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Abstract. Frequent, small wildfires can pose dangers to homes in the wildland–urban interface, but are not often
included in wildfire hazard models. We assessed patterns of small wildfire occurrence probability in the Northeast region

of the United States, focusing on (1) spatial and seasonal variations; (2) differences between small and large fires (size
threshold of 4 ha); and (3) how predicted probabilities are influenced by inconsistent wildfire definitions in urbanised
landscapes. We analysed fire incident report data from 2005 to 2017 to parameterise maximum entropy (MaxEnt) models

based on land cover, topography, climatic water deficit, soil moisture and road density. Overall, wildfire occurrence was
highest in areas with lower agricultural cover and with more low-density urban development (explaining 53.5 and 28.6%
of variance, respectively, in our region-wide model), while larger fires were concentrated in areas with intermediate levels

of development, higher climatic water deficit and more rugged topography. These patterns were largely consistent when
we assessed models for individual states, but differences in wildfire reporting patterns led to differences in the effect of
urban development on fire probability. Our results provide novel understanding of small wildfire patterns in the Northeast
and demonstrate the need to more reliably quantify these hazards.
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Introduction

Wildfire is an important natural disturbance process in many
vegetated ecosystems, but both natural and human-caused fires
can pose major hazards to human life and property (Moritz

et al. 2014; McLauchlan et al. 2020). There is a growing need
tomake communitiesmore fire-adapted as wildfires around the
globe become more destructive owing to climate change
(Abatzoglou and Williams 2016), growth of housing in the

wildland–urban interface (WUI; Radeloff et al. 2005; Kramer
et al. 2018; Radeloff et al. 2018), and increased fuel loads due
to past fire suppression (Stephens et al. 2016). In the United

States, concerns over wildfire danger focus primarily on the
Western region, where the frequency and destructiveness of
large fires has increased in the 21st century (Bowman et al.

2017). However, frequent, small fires that occur near homes
and structures can also pose threats and strain suppression
resources (Ager et al. 2019; Mietkiewicz et al. 2020). Hence,

it is important to better understand wildfire hazard not only
where there is potential for large burned areas, but where
ignitions have the potential to threaten valued resources
(Kolden 2020).

Large wildfires are relatively rare in regions with cool and

humid climates, without extensive areas of fire-adapted vegeta-
tion, and with few lightning-caused ignitions (Malamud et al.

2005; Cary et al. 2009). In such regions, wildfire occurrence is

likely to be strongly associated with human-caused ignitions
near homes, roads and other types of development (Cardille and
Ventura 2001;Yang et al. 2008;BarMassada et al. 2013). Indeed,
fire frequency is highest in areas with low- to intermediate-

density development where sources of human ignitions intermin-
gle with flammable vegetation (Syphard et al. 2007; Hawbaker
et al. 2013). Human-caused wildfire danger in these landscapes

depends more on the frequency of ignitions in close proximity to
homes than on large fires spreading to homes from remote
wildland areas (Balch et al. 2017; Mietkiewicz et al. 2020).

Predicting where wildfires are likely to occur is a critical
component of hazard and risk assessments. The US Department
of Agriculture Forest Service defines wildfire ‘risk’ as the

potential loss of resources and assets to wildfire, and ‘hazard’
as potential damage caused by wildfire as a function of both the
probability of occurrence and the likely intensity of burning
(Scott et al. 2013). Quantifying hazard is required to calculate
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risk, in combination with susceptibility of resources and assets.
Patterns of wildfire hazard are determined by patterns in
flammable fuels, frequency of weather conditions favourable

to fire and ignition sources (Thompson et al. 2011). National-
scale risk assessments have estimated wildfire hazard across the
USA using FSim, a simulation model that predicts fire spread

potential based on fuel cover and ignition maps (Finney et al.

2011; Dillon et al. 2015). Fuel cover input maps are provided by
the LANDFIRE program (Rollins 2009), which broadly cate-

gorises developed land cover types (e.g. agriculture and urban)
as ‘non-burnable’. FSim is therefore well suited for predicting
likelihoods of large fires spreading through contiguous patches
of vegetation, but has limited ability to assess wildfire hazard in

urban areas. Alternative approaches are necessary to assess
wildfire occurrence in regions with large numbers of human-
caused ignitions in fragmented vegetation.

