount of missing data were included as input, there was 
only a minor improvement in classification accuracy when using data 
from 2014 to 2016 versus 2016 only. 

When gap-free images were excluded (i.e., when simulating a situ-
ation where no gap-free imagery is available), having data for three 
years was advantageous. With three years of observations, classification 
accuracy remained high even when the best images had gaps ≥ 30% of 
the study area (Fig. 3c), i.e. when the available eight best images were 
removed from the image stack (Fig. 3a). However, classification accu-
racies for observations from 2016 only dropped precipitously as soon as 
the imagery with the smallest gaps were removed (Fig. 3c). 

The patterns for the overall level of missing data were similar for 
both datasets, that is the data for a single year, and for three years, and 
was not clearly related with the patterns of the overall accuracy of 
classification. The overall level of missing data in the image stacks 
decreased gradually when we added imagery with fewer gaps from 97% 
to 64% for 2016 and from 98% to 58% for 2014–2016 (Fig. 3a). When Fig. 4. Number of clear per pixel observations from 2014 to 2016.  
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doing so, there was a gradual increase in classification accuracy 
(Fig. 3c). The decrease in the level of missing data continued when we 
removed imagery with gaps from the stacks from 64% to 0% and from 
58% to 2% for 2016 and 2014–2016 respectively (Fig. 3b). However, 
this did not result in any improvements in the classification accuracy 
(Fig. 3d). 

When comparing classifications for pure stands (Fig. 3c-d) with those 
for all stands (Fig. 3e-f), accuracies for pure stands alone were generally 
10 percentage points higher than those for all stands, but the overall 
patterns when including imagery with gaps were very similar. 

3.2. Test 2 – Number of acquisitions 

Analyzing data for three years instead of only one increased image 
availability from 24 to 84 acquisitions with some gap-free pixels 
(Fig. 3a-b). However, the increase in the number of acquisitions varied 
depending on the gap cover range and shrank to 12 and 4 for 0–30% and 
0–10% thresholds, respectively. 

Data from three years provided at least one clear observation for 
each pixel even with imagery where the minimal gap cover was 60% of 
the area. In contrast, for data from a single year, the minimal gap cover 
of 20% was necessary to provide data for the entire study area. Second, 
the maximum number of observations per pixel was 59 considering all 

Fig. 5. The classification accuracy (a – pure forest stands, b – pure and mixed stands) and data availability (c) for tests of mapping forest types with image stacks 
containing imagery from various seasonal combinations from 2016 and 2014–2016. 
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acquisitions from three-year period (Fig. 4). The average number of 
clear observations per pixel grew rapidly from < 1 for the most 
incomplete imagery (10 acquisitions missing ≥ 90% and < 100% pixel’s 
values) to 35 for all available imagery (0–100%) from years 2014–2016 
and to 9 for 2016 only. 

The increase in classification accuracy associated with additional 
data acquisitions was marginal when the least gap-affected imagery was 
included (Fig. 3d). Even with just four images with 0–30% missing data 
for 2016 alone, classification accuracy already reached 80.8%, 
compared to 82.2% for the 82 acquisitions for three-year set, and 81.9% 

for the 53 acquisitions for the data with 0–60% missing values, which 
was the highest median accuracy in our tests. However, without the gap- 
free imagery, differences between the single and three year sets were 
stark, especially in the range of 10–100% to 40–100% of missing values, 
where the three-year data sets with many more observations increased 
classification accuracy up to 79.4% (Fig. 3c). Results for pure and mixed 
stands were similar in trends but lower in absolute values (Fig. 3e-f). 

Fig. 6. Tree species distribution: a) the final map, and b) associated classification uncertainty (100% minus C5.0 classification assignment probability).  
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3.3. Test 3 – Seasonal data distribution 

The season during which the images were recorded affected classi-
fication accuracy (Fig. 5a-b). Fall imagery was, by far, the most valuable 
for mapping forest types, providing by itself a level of accuracy slightly 
lower than combination with data from other seasons. For pure stands, 
we achieved the highest accuracy using combinations of all seasons 
when using the imagery from both the three-year period (82.6%) and 
the single year (80.6%). In other words, as long as a fall image was 
available, data from a single year performed almost as well as obser-
vations from three years. 

