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A B S T R A C T   

In mountainous environments, topography strongly affects the reflectance due to illumination effects and cast 
shadows, which introduce errors in land cover classifications. However, topographic correction is not routinely 
implemented in standard data pre-processing chains (e.g., Landsat Analysis Ready Data), and there is a lack of 
consensus whether topographic correction is necessary, and if so, how to conduct it. Furthermore, methods that 
correct simultaneously for atmospheric and topographic effects are becoming available, but they have not been 
compared directly. Our objects were to investigate (1) the effectiveness of two topographic correction ap-
proaches that integrate atmospheric and topographic correction, (2) improvements in classification accuracy 
when analyzing topographically corrected single-date imagery (14 July 2016 and 2 October 2016), versus a full 
Landsat time series from 2014 to 2016, and 3) improvements in classification accuracy when including addi-
tional terrain information (i.e. topographic slope, elevation, and aspect). We developed a physical based model 
and compared it with an enhanced C-correction, both of which integrate atmospheric and topographic correc-
tion. We compared classification accuracies with and without topographic correction using combinations of 
single-date imagery, image composites and spectral-temporal metrics generated from the full Landsat time series, 
and additional terrain information in the Caucasus Mountains. We found that both the enhanced C-correction 
and the physical model performed very well and largely eliminated the correlation (Pearson’s correlation co-
efficient r ranges from 0.06 to 0.24) between surface reflectance and illumination condition, but the physical 
model performed best (r ranges from 0.05 to 0.11). Both image composites, and spectral-temporal metrics 
generated from corrected imagery, resulted in significantly (p ≤ 0.05) higher classification accuracies and better 
forest classifications, especially for the mixed forests. Adding terrain information reduced classification error 
significantly, but not as much as topographic correction. In summary, topographic correction remains necessary, 
even when analyzing a full Landsat time series and including a digital elevation model in the classification. We 
recommend that topographic correction should be applied when analyzing Landsat satellite imagery in moun-
tainous region for forest cover classification.   

1. Introduction 

Accurate land cover maps are essential to address critical challenges 
such as climate change (Pielke, 2005; Pitman et al., 2009), forest fires 
(Koetz et al., 2008; Langner et al., 2007), urban planning (Martinuzzi 
et al., 2007; Pauleit and Duhme, 2000), and human disturbances of 
natural habitats (Hannah et al., 1995; Sanderson et al., 2002). Remote 
sensing provides a synoptic perspective and periodic view of the Earth’s 

surface and has been widely used for land cover classification. Of the 
available remote sensing archives, Landsat constitutes the longest 
consistent archive at a medium resolution (Wulder et al., 2016). After 
the opening of the Landsat archive in 2008 (Woodcock et al., 2008), a 
paradigm shift how to utilize Landsat images for land cover classifica-
tion occurred that includes, for example, national land cover classifi-
cation, global forest monitoring, imperviousness assessment, and 
habitat monitoring (Hansen et al., 2013; Wulder et al., 2018). The recent 
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analysis-ready data (ARD) further helps users to focus on their science 
instead of data pre-processing (Dwyer et al., 2018), and makes radio-
metric and geometric corrected Landsat imagery readily available 
through USGS data distribution centers. 

However, topographic correction is seldom implemented in the 
current Landsat pre-processing tools and there is no topographically 
corrected Landsat product that is routinely produced and readily 
available. That is unfortunate because topographic effects lead to 
changes in observed land surface reflectance for the similar targets in 
mountainous environments introducing errors in land cover classifica-
tions (Vicente-Serrano et al., 2008). In the mountains, the geometry 
between the sun, the target orientation, and the sensor, can vary from 
one pixel to another, generates significant changes in the observed 
spectral characteristics (Tan et al., 2013). For example, the solar radi-
ation incident on a slope varies strongly with slope azimuth relative to 
the sun. Topographic correction, also known as illumination correction 
or illumination compensation, aims to minimize the variability of 
observed reflectance due to topography by correcting for the effects of a 
variable local incidence angle (Liang, 2005; Richter, 1998). 

The lack of topographic correction is partly due to a lack of consensus 
for which method to implement. There is a plethora of approaches, 
which have been reviewed elsewhere (Balthazar et al., 2012; Hurni 
et al., 2019; Sola et al., 2016). From a conceptual and data-processing 
point of view, there are two main groups of topographic correction 
methods: stand-alone topographic correction and integrated topo-
graphic correction (Table 1A). 

The first group of models, the stand-alone correction approaches, do 
not take atmospheric conditions as the time the image was taken 
explicitly into account. Popular approaches include band rationing 
(Ekstrand, 1996), cosine correction (Teillet et al., 1982), Minnaert 
model (Minnaert, 1941) and C-correction (Meyer et al., 1993; Teillet 
et al., 1982). The cosine correction is based on the assumption that the 
surface reflectance on the inclined surface is a function of the ground 
surface and the incident angle (the angle between a ray incident on a 
surface and the solar zenith direction). The C-correction improved the 
cosine correction by adding a C-factor to compensate the diffused irra-
diance. While the separated correction models are easier to implement, 
they do not properly account for the interaction between atmosphere 
and topography, which is a major shortcoming, because atmospheric 
conditions determine how much of the radiation, is direct versus diffuse, 
and these two types of radiation require very different topographic 
correction methods. 

The second group of models, integrate atmospheric correction and 
topographic correction. In the integrated topographic correction atmo-
spheric parameters are estimated, which allows to separate the direct 
and diffuse solar radiation components, and to model the complex 
physical interaction between radiation and terrain (Li et al., 2012, 2015; 

Richter, 1996; Santini and Palombo, 2019; Hill et al., 1995). Recently, 
openly available toolboxes that integrate topographic with atmospheric 
correction have emerged, which makes it feasible to correct imagery in a 
routinely and less costly way (Frantz et al., 2016). 