Explicitly modelling small fires is important because their
patterns and drivers may differ from those of larger fires. For
example, higher road densities may be associated with higher

densities of fire ignitions, but may also reduce the potential for
large fires by allowing easier firefighter access and facilitating
suppression (Spyratos et al.2007).AcrossNorthAmerica, human

population density is positively correlated with fire ignition
frequency since 1984 but negatively correlated with occurrences
of very large fires for the same time period (.400 ha;
Parisien et al. 2016). Low- to medium-density housing develop-

ment can reduce large wildfire likelihood by fragmenting wild-
land vegetation and limiting the potential for fire spread (Syphard
et al. 2007). However, small wildfire occurrence can increase

probabilities of large fires occurring during periods of favourable
weather conditions (Nagy et al. 2018). Furthermore, frequent
occurrences of small fires may be indicative of heavy investment

in fire suppression to prevent larger fires.
Capturing patterns of small wildfire occurrence requires

appropriate model types and spatial scales. FSim models for the
USA predict burn probability at a quite coarse spatial resolution

(270 m) owing to the computational demands of the model
(Dillon et al. 2015). This scale of modelling matches the spatial
resolution of fire records derived from satellite image analysis,

such as the Monitoring Trends in Burn Severity data product
(mtbs.gov), which only includes fires larger than 400 ha. Satellite
sensors cannot reliably capture fires smaller than the grain size of

the sensor (e.g. smaller than the 1-km resolution of MODIS
(Moderate Resolution Imaging Spectroradiometer); Hawbaker
et al. 2008), and finer-resolution sensors may have longer repeat

cycles that miss fires with short burning durations (e.g. shorter
than 16-day repeat cycle of Landsat; Hawbaker et al. 2020).
Alternatively, fire occurrences can bemodelled as point processes
using species distribution models. Point locations of fires can be

determined using fire incident reports, which provide a more
complete record of small fire occurrences than satellite-based
records. Species distributionmodels can be used to estimate long-

term spatial drivers of ignitions (e.g. Syphard et al. 2008; Bar
Massada et al. 2013; Parisien et al. 2016) or influences of spatial
drivers andweather on spatio-temporal patterns of fire occurrence

(e.g.Miranda et al. 2012; Peters et al. 2013) and extrapolate these
predictions into the future. This type of model may be most
appropriate where fires are typically small and single point
locations can be representative of an entire burned area.

A key limitation for modelling small wildfire hazards is the
difficulty of collecting complete and consistent occurrence
records at regional or national scales. Compiling records across

a multitude of federal, state and municipal fire response
agencies presents logistical challenges, while additional chal-
lenges may arise from varying definitions of the types of

wildland fires of interest for hazard assessments. In the USA,
the most complete record of fires of all sizes is the fire
occurrence database maintained by the Forest Service (Short

2014, 2018). However, the database sometimesmisses incident
records for fires fought by municipal fire departments, which
are often smaller fires in close proximity to developed
areas, such as in municipal parks, drainage ditches, alleyways,

construction sites, vacant lots, or roadsides (Karen Short,
pers. comm.). These types of wildfires are not typically
considered in national-scale wildfire risk assessments, because

larger fires can be more reliably mapped with satellite imagery
and pose major threats to communities (Finney et al. 2011;
Dillon et al. 2015). However, fires originating in highly

human-modified landscapes also represent an ecologically
important interactions between humans and the environment,
although they may be ambiguously defined as ‘wildland fires’

(Pyne 2019).
Our goal was to assess patterns and drivers of small wildfire

occurrence across the Northeast region of the USA. Small
wildfires are an important contributor to overall wildfire hazard

in the Northeast owing to the limited occurrence of large fires,
the prevalence of small, human-caused ignitions, and
high exposure of homes in the WUI (Malamud et al. 2005;

Martinuzzi et al. 2015; Balch et al. 2017). The Northeast
accounts for only ,1.5% of area burned in the USA but
,14% of wildfire incidents (NIFC 2020), and the annual

number of homes threatened or destroyed by wildfire is similar
to the West despite burned areas being substantially smaller
(St Denis et al. 2020). Specifically, we asked:

1. How do overall and seasonal wildfire occurrence probabili-
ties vary across the Northeast in relation to human and

biophysical predictors?
2. How do patterns and drivers of small fire occurrences differ

from those of larger fires?
3. Howmight inconsistencies inwildfire definitions and report-

ing standards among the 20 states in the region influence
region-wide assessments of fire occurrence probabilities,
and subsequent hazard and risk assessments?