When we simulated situations where no fall images were available, 
then the difference in the classifications between the single- and three- 
year sets was pronounced (Fig. 5a-b). This difference was due to the 
larger number of image acquisitions for the three-year period and its 
lower levels of missing data (Fig. 5c). When we tested the value of im-
agery for different seasons for pure versus all stands, the latter had again 
a lower accuracy. We observed the largest difference in the median 
overall accuracy (ca. 25 percentage points) when using a combination of 
imagery from winter and summer (Fig. 5a). The most useful imagery was 
again from the fall, and as long as fall imagery was included, the 
2014–2016 dataset resulted in only marginally better classifications 

(71.1%) than the 2016-only data (69.4%). 

3.4. Final map - accuracy assessment 

The overall accuracy at the stand level for the final map (Fig. 6a) was 
82.8% for pure stands (84.5% when rare forest types are aggregated for 
the purpose of presentation), 60.7% for mixed stands, and 70.5% for all 
stands. User’s accuracy for individual forest types generally decreased 
with decreasing species acreage, but producer’s accuracy showed no 
visible patterns. However, for most forest types the producer’s accuracy 
was noticeably higher for pure stands than for mixed stands, with dif-
ferences ranging from 10 to 30 percentage points for most of the types 
(Fig. 7b). 

For pure stands of forest types that covered ≥ 2% of the area 
(Table 2), we obtained generally high user’s accuracy: oak (93.7%), 
lowland brush alder (76.1%), red pine (91.2%), northern hardwoods 
(87.8%), scrub oak (85.5%), swamp hardwoods (85.4%), jack pine 
(86.0%), aspen (77.8%), and black spruce (75.0). With exception of jack 
pine (76.9%), scrub oak (67.6%), swamp hardwoods (60.3%), and oak 
(46.2%), we also achieved high producer’s accuracy for these classes: 
northern hardwoods (96.2%), Aspen (95.5%), red pine (88.3%), black 
spruce (85.6%), jack pine (85.6%), lowland brush alder (76.9%). For the 

Fig. 7. The accuracy assessment: a) the uncertainty for tree types within the reference data set, the order of the boxes depicts the number of the pixels belonging to 
each class; b) the agreement between classification and the RECON data set - producer’s accuracy for forest types for pure, mixed and all stands. 
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classes covering < 2% of the area, accuracies were generally lower 
(Appendix A), missing the rare tree species entirely or having producer’s 
accuracy at maximum level of 24.4%. However, we mapped most of 
these classes with high user’s accuracy of ≥ 80%. 

While we did not have independent ground truth data to check the 
overall accuracy of the map, we confirmed that the prediction proba-
bilities were moderately high (Fig. 6b). For most of the forest stands, the 
uncertainty was lower than 60%, and for a large portion < 10%. Pre-
diction probabilities varied among classes, and more abundant tree 
species were generally classified with greater probability (Fig. 7a). For 
most classes the maximum level of uncertainty ranged from 0% to 80% 
and median was lower than 40%. 

The relation between the time of last field examination of the 
reference forest stands and classification results varied among forest 
type. For example, we found no significant relationship between correct 
classification of oak stands and the time when they were last examined 
(Table 3). In contrast, for northern hardwoods the time of field exami-
nation had significant negative effect on correct stand classification 
(Table 4). In both oak and northern hardwoods cases, the majority of the 
stands were visited within 15 years from the date of acquisition of our 
satellite imagery (Fig. 8). 