When evaluating the performance of different topographic correc-
tion approaches, one question is how spectral reflectance is affected 
(Hantson and Chuvieco, 2011; Hurni et al., 2019; Pimple et al., 2017; 
Richter et al., 2009; Vanonckelen et al., 2014), and multiple criteria 
have been developed to evaluate the accuracy of different correction 
approaches such as visual check, correlation between spectral reflec-
tance and illumination condition, and land cover reflectance variability 
(Sola et al., 2016). Another question, and arguably the one that matters 
most for users (Banskota et al., 2014), is if the topographic correction 
improves land cover classification, but most of those assessments were 
limited to a small area (Chance et al., 2016; Dorren et al., 2003; Huang 
et al., 2008; Moreira and Valeriano, 2014). In the case of forest classi-
fication, topographic correction often improves resulting maps (Mikkola 
and Pellikka, 2002; Phiri et al., 2018; Tan et al., 2013; Vanonckelen 
et al., 2013; Hill et al., 1995), but not always (Blesius and Weirich, 
2005). 

Unfortunately, all of studies investigating the influence of topo-
graphic correction on land cover classification used only a single image, 
or a pair of images, and it is unclear if topographic correction is still 
needed when analyzing a full time series of satellite data. Image com-
posites, such as the day of the year (DOY) provide annual large-area and 
gap-free surface reflectance data products that greatly improve land 
cover classification (Griffiths et al., 2013; White et al., 2014). In addi-
tion, time series of satellite data can be summarized in spectral-temporal 
metrics that characterize inner-annual phenological variation, making 
them valuable for distinguishing different vegetation types, and robust 
predictors for land cover classifications (Hansen et al., 2014; Yin et al., 
2020; Yin et al., 2017). However, existing DOY composite methods do 
not often include topographic correction in the data processing chain. 

Furthermore, terrain information such as elevation, slope and aspect 
can greatly improve forest classification in mountains (Domaç and 
Süzen, 2006; Liu et al., 2018), partly because the spatial distribution of 
land cover is affected by topography (Dorren et al., 2003), but also 
because slope and aspect provide information about illumination con-
ditions. However, it is unclear whether the terrain data can overcome 
the need of topographic correction. We examined if topographic 
correction is still advantageous for forest mapping when such terrain 
information is already included as input data for classifications. 

Our overarching research question was thus whether topographic 
correction can improve forest mapping using imagery from different 
seasons and a full Landsat time series for classification. Specifically, we 
asked the following research questions:  

(1) Can topographic effects be reduced using integrated topographic 
correction approaches?  

(2) How do topographic effects affect forest cover classification using 
single-date imagery and DOY composite and spectral-temporal 
metrics from Landsat time series?  

(3) How much does adding auxiliary terrain information improve 
forest cover classification? 

2. Data and method 

2.1. Study area 

Our study area covers the Western and Central Caucasus, in the 
border region of Georgia and Russia (Fig. 1). We selected it because of its 
high diversity in topography (e.g., elevation ranges from 0 to 5642 m 
above mean sea level, 1506 m on average) and vegetation types, and 
because of our regional knowledge of the Caucasus mountains. It is 
located in the transition area from the high Greater Caucasus Mountain 
ridge to the coastal Colchis Lowland plain of the eastern Black Sea. The 

Table 1 
Land cover classes in our classification.  

Class Description 

Coniferous 
forest 

Woody vegetation covered by needle-leaved or scale-leaved trees 
species (>20%) such as Caucasian fir (Abies nordmanniana), 
Caucasian spruce (Picea orientalis), and Scots pine (Pinus 
sylvestris) 

Broadleaf forest Woody vegetation covered by flat-leaved tree species (>20%) 
such as oriental beech (Fagus orientalis), sweet chestnut (Castenea 
sativa), and Caucasian elm (Zelkova carpinifolia) 

Mixed forest Woody vegetation mixed with coniferous and broadleaf tree 
species (>20%), neither coniferous nor broadleaf tree species 
cover > 70% of the canopy 

Herbaceous 
land 

Areas covered by herbaceous plants with a tree cover < 20%, 
including cultivated lands and grasslands. 

Water Open water with < 20% vegetation or soil cover, such as ocean, 
river, and lakes 

Un-vegetated 
land 

Areas with < 20% vegetation cover, covered by bare rock, sand, 
permanent ice, or building materials  
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Greater Caucasus Mountains have highly variable topography, including 
Europe’s highest mountain (Mount Elbrus), as well as less steep foothills. 
The length, depth and width of the valleys here vary greatly. In the areas 
close to the Mount Elbrus, valleys can be 1900 m deep and 7 km wide, 
and in the Colchis Lowland, valleys are often 1000 m deep and 4 km 
wide. Our study region has a mean slope of 20 degrees and an elevation 
of 1506 m (Fig. 1A). 

Our study area is situated on the boundary between the temperate 
and subtropical climatic zone. At lower elevations (<600 m), deciduous 
trees such as chestnut (Castanea sativa), beech (Fagus orientalis), oaks (e. 
g. Quercus hartwissiana) and hornbeams (Carpinus betulus) dominate the 
forests. At about 900–1500 m there are wide expanses of beech trees, 
gradually replaced by a mixed forest of spruce (e.g. Picea orientalis), fir 
(e.g. Abies nordmanniana) and beech at higher elevations. From 2,000 m 
up to the snow line (3,200–3,600 m), mountains are covered by meadow 
and alpine grasses (Zazanashvili et al., 2000). 