Methods

Study area

Our study area included the 20 states in the Northeast region

defined by the National Cohesive Wildland Fire Management
Strategy (Fig. 1a). We grouped the region into four sub-regions
in order to better categorise state-by-state patterns across diverse

fuel types, climates and urbanisation patterns. Sub-regions
included: New England (including states of Connecticut,
Massachusetts, Maine, New Hampshire, Rhode Island and

Vermont), the Mid-Atlantic (Delaware, Maryland, New Jersey,
NewYork, Pennsylvania andWest Virginia), the LowerMidwest
(Illinois, Indiana, Iowa, Missouri and Ohio) and the Upper Mid-
west (Michigan, Minnesota and Wisconsin).
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The Northeast is broadly characterised by a humid temperate
climate with a wide range of ecosystem types, including sub-
boreal conifer forest, tallgrass prairie, temperate deciduous

hardwood and mixed forest, Ozark and Appalachian mountain
forests, oak savanna prairie andAtlantic coastal plains (Omernik
1987). Historically, fires burned probably almost annually in the

prairie ecosystems around the southern Great Lakes (Upper and
Lower Midwest sub-regions) and in the marshlands along the
Mid-Atlantic coast (Grimm 1984; Leitner et al. 1991; Frost

1995). Similarly, dry upland pine and oak forests of the Great

Lakes and Atlantic coastal regions burned probably at least once
per decade in the pre-European era. However, fire return
intervals were much longer in the sub-boreal hardwood forests

of the Upper Midwest, the Adirondacks and northern New
England, burning only every few decades (Little 1974; Guyette
et al. 2005). Native Americans and early European settlers used

fire extensively to manage forests and prairies, but a policy of
fire suppression enacted by the US Forest Service (USFS) in the
early 20th century led to the widespread decline of fire-adapted

oak and pine forest and savannas (Whitney 1987; Nowacki and

Sub-region boundaries

Open/low-density developed

Land cover type

Medium/high-density developed

Forest

Agriculture/Pasture

Wetland

<400 ha

Fire occurrence (size class)

�400 ha

(a)

(b)

Fig. 1. Maps of the Northeast region showing (a) boundaries of sub-regions used to group results according to broad

similarities in climate and vegetation, along with land cover types from the 2016 National Land Cover Dataset (mrlc.gov) and

selected geographic features; and (b) locations of all fire occurrences from 2005 to 2017 for fires.0.1 ha from the USFS fire

occurrence database. Fires$400 ha are highlighted to compare patterns of fires large enough to be included in the Landsat-

based Monitoring Trends in Burn Severity dataset (mtbs.gov).
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Abrams 2008). Furthermore, wildland vegetation has been
highly fragmented throughout the region owing to widespread

conversion to agriculture or urban land cover (Motzkin et al.

1999; Rhemtulla et al. 2007). Loss of native vegetation to
agriculture is most extensive in the Lower Midwest. The most

extensive WUI areas are in the Mid-Atlantic and in New
England, where extensive urbanisation intermingles with forest
cover (Fig. 1a).

Data

We assessed fire occurrences using point locations from the
USFS fire occurrence database (Short 2018). Records within the
database have been subjected to quality assurance, which
includes removal of duplicate fires and correction or removal of

records with obvious location errors (Short 2014). However,
there are clear differences in reporting rates among states
(Fig. 1b), and we focused our analysis on individual states to

account for this. The database provides point locations (latitude
and longitude), firefighting agency, fire cause, final fire size,
and dates of discovery and control. We examined annual num-

bers of wildfires reported by each state to determine year ranges
for which reporting appeared to be consistent (i.e. where the
number of fires for a range of consecutive years did not have any

abrupt increases that were likely due to a shift in reporting
methods). We determined that reporting rates were consistent

for all 20 states over the period 2005–2017, and we used records
from these years for all analyses. We excluded fires,0.1 ha in
order to ensure that occurrence records did not contain, for

example, illegal campfires or unpermitted debris burns that did
not escape control. For this range of fire years and sizes, the
majority of occurrences in all four sub-regions were in spring
(Mar–May; 72% of all fires), were human-caused (95% of all

fires with known causes; Fig. 2), and were ,4 ha (Table 1).
We obtained a WUI classification from the University of

Wisconsin–Madison SILVIS laboratory (http://silvis.forest.

wisc.edu/data/wui-change/; Martinuzzi et al. 2015). The WUI
dataset is based on block-level housing density from the 2010
census for the conterminous USA.WUI areas are separated into

two distinct classes: (1) the intermix, where housing intermin-
gles with wildland vegetation; and (2) the interface, where
housing is adjacent to wildland vegetation (Radeloff et al.