4. Discussion 

We were able to map forest types accurately with Landsat data even 
when observations had substantial gaps by applying the C5.0 decision 
trees algorithm, which can handle missing data. Our use of the C5.0 
algorithm for tree species mapping represents an improvement over 
previously used approaches such as image thresholding (Dymond et al., 
2002; Wolter et al., 2008, 1995), traditional classification algorithms (e. 
g. Minimum Distance To Means Classifier (Mickelson et al., 1998)), and 
machine learning algorithms requiring the data to be gap-free such as 
Random Forests (Zhu and Liu, 2014). Furthermore, removing the need 
for gap filling makes our approach for extracting information on forest 
types more efficient for large areas, especially in locations where a low 
number of observations can degrade the performance of gap filling al-
gorithms (Zhu et al., 2015). In general, we found that: 1) forest types in 
temperate forests can be classified with accuracy up to 84.5%, 2) im-
agery from multiple years is crucial when gap-free imagery is lacking, 
and 3) data from fall is by far the most important for high classification 
accuracies. 

When gap-free observations are not available, we recommend map-
ping forest types based on data from multiple years to increase the Ta
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Table 3 
Logistic regression table between correctly classified stands and numbers of 
years from last field examination for pure oak forest stands.   

Coefficients:    
Model Estimate Std. Error z value Pr(>|z|) 

(Intercept) − 0.087 0.116 − 0.748 0.454 
years from last examination − 0.009 0.011 − 0.826 0.409 
Null deviance: 737.28 on 533 degrees of freedom   
Residual deviance: 736.59 on 532 degrees of freedom   
AIC: 740.59      

Table 4 
Logistic regression table between correctly classified stands and numbers of 
years from last field examination for pure north hardwoods forest stands.   

Coefficients:    
Model Estimate Std. Error z value Pr(>|z|) 

(Intercept) 2.852 0.164 17.419 < 2e-16 
years from last examination − 0.044 0.012 − 3.604 0.0003 
Null deviance: 532.77 on 999 degrees of freedom   
Residual deviance: 521.65 on 998 degrees of freedom   
AIC: 525.65      
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number of acquisitions, and to ensure that each pixel has clear obser-
vations from different stages of phenology. However, when multiple 
gap-free images are available for a single year, the results are expected to 
be satisfactory, as long as at least one image is from the fall. Similar 
findings were reported for data from WorldView-2 where usage of only 7 
out of 20 gap free images resulted in the maximal classification accuracy 
(Elatawneh et al., 2013). Similarly, Pasquarella et al. (2018) obtained up 
to 5% better accuracy using spectral and temporal indices derived from 
all available observations from 1985 to 2015, based on pairs of gap-free 
imagery from multiple years. However, the largest improvement in that 
study was due to the addition of ancillary data, such as topography and 
wetland probability, which were not tested here. 

The data from all seasons used together provided the best classifi-
cation accuracy, but the fall imagery was by far the most important. For 
both, fall imagery from single- and three-year periods by itself resulted 
in a higher accuracy than imagery from spring, summer, and winter 
combined. In general, the season with more acquisitions and lower 
percentage of missing values improved classification accuracy the most. 
Presumably, the larger number of image acquisitions and lower levels of 
missing data allowed to capture the differences in the timing of tree 
species’ phenology occurring within seasons. Our findings are generally 
in line with previous research identifying spring and fall imagery as the 
most useful for discriminating forest types (Mickelson et al., 1998; 
Wolter et al., 1995), although the summer imagery has been found to be 
useful if it is of high quality (Elatawneh et al., 2013). 

The high classification accuracy for pure forest stands provides 
strong support for using the C5.0 algorithm (Kuhn et al., 2021) with 
incomplete Landsat data, especially considering the large extent of our 
reference data set. However, the RECON data set provides information 
at the stand level, which does not perfectly match the scale of the 
remotely sensed observations. Depending on the random subset of the 
reference data set in our trials, we used somewhere from 2,784,346 to 
2,814,616 pixels to validate classification results within the reference 
forest stands. Validation datasets in prior studies were generally smaller, 
e.g., 370 (Bolstad and Lillesand, 1992), 1,211 (Wolter et al., 1995), 322 
(Mickelson et al., 1998), 529 (Townsend and Walsh, 2001), 528 
(Dymond et al., 2002), 95 (Zhu and Liu, 2014), 2181 (Karasiak et al., 
2017), 1587 (Hościło and Lewandowska, 2019), 1427 (Grabska et al., 
2020), but Pasquarella et al., (2018) had 161,880 samples. Because we 
did not have access to detailed information about tree species compo-
sition within each stand, we calculated classification accuracy based on 