2.2. Data and pre-processing2.2.1 Landsat imagery 

We analyzed all available Landsat Collection 1 imagery with < 70% 
cloud cover for the footprint 172/030 from 2014 to 2016 (32 Landsat 7 
ETM + and 28 Landsat 8 OLI images). We downloaded the Level 1 digital 

numbers (DN) product as inputs for our integrated atmospheric and 
topographic correction (see Section 2.3), and Level 2 surface reflectance 
as our imagery without topographic correction (see Section 2.4.3), from 
the United States Geological Survey (USGS, https://earthexplorer.usgs. 
gov/). To ensure spatial precision, we only used tier 1 imagery. 

In additions to our forest mapping based on the entire time series 
from 2014 to 2016, we analyzed single images obtained on 14 July 2016 
(i.e., summer, solar azimuth angle: 134.95; solar zenith angle: 27.59) 
and 2 October 2016 (i.e., autumn, solar azimuth angle: 158.17; solar 
zenith angle: 49.25) to examine the performance of our topographic 
algorithms. We selected these two single-date images because they were 
the only cloud-free imagery in the summer and autumn of 2016, and 
because they represented very different illumination conditions 
(Fig. 2A) and stages of phenology, which was ideal to test how our 
topographic correction algorithms performed. 

2.2.1. Other data 
We acquired 1-arc-second (~30 m) Shuttle Radar Topography 

Mission (SRTM) digital elevation data (DEM) to correct the optical 
depths, and topographic effect (see Section 2.3) and to compare the 
influence of terrain information on classification (see Section 2.4.3). The 
SRTM DEM has an absolute geolocation error of 8.8 m and a height error 

Fig. 1. Topography of the Western and Central Caucasus Mountains. The study area (Landsat path/row: 172/030) is marked as dark gray frame.  
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of 6.2 m at the 90% confidence level in Eurasia (Farr et al., 2007). 
To correct water vapor absorption in the Earth’s atmosphere, we 

used the MODIS MOD05, MYD05 products, as well as the MOD03 and 
MYD03 geolocation tables downloaded from the Level 1 and Atmo-
sphere Archive and Distribution System (LAADS) at NASA’s Goddard 
Space Flight Center (Frantz and Stellmes, 2018; Gao, 2015). We down-
loaded auxiliary data, such as air pressure, air temperature, and ozone 
data from USGS website (https://edclpdsftp.cr.usgs.gov/downloads 
/auxiliaries/ledaps_auxiliary). 

2.2.2. Atmospheric correction 
The topographic correction methods that we used are both inte-

grated with atmospheric corrections, but differently so. The enhanced C- 
correction is part of the Framework for Operational Radiometric 
Correction for Environmental monitoring (FORCE, Frantz, 2019; Frantz 
et al., 2016). The performance of the FORCE atmospheric correction has 
been evaluated and compared to other approaches (e.g., LaSRC) in the 
Atmospheric Correction Intercomparison eXercise (ACIX Doxani et al., 
2018). The physical model used 6S radiative transfer code (Vermote 
et al., 1997) for atmospheric correction (see Section 2.3). 

2.3. Topographic correction 

We tested two topographic correction methods including an 
enhanced C-correction model and a physical model (Fig. 2) We selected 
these two models because they separate the direct and diffuse solar ra-
diation components and model the complex physical interaction be-
tween radiation and terrain. Also, the reliability of the enhanced C- 
correction model used in this study has been demonstrated by previous 
studies (e.g., Buchner et al., 2020). Both are based on the relative solar 
incidence angle, or illumination condition (cos i), which we computed 
following Civco (1989): 

cosi = cosθscosθn + sinθssinθncos(ϕn − ϕs) (1) 

where i is the angle between solar incident angle and the local sur-
face normal. θs is the solar zenith angle. θn and ϕn are topographic slope 
and aspect (0 = north), respectively. ϕs is the solar azimuth angle. The 
illumination angle varies between − 1 and 1 (maximum illumination). 

The first approach that we used for topographic correction was based 
on a modified C-correction (Kobayashi and Sanga-Ngoie, 2008) as 

described in Frantz et al. (2016) and Buchner et al. (2020). We used an 
upgraded version of this correction, which is implemented in the freely 
available software FORCE v1.1 (http://force.feut.de; Frantz et al., 
2016). This approach accounts for both the atmospheric and the topo-
graphic effects simultaneously. Key steps include: (1) estimation of the 
shortwave infrared C-factor for each pixel based on a focal linear 
regression between cos i and Top of the Atmosphere (TOA) SWIR2 
reflectance of pixels similar to the central pixel to account for variations 
in directional reflectance characteristics; (2) computation of a simplified 
sky view factor based on terrain slope; (3) image-based estimation of 
aerosol optical depth over water and dark dense vegetation, and 
computation of dependent atmospheric variables (Tanre et al., 1979); 
(4) separation of the irradiance into direct and diffuse terms (Hill et al., 
1995; Kobayashi and Sanga-Ngoie, 2008); and (5) propagation of the C- 
factor through the spectrum based on the ratio of the direct and diffuse 
irradiance using the general radiative theory provided by Kobayashi and 
Sanga-Ngoie (2008). The implemented topographic correction in FORCE 
is not designed to correct areas that receive little illumination. Thus 
areas with illumination condition (i ≥ 80 degree) were not expected to 
be corrected reliably (overcorrection does occur), and areas with self- 
shadow (i = 90 degree) were not corrected at all. These areas are flag-
ged accordingly in the per-pixel quality file that is generated by FORCE. 
The reader is referred to Buchner et al. (2020) for an in-depth descrip-
tion of this algorithm. 