2005; Stewart et al. 2007).
We obtained 30-m-resolution land cover layers from the

2016 National Land Cover Dataset (NLCD; Yang et al. 2018).
Although LANDFIRE distinguishes fuel types in greater detail,

the NLCD distinguishes between open, low-, medium- and
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Fig. 2. Monthly patterns of fires reported in theUSForest Service fire occurrence database, summarised for four

sub-regions of the Northeast region. Averages are calculated for the period 2005–2017. Records include all fires

with a final size .0.1 ha.
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high-density development classes and offers a more high-level

classification that we favoured for easier interpretation of our
model results. We combined similar NLCD classes to create the
following simplified classes: high/medium intensity developed,
low/open intensity developed, agriculture, grassland/herba-

ceous, shrub/scrub, evergreen forest, mixed forest, deciduous
forest and wetlands. Reported fire location coordinates did not
alwaysmatch the exact location of the fire andwere often biased

towards adjacent developed areas (e.g. highways, empty lots,
whichmay have been locations of firefighter staging areas rather
than the actual burned site; Karen Short, pers. comm.). To

account for spatial errors, we calculated the percentage cover
of each class within 120 m of the point location to associate fire
locations with vegetation within a neighbouring area and reduce

bias towards developed land cover types.
We included additional explanatory variables to account for

soil moisture, topography, road density and climate (Table S1,
Supplementary material). We obtained 30-m-resolution soil

available water supply at 150-cm depth from the gridded Soil
Survey Geographic dataset (gSSURGO; Soil Survey Staff
2020). We obtained elevation from the National Elevation

Dataset (Gesch et al. 2018) and derived a terrain roughness
index (Riley et al. 1999). As a proxy for human accessibility and
potential for ignitions, we calculated road density using the

National Transportation Dataset (US Geological Survey 2017).
We assessed climatic drivers of fire occurrence based on
monthly climate water deficit data (actual minus potential

evapotranspiration) from the TerraClim climate dataset
(Abatzoglou et al. 2018), which we averaged over all months
within the study period 2005–2017. We also averaged seasonal

water deficit for spring (Mar–May), summer (Jun–Aug) and fall
(autumn; Sep–Nov).

WUI area comparisons

We used WUI areas to summarise broad patterns of wildfire

occurrence in relation to human development and wildland
vegetation. For each sub-region, we tallied the percentage of
total area in each WUI class (intermix and interface) and the

percentage of fires occurring in eachWUI class.We additionally
calculated these percentages for a subset of ‘large’ fires, which
we defined as fires with a final size.4 ha (10 acres). Large fires

made up 11% of total fire occurrences in the region (see Table 1
for state-by-state percentages).

Fire occurrence models

We modelled fire occurrence probabilities with maximum
entropy models (MaxEnt). We chose MaxEnt because it is
optimised to handle occurrence records as ‘presence-only’ data

(Phillips et al. 2006), which is important because the absence of
a fire record in a given location is unlikely to indicate that it
would be impossible for a fire to occur there. Because our fire
occurrence dataset spans only 13 years for which there are

reliable data, and because locations in the database may not
exactly match the exact ignition location, we assumed that
locations in the study area with no recorded fire occurrences do

not represent ‘true absences’ of fire.
All models were computed in R (R Core Team 2019) with

the ‘dismo’ package (Hijmans 2017). We parameterised models

to randomly sample 10 000 background points (removing
duplicates) and used all available covariate features, excluding
‘discrete’. The regularisation multiplier, which imposes a pen-
alty on coefficients to prevent over-fitting, was set to the default

value of 1.0. We fitted models using random training subsets
(75%) of relevant occurrence records, and validated them with
the remaining 25% of records.We fitted models for each state in

the Northeast region using spatial subsets of fire occurrence
records and explanatory data layers.We checked for collinearity
among explanatory variables by calculating Pearson’s correla-

tions (r) using values extracted from the full set of fire occur-
rence locations. We included all variables in the models after
determining that |r| , 0.7 for all variable pairs. For each state,

we fitted one model for all fires and a second model using large
fires only (.4 ha). We did not run large-fire models for four
states where there were #15 validation occurrences, or #60
total occurrences (Delaware, NewHampshire, Rhode Island and