the dominant tree species in each stand (Bolstad and Lillesand, 1992; 
Dymond et al., 2002; Wolter et al., 1995; Zhu and Liu, 2014), as is 
typical for forest inventory maps. An alternative would be to use fuzzy 
logic to depict the actual species composition (Townsend and Walsh, 
2001; Mickelson et al., 1998), but we did not pursue this. It is worth 
noting that the RECON data set is highly unbalanced in terms of classes, 
reflecting species distributions on the ground, which leads to better 
recognition of more abundant forest types in classification. This ten-
dency of classifiers to bias towards the dominant classes is common 
(Kuhn and Johnson, 2016) and has been reported in other studies 
involving tree species mapping (Hemmerling et al., 2021). In tests we 
were able to improve the accuracy for less abundant forest types by 
leveling the number of training samples per class by sampling even 
number of training cases with replacement for each class (results not 
shown), We recommend doing so when the goal is to map rare forest 
types accurately. Lastly, our results may be also affected by the date of 
the RECON data. Depending on the forest type, stands that had not been 
recently examined in the field were less likely to be correctly classified. 

Our results have implications for remote sensing, forest industry, and 
conservation planning. We tested a promising methodology for large 
scale, detailed, and accurate mapping of temperate forest types. That 
methodology makes it possible to produce reliable forest composition 
maps because it does not require completely gap free images, which are 
rare (Ju and Roy, 2008; Wulder et al., 2016) nor does it depend on gap 
filling. In general, this approach should also be applicable to other 
products derived from Landsat-like imagery e.g., data stacks containing 
seasonal composites or temporal statistics that lack information in 30% 
or more of the pixels in any individual image but provide coverage of the 
data to the entire mapped area. Second, our maps are at 30-m resolution, 
thereby providing a detailed input for modeling of environmental var-
iables that differ among tree species (Richardson et al., 2012). Third, our 
maps could be used to update stand-level forest inventories and hence 
support forest management and conservation efforts (Loiselle et al., 
2003). 

We conclude that Landsat imagery with missing observations 
because of clouds and SLC-Off gaps can be used for operational mapping 
of the temperate forest types. We show that just a handful of fairly 
complete and cloud-free acquisitions, especially from fall, combined 
with imagery with various levels of missing values, can result in accurate 
forest types maps. This is an important improvement over prior ap-
proaches that either require gap-free data or a large number of annual 

Fig. 8. Number of years from last field examination for pure reference forest stands of a) oak and b) northern hardwoods forest types.  
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per pixel observations for gap filling. 
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Appendix A. The full error matrix for the classification at the stand level weighted by the number of pixels belonging to the pure forest 
stands in the reference RECON validation set; the classification was generated with Landsat imagery acquired in years 2014–2016 
characterized by data gaps covering from 0% up to 70% of the study area.   

ASPEN BALSAM 
FIR 

BLACK 
SPRUCE 

BOTTOMLAND 
HARDWOODS 

FIR 
SPRUCE 

HEMLOCK JACK 
PINE 

LOWLAND 
BRUSH 

LOWLAND BRUSH 
ALDER 

ASPEN 621,820 1231 4984 2236 1600 1151 6071 27,559 22,400 
BALSAM FIR – – – – – – – – – 
BLACK SPRUCE 504 219 58,666 – 426 8 39 576 2862 
BOTTOMLAND 

HARDWOODS 
– – – – – – – – – 

FIR SPRUCE – – – – – – – – – 
HEMLOCK – – – – – – – – – 
JACK PINE 367 45 – – – – 57,699 31 – 
LOWLAND BRUSH 976 57 827 71 – – 9 114,332 12,449 
LOWLAND BRUSH 