The second model is the physical model-based correction (hereafter: 
physical model, Hill et al., 1995; Richter, 1996). First we separated the 
irradiance into direct irradiance and diffuse components based on the 
parameters retrieved by the 6S atmospheric correction (e.g., Fig. 4A) 
(Vermote et al., 1997). The slope facing the sun receives both direct and 
diffuse solar radiation, while the side facing away from the sun receives 
only the diffuse component (Pellikka, 1996). The anisotropy index, 
proposed by Hay and Mckay (1985), is then calculated from the parti-
tion of the direct irradiance and diffuse components: 

k = Eg,dir/E0 (2) 

where k is the anisotropy index, Eg,dir is the direct irradiance on the 
ground, and E0 is the exoatmospherical solar irradiance. 

Second, we separated the diffuse irradiance into circumsolar diffuse 
irradiance and isotropic diffuse irradiance using the anisotropy index. At 
last, we used cosine correction for the direct irradiance and the cir-
cumsolar diffuse irradiance, and corrected the isotropic diffuse irradi-
ance with the ratio of sky view. 

Eg,corrected = (Eg,dir + k*Eg,diff )*
cos(i)

cos(θs)
+ (1 − k)*Eg,diff *Fskyview (3) 

where Eg,corrected is the corrected irradiance on the ground; Eg,diff is the 
diffuse irradiance on the ground; Fskyview is the ratio of the sky view. We 
calculated the ratio of sky view from DEM with a ray tracing approach 
that averaged 30 partial hemispheres. We coded the physical model for 
the purpose of this study. When there is no direct irradiance, e.g. the sun 
is hidden by the topographic features, the pixel is marked and the 
irradiance is not corrected. Please note that such pixels are rare in the 
study area. 

2.4. Forest classification 

2.4.1. Classification scheme 
We mapped three forest types: coniferous forest, broadleaf forest, 

and mixed forest (Table 1). In addition, we mapped herbaceous land, 
water, and un-vegetated land. 

2.4.2. Training data collection 
We used Landsat pixels as the unit of our training data. First, we 

selected 2000 Landsat pixels across our study area using a random 
sampling design. Stratified sampling can help collecting samples for 

Fig. 2. Data processing workflow.  
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classes that cover a small area, but we lack an appropriate land cover 
map that includes all our mapping classes for stratification. Further-
more, we preferred a random sampling because we wanted to ensure 
that each sample from the entire population had an equal chance of 
being selected. Also, a random sampling approach enabled us to inves-
tigate how mapping accuracy varied across different illumination con-
ditions. We determined this sample size to ensure high power for our 
statistical tests of differences in the accuracy of the classifications based 
on corrected and uncorrected satellite imagery, and the fact that we did 
find highly significant differences (see Results) confirmed that the 
sample size was sufficient. Second, we created 3 × 3 m grids covering 
each training sample (30 × 30 m) and overlaid the grids on high reso-
lution imagery available on Google EarthTM and Bing AerialTM. We 
selected high-resolution imagery as close as possible to the date of 
Landsat imagery, and forests changed little in the Caucasus in the past 
decades (Bragina et al., 2015), so we assumed that land cover change 
between the dates of our reference data and the satellite data did not 
affect our accuracy assessment greatly. To ensure the geometric accu-
racy of the high resolution imagery, we discarded samples that showed 
inconsistent geolocation (>half-pixel difference) through visual inter-
pretation. We then added the same amount of randomly distributed 
samples that were geometrically consistency to retain a sample size of 
2000. Third, we estimated the area proportion of each land cover class 
within each sample (30 × 30 m) and assigned the class label based on the 
majority rule. In order to distinguish different forest types, we used 
multi-temporal imagery, especially winter imagery, to label the samples. 
We selected imagery as close as possible to the period 2014–2016. If 
there was no high resolution imagery available during 2014–2016, we 
chose the imagery that was closest in date. In case of missing high res-
olution imagery, we used Landsat imagery instead. In total, we collected 
103 coniferous forest samples, 527 broadleaf forest samples, 145 mixed 
forest samples, 807 herbaceous samples, 195 water samples, and 223 un- 
vegetated land samples. 

Though we tried our best to label these samples accurately, some 
errors may exist. Nevertheless, we applied the same samples to all the 
imagery for model classification and validation, and for both topo-
graphic correction methods, so that the potential errors in our samples 
did not affect the comparison of mapping accuracy. 

2.4.3. Input variables and classification model 
We evaluated the performance of our topographic corrections based 

on three test cases: (1) summer imagery, (2) autumn imagery and (3) 
DOY composite and spectral-temporal metrics. Within each case, we 
used six different input datasets for our classification (Table 2): (1) 
uncorrected imagery (i.e., Level 2 surface reflectance without topo-
graphic correction), (2) uncorrected imagery plus terrain information (i. 
e., topographic slope, elevation, and aspect), (3) corrected imagery 
using enhanced C-correction, (4) corrected imagery using enhanced C- 
correction plus terrain information, (5) corrected imagery using physical 
model, and (6) corrected imagery using physical model plus terrain in-
formation. We included summer and autumn imagery to investigate the 
necessity of topographic correction in different seasons and vegetation 
growing stages. We selected nearly cloud-free (<1%) Landsat 8 OLI 
images for July, 14th 2016 and October, 2nd 2016 to represent summer 
and autumn illumination conditions, respectively. We generated cloud- 
free image composites by selecting Landsat pixels based on temporal 
distance to August 1st and percent cloud and spatial distance to next 
shadow cover (White et al., 2014). We calculated spectral-temporal 
metrics from all available Landsat imagery because they provide gap- 
free imagery across large areas and valuable seasonal information for 
land cover differentiation. We calculated five spectral-temporal metrics: 
the mean, median, 25% quantile, 75% quantile, and standard deviation 
for each spectral band from 2014 to 2016. Cloud, shadow, and snow 
were masked out prior to calculation using the quality band accompa-
nied with Landsat Collection 1 product. Because FORCE is not intended 
to correct low illuminated areas, we extracted the low illuminated areas 

(i ≥ 80 degree) for each image as additional QA mask. We then 
compared the classification accuracies with and without applying the 
QA masks (See section 2.5.1). We also compared classification with and 
without the normalized difference vegetation index (NDVI). The results 
showed that NDVI improved accuracy very little, and even decreased 
mapping accuracy for some classes (Fig. 3A). We therefore decided not 
to include NDVI in our study. 