Vermont; Table 1).
In addition to models for individual states, we fitted models

for the entire Northeast Region using all occurrence points

within the 20-state boundary. Comparing region-wide fire
occurrence probabilities with probabilities mapped across indi-
vidual states allowed us to identify states where fire occurrence

patterns differed from the overall regional patterns. As with our
state models, we fitted region-wide models for all fires
(n ¼ 87 759) and for large fires only (n ¼ 20 075). We
additionally fitted seasonal region-wide models based on

Table 1. Fire occurrence records by state summarised by the total

number of records from 2005 to 2017 and percentages of fires in each

size class

Some rows may not sum to 100% owing to rounding. States are grouped by

sub-regions. State abbreviations are as follows: CT, Connecticut; DE,

Delaware; IA, Iowa; IL, Illinois; IN, Indiana; MA, Massachusetts; MD,

Maryland; ME, Maine; MI, Michigan; MN, Minnesota; MO, Missouri; NH,

New Hampshire; NJ, New Jersey; NY, New York; OH, Ohio; PA, Pennsyl-

vania; RI, Rhode Island; VT, Vermont; WI, Wisconsin; WV, West Virginia

Sub-region State No. occurrences ,1 ha 1–4 ha 4–40 ha .40 ha

Upper

Midwest

MI 3946 29.2% 43.9% 23.9% 3.0%

MN 13 169 34.8% 37.3% 20.3% 7.6%

WI 5534 47.4% 33.9% 16.8% 1.9%

Lower

Midwest

IA 4021 12.8% 40.7% 36.4% 10.1%

IL 1533 19.2% 45.7% 28.9% 6.2%

IN 489 21.3% 45.0% 26.0% 7.8%

MO 6527 6.9% 48.6% 29.9% 14.6%

OH 2844 18.6% 54.2% 24.4% 2.8%

Mid-Atlantic DE 60 21.7% 48.3% 28.3% 1.7%

MD 1864 41.1% 35.5% 17.8% 5.6%

NJ 3523 49.1% 35.1% 12.8% 3.0%

NY 25 095 36.7% 56.1% 6.9% 0.3%

PA 5392 26.7% 47.7% 22.9% 2.7%

WV 6946 23.7% 33.8% 28.4% 14.0%

New England CT 1694 42.7% 45.9% 10.4% 0.9%

MA 1305 35.9% 50.8% 12.0% 1.2%

ME 2434 45.4% 41.2% 12.6% 0.8%

NH 726 39.3% 45.7% 13.5% 1.5%

RI 313 31.6% 57.2% 11.2% 0.0%

VT 344 24.1% 53.2% 20.9% 1.7%
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temporal subsets of fire occurrences in spring, summer and fall

months with the corresponding seasonal averages of climatic
water deficit.

For each state and region-wide model, we generated predic-

tive maps of relative probabilities of fire occurrence. Relative
probability values were based on probability distributions for
occurrences and background points fitted by the MaxEnt algo-

rithm, which are scaled from 0 to 1 (Elith et al. 2011). Because
relative probabilities are scaled to the individual area defined by
the model, outputs from separate models cannot be directly
compared. Probabilities for individual states therefore cannot be

compared with values in other state-widemodels or region-wide
models, and we only used ourmodel results to compare relation-
ships of fire occurrences with explanatory variables between

states.

Model validation

We evaluatedmodel performance using the area under the curve
(AUC) of the receiver-operating characteristic, as well as
omission rates based on minimum and 10th percentile threshold
values. Both metrics were calculated using the withheld vali-

dation subsets. AUC is a threshold-independent validation
metric based on plots of accurate occurrence predictions against
false positive predictions, with values between 0 and 1. A score

of 0.5 indicates that model performance is equivalent to that of a
random prediction, while a score of 1 would indicate an exact
match between predictions and validation data. We additionally

calculated model omission rates by defining a suitability
threshold for binary predictions using both theminimum and the
10th percentile value of suitability scores at training locations.

Omission rates can highlight model inaccuracies resulting from
overfitting that the AUC misses (Radosavljevic and Anderson
2014). The minimum value of training suitability scores is an
intuitive threshold for classifying binary predictions, while the

10th percentile value is a more conservative threshold designed
to exclude spurious observations.