ALDER 
1606 47 1523 – 164 – 289 21,535 110,943 

LOWLAND BRUSH 
WILLOW 

– – – – – – – – – 

NORTHERN 
HARDWOODS 

17,846 106 1019 65 1265 1317 – 1717 4429 

OAK 672 – – – – – 158 51 – 
RED MAPLE – – – – – – – – – 
RED PINE 707 – 119 – 245 – 8311 39 70 
SCRUB OAK 1052 – – – – – 1524 – – 
SWAMP CONIFER 15 – 72 – 25 – – 98 894 
SWAMP HARDWOODS 851 – 376 127 151 16 – 2597 1481 
TAMARACK 4943 – 897 – – – – 73 156 
UPLAND BRUSH – – – – – – 899 – – 
WHITE BIRCH – – – – – – – – – 
WHITE CEDAR – – 86 – 46 – – 64 101 
WHITE PINE 17 – – – – – – – – 
WHITE SPRUCE – – – – – – – – – 
C.sum 651,376 1705 68,569 2499 3922 2492 74,999 168,672 155,785 
Producer’s accuracy 95.5 – 85.6 – – – 76.9 67.8 71.2    

LOWLAND BRUSH 
WILLOW 

NORTHERN 
HARDWOODS 

OAK RED 
MAPLE 

RED 
PINE 

SCRUB 
OAK 

SWAMP 
CONIFER 

SWAMP 
HARDWOODS 

TAMARACK 

ASPEN 225 19,568 19,840 3329 7454 10,724 2632 20,632 5292 
BALSAM FIR – – – – – – – – – 
BLACK SPRUCE – 4334 – – 28 – 3298 35 5839 
BOTTOMLAND 

HARDWOODS 
– – – – – – – – – 

FIR SPRUCE – – – – – – – – – 
HEMLOCK – – – – – – – – – 
JACK PINE 37 – 17 – 7665 980 – – – 
LOWLAND BRUSH 1479 102 – – 97 922 328 2747 1658 
LOWLAND BRUSH 

ALDER 
– 173 – 137 32 – 1490 4441 1857 

LOWLAND BRUSH 
WILLOW 

– – – – – – – – – 

NORTHERN 
HARDWOODS 

– 695,185 16,631 12,120 761 267 6632 23,650 549 

OAK – 1188 33,044 – – 49 – 48 14 
RED MAPLE – 200 – – – – – – – 

(continued on next page) 
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(continued )  

LOWLAND BRUSH 
WILLOW 

NORTHERN 
HARDWOODS 

OAK RED 
MAPLE 

RED 
PINE 

SCRUB 
OAK 

SWAMP 
CONIFER 

SWAMP 
HARDWOODS 

TAMARACK 

RED PINE – 51 – – 131,946 222 – – 38 
SCRUB OAK – – 287 – 832 27,484 – 124 – 
SWAMP CONIFER – 151 – – – – 3146 664 13 
SWAMP 

HARDWOODS 
– 1404 1665 – – 19 1713 79,539 318 

TAMARACK – 230 – – – – – – 1344 
UPLAND BRUSH – – – – 681 9 – – – 
WHITE BIRCH – – – – – – – – – 
WHITE CEDAR – – – – – – 568 – – 
WHITE PINE – – – – – – – – – 
WHITE SPRUCE – – – – – – – – – 
C.sum 1741 722,586 71,484 15,586 149,496 40,676 19,807 131,880 16,922 
Producer’s accuracy – 96.2 46.2 – 88.3 67.6 15.9 60.3 7.9    

UPLAND BRUSH WHITE BIRCH WHITE CEDAR WHITE PINE WHITE SPRUCE R.sum User’s accuracy 