We used a random forest classifier to map forests and other land 
cover classes for each set of input images (Belgiu and Drăguţ, 2016). 
Two parameters, the number of decision trees (ntree) and the number of 
variables randomly sampled as candidates at each split (mtry) when 
growing the trees need to be optimized for building a robust model. 
First, we tested classification performance for ntree ranging from 10 to 
1000 and we found that a number of 500 tree was sufficient for a reliable 
classification (results not shown). Second, we tested mtry from two up to 
the number of input variables at a step of one in each model, and 
selected the mtry value that resulted in the highest classification accu-
racy for the final model. 

2.5. Classification comparison 

We used several measures to validate and compare the performance 
of our classifications, including user’s and producer’s accuracy, F-mea-
sure and McNemar’s test. 

2.5.1. Accuracy assessment 
We derived a confusion matrix from a 5-fold cross validation of the 

random forest model. The 5-fold cross validation randomly splits the 
data into five folds of roughly equal size (in our case there are 400 
samples in each fold). Each of the folds is left out in turn and the other 
four folds are used to train the model. The held-out fold is then pre-
dicted, and all the predictions are summarized. We repeated the 5-fold 
cross validation 100 times and summed up the predictions. After the 

Table 2 
18 Sets of input variables used for forests and land cover classification.  

Set 
no. 

Group Classification model inputs 

1 Summer imagery Uncorrected summer imagery 
2 Uncorrected summer imagery + Terrain 
3 Corrected summer imagery using enhanced C- 

correction 
4 Corrected summer imagery using enhanced C- 

correction + Terrain 
5 Corrected summer imagery using physical 

model 
6 Corrected summer imagery using physical 

model + Terrain 
7 Autumn imagery Uncorrected autumn imagery 
8 Uncorrected autumn imagery + Terrain 
9 Corrected autumn imagery using enhanced C- 

correction 
10 Corrected autumn imagery using enhanced C- 

correction + Terrain 
11 Corrected autumn imagery using physical 

model 
12 Corrected autumn imagery using physical 

model + Terrain 
13 Composite and Spectral- 

temporal metrics 
Uncorrected composite and spectral-temporal 
metrics 

14 Uncorrected composite and spectral-temporal 
metrics + Terrain 

15 Corrected composite and spectral-temporal 
metrics using enhanced C-correction 

16 Corrected composite and spectral-temporal 
metrics using enhanced C-correction + Terrain 

17 Corrected composite and spectral-temporal 
metrics using physical model 

18 Corrected composite and spectral-temporal 
metrics using physical model + Terrain  
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validation of the model accuracy, we used all the samples to train the 
models and calculated user’s and producer’s accuracy and F-measure 
from the confusion matrix with and without applying FORCE QA masks. 
The F-measure, a harmonic mean of user’s and producer’s accuracy, is 
advantageous when learning from imbalanced data (Powers, 2011). In 
addition, we performed an accuracy assessment among different illu-
mination conditions by dividing the illumination condition (IC) for 
summer imagery into four categories: low illumination (IC < 0.7), low to 
moderate illumination (0.7 ≤ IC < 0.8), moderate to high illumination 
(0.8 ≤ IC ≤ 0.9) and high illumination (IC > 0.9). Similar categories 
were generated for autumn imagery but with different thresholds: low 
illumination (IC < 0.5), low and moderate illumination (0.5 ≤ IC < 0.6), 

moderate and high illumination (0.6 ≤ IC ≤ 0.7) and high illumination 
(IC > 0.7). 

2.5.2. McNemar’s test 
To test whether the classifications differed significantly from each 

other, we applied McNemar’s tests. The McNemar’s test is a variant of χ2 

test with one degree of freedom under the null hypothesis (Agrest, 1990) 

χ2 =
(n21 − n12)

2

n21 + n12
(4) 

Where n12 denotes the number of instances in which classification A 
failed and classification B succeeded. When χ2 = 0, the two 

Fig. 3. Landsat summer (panel A) and autumn (Panel B) images (RGB: 743) for the study area. Subset region marked in black frame. Panels C-F show uncorrected 
(panel C), corrected summer image using the enhanced C-correction (panel D) or the physical model (panel E), and the corresponding illumination condition (F). 
Panels G-J show the same as panel C-F, but for the autumn image. The QA layers generated from FORCE were not applied here. 
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classifications have similar performance. As χ2 diverges from 0, their 
performance differs significantly. The χ2 can be translated into confi-
dence intervals for one-tailed and two-tailed predictions. We calculated 
the significance interval (p) of McNemar’s test using a paired- 

classification comparison for three forest types. 