We further evaluated region-wide model performance by

dividing predicted fire occurrence probability values into ‘low’,
‘medium’ and ‘high’ categories. Category thresholds were
separately defined for each model using equal-interval division

of the range of predicted probabilities (resulting in category
thresholds of approximately 0.33 and 0.67). We quantified
model predictive performance by determining percentages of

all occurrence locations (training and validation sets combined)
in each probability category. We then tabulated percentages of
each category across sub-regions in order to characterise wild-
fire hazards geographically for the entire study region.

Results

WUI area comparisons

In all sub-regions, a disproportionately high number of fires

occurred in the WUI relative to proportions of total WUI area.
The discrepancies were larger when considering fires of all sizes
v. large fires only. In the Upper Midwest and the Mid-Atlantic,

large fires occurred less frequently in the interface than expected
given the proportion of total interface area (Table 2). For fires of
all sizes, the proportion of occurrences in the intermixWUI was

more than four times higher than expected given the proportion
of total intermix WUI area in the Upper Midwest, nearly three
times higher in the Lower Midwest and nearly twice as high in
New England (Table 2). With the exception of New England,

fire occurrences in the interface WUI in other sub-regions did
not exceed the proportion of total interfaceWUI area as much as
in the intermix.

MaxEnt model performance

Model performances for individual states were fair to good,
based on AUC values and omission rates (Table 3). AUCs for
state models predicting occurrence of all fires (.0.1 ha) ranged

from 0.64 to 0.88, and from 0.62 to 0.89 for models of large fires
only (.4 ha). On a state-to-state basis, there was little difference
in AUC betweenmodels predicting all fires v. models predicting

large fires only (Table 3). However, omission rates were higher
for large-fire models than for all-fire models. High omission
rates for two state models (the Delaware all-fires model and

Massachusetts large-fires model) were likely due to a limited
number of validation records (n ¼ 15 and 16, respectively),
either due to the small areas of these states or due to low rates of

fire reporting. However, omission rates were also high for large-
firemodels in some states where the number of observationswas
not limiting (e.g. Maryland and Ohio). States in the Upper and
Lower Midwest generally had higher AUCs than states in the

Mid-Atlantic and New England (Table 3).
The region-wide models performed well for all fires, large

fires only and seasonal fires based on AUCs and omission rates

(Table 4). The all-fires model reliably predicted fire occur-
rences, with 83.8% of all reported fire locations occurring in
pixels classified as having high probability and only 2.0% of fire

locations occurring in areas classified as low probability. How-
ever, the large-fires model was not as effective at discriminating
fire occurrence probabilities, with 51.9% of reported large-fire

locations falling in high-probability areas and 45.3% in
medium-probability areas. Spring seasonal model performance
was similar to the all-fires model, with 88.7% of fire locations
occurring in high-probability areas and only 2.1% occurring in

Table 2. Percentages of area in each sub-region classified as wildland–urban intermix or interface and percentage of fires from 2005 to 2017 that

occurred in each class

Region % Intermix area % Intermix fires – all % Intermix fires .4 ha % Interface area % Interface fires – all % Interface fires .4 ha

Upper Midwest 6.7 30.1 10.1 1.6 5.0 1.1

Lower Midwest 5.9 16.1 7.8 1.7 4.9 2.0

Mid-Atlantic 23.1 33.2 29.7 6.8 14.3 3.9

New England 27.2 47.6 30.8 3.9 15.3 11.4
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low-probability areas. The majority of summer and fall fire
locations fell in high or medium-probability areas, but were not
predicted as accurately as spring fires (48.6% medium and

42.3% high for summer fires; 49.9% medium and 43.3% high
for fall fires).

State models

Environmental drivers of wildfire occurrence varied consider-

ably among states (Fig. 3a). Nevertheless, the percentage of low/
open developed land cover within 120 m of the fire location
explained the largest proportion of the observed patterns for

almost all states (mean contribution 33%). Climatic water def-
icit was also an important variable for most states (mean con-
tribution 14%), while agricultural land cover was especially

important in the Lower Midwest states (mean contribution for
sub-region 27%). Differences in explanatory variables between
states were also reflected in the mapped probabilities of occur-

rence (Fig. 4a).
Patterns of large wildfire occurrence differed greatly from

those of all fires and relative importance of explanatory variables

was highly variable among all state-level models (Fig. 3b).
Agricultural land cover was an important explanatory variable
in the lowerMidwest states, while low/opendeveloped land cover

was a less important variable overall than in all-fires models
(Fig. 3). Large fire occurrence tended to be more negatively
correlated with both open/low- and medium/high-density devel-
oped land cover than all fires (see Supplementarymaterial). There

was a particularly stark difference between occurrence probabili-
ties for small and large fires in the state ofNewYork, where small
fires were highly clustered around cities and large fires weremore

restricted to eastern Long Island and the Hudson Valley (Fig. 4).
Differences between small and large fire occurrences were also
pronounced in the New Jersey Pine Barrens, coastal Maryland,

and the Appalachians in Ohio and West Virginia.