ASPEN 4458 4285 2208 6523 2804 799,026 77.8 
BALSAM FIR – – – – – 0 – 
BLACK SPRUCE – 13 773 16 578 78,214 75.0 
BOTTOMLAND HARDWOODS – – – – – 0 – 
FIR SPRUCE – – – – – 0 – 
HEMLOCK – – – – – 0 – 
JACK PINE 81 – – 92 62 67,076 86.0 
LOWLAND BRUSH 1143 51 54 13 19 137,334 83.3 
LOWLAND BRUSH ALDER 486 17 794 – 160 145,694 76.1 
LOWLAND BRUSH WILLOW – – – – – 0 – 
NORTHERN HARDWOODS 1916 1643 3871 131 381 791,501 87.8 
OAK 13 – – 10 – 35,247 93.7 
RED MAPLE – – – – – 200 0.0 
RED PINE 240 – – 2386 251 144,625 91.2 
SCRUB OAK 734 123 – – – 32,160 85.5 
SWAMP CONIFER – – 1606 – – 6684 47.1 
SWAMP HARDWOODS 310 – 2534 – – 93,101 85.4 
TAMARACK 229 – – – 185 8057 16.7 
UPLAND BRUSH 18,689 – – – – 20,278 92.2 
WHITE BIRCH – – – – – 0 – 
WHITE CEDAR – – 6143 – – 7008 87.7 
WHITE PINE – – – 225 – 242 93.0 
WHITE SPRUCE – – – – – 0 – 
C.sum 28,299 6132 17,983 9396 4440 Overall Accuracy 82.8 
Producer’s accuracy 66.0 – 34.2 – –  

Appendix B. Tree species composition included in the forest types mapped in this study  

Forest type Tree species 

ASPEN aspen (Populus spp.) 
BALSAM FIR balsam fir (Abies balsamea) 
BLACK SPRUCE black spruce (Picea mariana) 
BOTTOMLAND 

HARDWOODS 
green ash (Fraxinus pennsylvanica), silver maple (Acer saccharinum), swamp white oak (Quercus bicolor), river birch (Betula nigra), cottonwood (Populus 
deltoides), American elm (Ulmus americana) 

FIR SPRUCE fir (Abies spp.), spruce (Picea spp.) 
HEMLOCK hemlock (Tsuga canadensis) 
JACK PINE jack pine (Pinus banksiana) 
LOWLAND BRUSH alder (Alnus spp.), willow (Salix spp.), bog birch (Betula pumila) 
LOWLAND BRUSH ALDER alder (Alnus spp.) 
LOWLAND BRUSH 

WILLOW 
willow (Salix spp.) 

NORTHERN HARDWOODS sugar maple (Acer saccharum), beech (Fagus grandifolia), basswood (Tilia americana), white ash (Fraxinus americana), yellow birch (Betula alleghaniensis) 
OAK oak (Quercus spp.) 
RED MAPLE red maple (Acer rubrum) 
RED PINE red pine (Pinus resinosa) 
SCRUB OAK black oak (Quercus velutina), white oak (Quercus alba), northern pin oak (Quercus ellipsoidalis), bur oak (Quercus macrocarpa) 
SWAMP CONIFER white cedar (Thuja occidentalis), black spruce (Picea mariana), tamarack (Larix laricina), balsam fir (Abies balsamea) 
SWAMP HARDWOODS black ash (Fraxinus nigra), green ash (Fraxinus pennsylvanica), American elm (Ulmus americana), red maple (Acer rubrum), silver maple (Acer 

saccharinum), swamp white oak (Quercus bicolor) 
TAMARACK tamarack (Larix laricina) 
UPLAND BRUSH hazel (Corylus spp.), dogwood (Cornus spp.), juneberry (Amelanchier spp.), sumac (Rhus spp.), ninebark (Physocarpus spp.), prickly ash (Aralia spinosa) 
WHITE BIRCH white birch (Betula papyrifera) 
WHITE CEDAR white cedar (Thuja occidentalis) 
WHITE PINE white pine (Pinus strobus) 
WHITE SPRUCE white spruce (Picea glauca) 
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