Fig. 4. Landsat NIR and SWIR1 band as a function of illumination condition in summer (panels A-C, G-I) and autumn (panels D-F, J-L). Note that the Black Sea area 
was masked out. 
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3. Results 

3.1. Topographic correction on Landsat imagery 

Visually, both the enhanced C-correction and the physical model 
greatly reduced variability in reflectance due to topography (Fig. 3). 
Accordingly, the uncorrected imagery had a clear relationship between 
illumination condition and spectral reflectance (Fig. 4), for example, in 
summer NIR (Pearson’s correlation r = 0.49, coefficient = 0.46) and 
SWIR1 reflectance (r = 0.46, coefficient = 0.23). In autumn, the rela-
tionship for SWIR1 was stronger because of lower sun elevation (e.g., r 
= 0.64, coefficient = 0.32). The corrected imagery had a much lower 
correlations between illumination conditions and the reflectance, 
ranging from 0.06 to 0.24 for the enhanced C-correction corrected im-
agery, and 0.05 to 0.11 for the physical model. 

3.2. Forest cover classification 

3.2.1. Spatial pattern of forests 
The classifications of our 18 different sets of input variables resulted 

in similar patterns of forests (Fig. 5). However, the differences were 
obvious in areas at the ends of the full range of illumination conditions 
(Fig. 6). First, in areas with lower illumination conditions, the uncor-
rected imagery tended to predict more coniferous and mixed forests 
(Fig. 6, subset A summer imagery). In valleys that received very little 
direct and diffused irradiation (Fig. 6, subset B autumn imagery), forests 
were even mapped as water. The uncorrected autumn imagery resulted 
in even more coniferous forest than the uncorrected summer imagery. 
Second, topographically corrected imagery generated more consistent 
classifications across different input variables than the uncorrected im-
agery, especially when we used the physical based model. Third, we 
found more consistent classification based on the composite and 
spectral-temporal metrics compared to single-date imagery. Fourth, the 

Fig. 5. Forest cover classification agreement among the 18 sets of input variables. Pixels in red color were classified by all sets of input variables as coniferous, in 
green color as broadleaf forest, and in blue color as mixed forest. Black color indicates that no forest was predicted by any set of input variables. Two subsets A and B 
which are marked in white frames were zoomed in for a detailed map comparison in Fig. 5. 
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differences in forest pattern were largest where the three forest types 
intermingled (Fig. 6, subset B). 

3.2.2. Forests classification accuracy 
Using topographically corrected imagery resulted consistently in 

higher forest classification accuracies (Fig. 7). The average F-measure of 
all forest types using topographic corrected imagery was 0.75 and 0.78 
for the enhanced C-correction and physical model respectively, 
compared to 0.70 based on uncorrected imagery. The advantage of 
topographic correction was strongest when we classified autumn im-
agery: the F-measure increased 18% and 22% for the enhanced C- 

correction and physical model corrected imagery, respectively. Classi-
fication accuracy also increased when we used composite and spectral- 
temporal metrics for classification. The F measure increased 3% for the 
enhanced C-correction and 6% for the physical model corrected 
imagery. 

The biggest improvement of using topographic corrected imagery 
occurred for the mixed forest class (Fig. 7). Compared to coniferous and 
broadleaf forest, the mixed forest class was least accurately mapped. The 
F-measures (without applying the FORCE QA mask) of all sets of input 
variables for mixed forest ranged from 0.38 to 0.70, while broadleaf 
forest had F-measures between 0.78 and 0.90, and coniferous forest’s 

Fig. 6. Forest classification comparison using 18 sets of input variables for subset A (top panel) and B (bottom panel) marked in Fig. 5. The middle panel shows the 
uncorrected summer (14 July 2016) and autumn (2 October 2016) images (RGB: 743) for these two subsets. Note that the QA layers generated from FORCE were not 
applied here. 
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between 0.59 and 0.90. However, topographic correction improved 
mixed forest classification accuracy greatly. The classification accuracy 
for mixed forest was 0.58 and 0.59 when we classified the enhanced C- 
correction and physical model corrected autumn image respectively, 

comparing to 0.38 for uncorrected autumn image. The DOY composite 
and spectral-temporal metrics derived from physical model corrected 
imagery yielded the highest mixed forest classification accuracy (0.68). 

Including terrain information improved classifications. The average 

Fig. 7. User’s accuracy (UA), producer’s accuracy (PA) and F-measure (F) of coniferous, broadleaf and mixed forests for 18 sets of input variables. The bars indicate 
the accuracies without applying the FORCE QA mask, while the gray lines indicate the accuracies for the areas outside that mask. 
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F-measure was the highest for physical model corrected imagery plus 
terrain information (0.79), followed by physical model corrected im-
agery (0.78), enhanced C-correction corrected imagery plus terrain in-
formation (0.76), enhanced C-correction corrected imagery (0.75), 
uncorrected imagery plus terrain information (0.70), and uncorrected 
imagery (0.70). 

Based on the McNemar’s tests, differences in classification accuracy 
using uncorrected and topographic corrected imagery were significant 
(p ≤ 0.05) for most sets of input variables except the ones for broadleaf 
forest classification using summer imagery (p > 0.05, Fig. 8). The ac-
curacy of classification improved significantly (p ≤ 0.05) when we used 
terrain information. However, for the classification based on physical 
model corrected imagery, about 44% of classifications resulted in sig-
nificant (p ≤ 0.05) improvement when we included terrain information. 
Similarly, about 78% of classifications that used uncorrected or 
enhanced C-correction imagery resulted in significant (p ≤ 0.05) 
improvement when we used terrain information. 

The classification accuracy was generally lower in areas with 
extreme, e.g., very low or very high, illumination conditions (Fig. 9). For 
instance, mixed forest had an F-measure of > 0.4 in the areas with 
moderate illumination conditions (0.5 ≤ IC ≤ 0.7), while in low (IC <
0.5) and high (IC > 0.7) illumination regions the F-measure dropped to 
< 0.35 for the uncorrected autumn imagery. 

The improvement in classification accuracy using corrected imagery 
varied according to illumination conditions (Fig. 10). We found the 
biggest classification accuracy improvement (average increase of F =
0.08) using corrected summer imagery in low illumination areas. 
However, the biggest improvement (average increase of F = 0.18) using 
corrected autumn imagery occurred in areas with high illumination 
conditions (IC > 0.7). For coniferous forest, the biggest classification 
improvement was in low illumination areas when classifying the cor-
rected summer image (average increase of F = 0.07), while the biggest 
improvement (average increase of F = 0.13) in autumn was in high 
illumination areas. Broadleaf forest accuracy using corrected imagery 
improved mostly in low illumination areas both for summer (average 
increase of F = 0.16) and autumn (average increase of F = 0.1). How-
ever, mixed forest had the highest classification improvement in high 
illumination areas for both summer (average increase of F = 0.06) and 

autumn (average increase of F = 0.32) images. 

4. Discussion 

Monitoring forests in mountains is of great importance to understand 
ecological and societal processes, yet difficult to do with remote sensing 
because of topographic effects. However, there are now several ap-
proaches available that integrate topographic correction with atmo-
spheric correction. We tested two integrated topographic correction 
approaches and evaluated forest cover classifications based on topo-
graphically uncorrected and corrected imagery acquired in summer and 
autumn, and DOY composite and spectral-temporal metrics derived 
from a full Landsat time series. We found that the effects of topography 
on classification accuracy varied among forest types, seasons, and lo-
cations but that topographic correction resulted in consistent forest 
maps. The physical model approach to correct imagery clearly generated 
the best classification results no matter which inputs were used for 
classification. Including terrain information can reduce classification 
error, yet it cannot replace topographic correction, and nor can a full 
time series and spectral-temporal metrics. 

Both our enhanced C-correction method and the physical model 
improved our forest classifications. The choice of topographic correction 
method is vital for a success of forest classification. However, some 
correction approaches such as the cosine correction underestimate the 
reflectance of sun-facing slopes and overestimates the reflectance of 
slopes facing away from the sun (Gu and Gillespie, 1998). This under- 
and over-correction introduce errors that offset the benefits of topo-
graphic correction. Because of the lack of reference for an independent 
evaluation, existing studies often use indirect measurements such as 
visual analysis or correlation analysis to evaluate model performance 
(Sola et al., 2016). Here we assessed the performance of our enhanced C- 
correction and the physical model by examining (1) the relationship 
between the illumination condition and the spectral reflectance and (2) 
forest classification accuracy before and after topographic correction. 
Our results suggested that both types of corrections reduced the rela-
tionship between spectral reflectance and illumination condition 
(Fig. 4), which resulted in a better separability of multiple land cover 
classes (Fig. 5A). We suggest that this is the reason why we achieved 

Fig. 8. The significance level (p) of McNemar’s test of pair-wise classification comparison for coniferous, broadleaf and mixed forest.  
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higher forest mapping accuracy using the topographically corrected 
imagery (Fig. 7). 

The physical model used in this study does not require the empirical 
parameters derived from the imagery and thus is scene independent. 

This has important implications for forest cover classification and 
change detection using multi-temporal and multi-sensor imagery (e.g., 
Sentinel-2) because the physical model can generate radiometrically 
homogeneous imagery. On the other hand, the inclusion of a per-pixel C- 

Fig. 9. User’s accuracy (UA), producer’s accuracy (PA), and F-measure (F) of coniferous, broadleaf and mixed forests among different illumination condition (IC) 
intervals for classifications using uncorrected summer (red color) and autumn imagery (blue color). 

Fig. 10. Differences in user’s accuracy (UA), producer’s accuracy (PA) and F-measure (F) between classifications using enhanced C-correction (A), physical model 
(B), and uncorrected imagery of coniferous, broadleaf and mixed forests for different intervals of illumination conditions (IC). Red colors indicate improved mapping 
accuracy using corrected imagery while blues indicate decreased accuracy. 
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factor, which is coupled to atmospheric conditions, has the advantage of 
more locally describing surface anisotropy, which is assumed to be 
strictly Lambertian in the physical model. However, in our tests, the 
enhanced C-correction performed not as well as the physical model. This 
may be due to several reasons: (1) the atmospheric modelling in the 
enhanced C-correction used a modified 5S code, which may have 
modelled the diffuse and direct components of the illumination less 
precisely than the 6S code used in the physical model; (2) different 
implementations of atmospheric correction and image-based aerosol 
retrieval may have resulted in different estimates of atmospheric aerosol 
content, which in turn affecting the separation of direct and diffuse light, 
as well as on the propagation of C through the spectrum; (3) the 
enhanced C-correction only employed a simplified sky view factor as 
opposed to the more elaborate - but computationally expensive - ray 
tracing approach used for the physical model. Nevertheless, we recom-
mend FORCE for topographic correction because of its capacity and 
availability. In addition, a newer version of FORCE v3.6.3 was released 
recently and we found mapping accuracy can be further improved 
(Fig. 6A). 

We found that the effects of topographic correction varied among 
forest types, seasons and locations yet the topographic correction 
generated consistent forest maps. Chance et al. (2016) showed that 
topographic correction may not be needed in forest change detection 
using the best-available-pixel composites derived from July and August 
imagery. We found that the broadleaf forest classification using cor-
rected summer imagery had no significant improvement (McNemar’s 
test p > 0.05) but coniferous and mixed forest mapping accuracies 
improved significantly (McNemar’s test p ≤ 0.05). The insignificant 
improvement in broadleaf forest classification might be due to the high 
classification accuracy of broadleaf forest in flat areas such as the Col-
chis Lowlands (Fig. 1). However, accuracy differences among different 
illumination conditions showed obvious improvement in broadleaf for-
est classification in rugged terrain (Fig. 10). Vanonckelen et al. (2013) 
found that topographic correction had the biggest effects in low- 
illuminated slopes. We found that the correction was beneficial in 
both low and high illuminated areas, depending on the date of imagery. 
The effect of topographic correction was most obvious in the low- 
illuminated areas in summer imagery while the improvement was 
highest in high illuminated areas in autumn imagery. One reason could 
be that the random forest classifier tends to predict the dominant classes 
(Pal, 2005). In summer, most of the forested area had high illuminations 
while in autumn most forested area had low-illumination conditions. 
Thus, forests in the low-illuminated areas tended to be misclassified in 
summer while in autumn they were classified correctly. Because topo-
graphic correction normalized feature variations due to illumination it 
consistently resulted in accurate forest maps (Fig. 6). Overall, our 
approach clearly demonstrated the need of topographic correction for 
satellite imagery from any season when conducting classifications. 

Topographic correction contributed most to the classification accu-
racy of complex forest types. As an ecological hot spot, our study area 
encompasses diverse tree species ranging from sub-tropical trees to 
temperate conifers. The overlap of spectral signatures and the con-
founding topographic effects make it difficult to map heterogeneous 
forests, and the mixed forest class had the lowest classification accuracy. 
Using topographic corrected imagery resulted in the greatest accuracy 
improvement for the mixed forest class (Fig. 7) mostly because the 
within-class variance in reflectance was reduced. This highlights the 
value of topographic correction in a heterogeneous environment. We 
found only slight accuracy improvements (e.g., <5%) for the herbaceous 
land, water, and un-vegetated classes using corrected imagery for clas-
sification (Figs. 7-11A). This is not surprising because these three classes 
had already high mapping accuracies before the topographic correction 
was applied. More importantly, herbaceous land and water were less 
affected by the topographic effects compared to the forests because 
forests were more distributed on the slopes. This is the reason why we 
mainly focused on forest mapping. 

Topographic correction is necessary when analyzing a full time series 
of satellite data. The F-measures increased significantly using the 
topographically corrected DOY composite and spectral-temporal met-
rics, especially for the mixed forest classification (Figs. 7, 8). Our find-
ings have broader implications for large scale mapping initiatives 
because the DOY composite and spectral-temporal metrics from Land-
sat- imagery are often used for large area gap-free mapping (Gómez 
et al., 2016). Furthermore, with the release of topographic correction 
tools (e.g., FORCE), it is possible to correct all available Landsat imagery 
in an operational way. Including the terrain information in the classi-
fication reduced classification error but could not replace topographic 
correction. Similar to findings in previous studies (Elumnoh and 
Shrestha, 2000; Zhu et al., 2016), our results confirmed that terrain 
information such as the topographic slope, elevation, and aspect 
improved forest classification accuracy in mountains. Yet, topographic 
effects cannot be eliminated by only using the terrain data. This is partly 
because the topographic effects change over time, yet the terrain data 
are static. However, we recommend including terrain data in the clas-
sification model because auxiliary information depicting the abiotic 
factors that affect vegetation distribution can improve to distinguish 
land cover classes. 

Further considerations to improve the utility of topographic correc-
tion for forest classification in mountains include, first, better quality 
and higher resolution DEM data for topographic correction. To calculate 
topographic slope and aspect for one pixel from the SRTM DEM, the 
neighboring pixels have to be included, which de facto decreases the 
spatial resolution to 90 m. Though there is no conclusive suggestion 
regarding the optimal resolution of DEM for correction, most studies 
suggested that the resolution of the DEM used for topographic correction 
should be smaller than the resolution of the satellite images (Conese 
et al., 1993; Hantson and Chuvieco, 2011). In addition, the co- 
registration errors between DEM and Landsat images may be another 
error source. A better co-registered DEM may further improve the per-
formance of topographic correction. Second, while self-shadow shaded 
areas are relatively easy to identify, it is more difficult to identify areas 
affected by cast shadows because the assumption that the observed 
radiance is a function of illumination condition angle is violated (Li 
et al., 2012). Furthermore, Landsat 7 and older imagery has a limited 
radiometric resolution, making it difficult to estimate reflectance in dark 
area. However, the better radiometric resolution of Landsat 8 and 
Sentinel-2 might make it feasible to correct cast shadow areas. Third, our 
results were based on Landsat imagery, which may suggest the value of 
topographic correction for forest mapping when using other Landsat- 
like imagery. To this end, our methods can also be transferred to the 
imagery from other sensors such as Sentinel-2 (e.g., Grabska et al., 
2020). Last, in this study we focused on the topographic effect only and 
did not take adjacency effect and bi-directional reflectance distribution 
function (BRDF) into account. The mapping accuracy might be further 
improved if such corrections were also included. 

While we focused our forest classification on the Caucasus region, 
our findings are probably also applicable for classifying forests else-
where where the illumination conditions are similar, such as other 
temperate regions with high topographic relief. Further tests especially 
in the tropics and subarctic regions are necessary though to understand 
how topographic correction can perform at a global scale. Other studies, 
however, suggest a positive effect of topographic correction on land 
cover classification in the high latitudes and tropics (Adhikari et al., 
2016; Heiskanen et al., 2002). In summary, with the increasing avail-
ability of topographic correction approaches, we recommend using 
topographic corrected imagery for forest cover classification especially 
in mountainous regions. 
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