Region-wide models

Similarly to the individual state models, region-wide models

resulted in substantial differences in occurrence patterns
between fires of all sizes and larger fires (Fig. 5). Highest
occurrence probabilities of large fires were in forested areas in
the Upper Midwest (i.e. the North Woods region), the Ozark

Plateau, the Appalachian Mountain regions of eastern Ohio,
West Virginia and Pennsylvania, and along the southern Mid-
Atlantic coast. For fires of all sizes, occurrence probabilities

Table 4. Test AUC scores and omission rates for region-wide models

predicting occurrences of all fires and for models predicting large fires

only (.4 ha), for all fire records and for fires occurring in spring,

summer and fall months

Omission rates are based on suitability thresholds derived from both the

minimum and 10th percentile of training occurrences

Model AUC Omission

rate (min.)

Omission rate

(10th percentile)

All fires 0.801 0.00% 9.99%

Large (.4 ha) fires 0.781 0.00% 10.32%

Spring fires 0.813 0.00% 10.06%

Summer fires 0.810 0.00% 10.35%

Fall fires 0.786 0.00% 10.95%

Table 3. TestAUCscores andomissionrates for statemodelspredictingoccurrencesof all fires and formodels predicting large firesonly (.4ha), by state

Missing values indicate states where therewere fewer than 50 occurrence records for large fires. Omission rates are based on suitability thresholds derived from

both the minimum and 10th percentile of training occurrences. State abbreviations are described in the heading for Table 1

All fires Fires .4 ha

Sub-region State AUC Omission

rate (min.)

Omission rate

(10th percentile)

AUC Omission

rate (min.)

Omission rate

(10th percentile)

New England CT 0.761 0.00% 10.61% 0.746 0.00% 16.67%

MA 0.725 0.31% 13.80% 0.569 5.88% 58.82%

ME 0.861 0.17% 11.38% 0.797 7.69% 15.39%

NH 0.751 0.55% 10.44% - - -

RI 0.701 0.00% 12.66% - - -

VT 0.774 0.00% 15.12% - - -

Mid-Atlantic DE 0.793 13.33% 13.33% - - -

MD 0.675 0.22% 10.11% 0.764 5.17% 29.31%

NJ 0.695 0.23% 10.90% 0.729 3.13% 17.19%

NY 0.865 0.00% 14.55% 0.756 1.56% 15.63%

PA 0.736 0.00% 11.57% 0.721 2.47% 13.58%

WV 0.755 0.00% 9.44% 0.802 0.00% 10.38%

Lower Midwest IA 0.867 0.00% 10.77% 0.845 0.00% 10.67%

IL 0.82 0.00% 12.57% 0.771 1.35% 14.87%

IN 0.886 0.00% 12.20% 0.911 4.00% 4.00%

MO 0.811 0.00% 10.17% 0.792 0.00% 11.49%

OH 0.876 0.00% 9.56% 0.848 2.27% 20.46%

Upper Midwest MI 0.813 0.10% 11.86% 0.758 0.86% 15.52%

MN 0.853 0.00% 8.41% 0.800 0.00% 8.79%

WI 0.76 0.00% 11.49% 0.709 0.86% 16.38%
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were highest near cities. Occurrence probabilities for all fires
and for large fires were generally low in more sparsely popu-
lated areas (i.e. the northernmost Appalachian Mountains and

Adirondacks) and in the agricultural portions of the Midwest.
Across the region, the highest occurrence probabilities for fires
of all sizes were predicted in theMid-Atlantic and New England

sub-regions, while the highest probabilities of larger fire
occurrence were predicted mainly in the Mid-Atlantic and
Upper Midwest (Fig. 6a).

Geographical patterns of relative fire occurrence probability

varied substantially among seasons. High occurrence probabil-
ity wasmost prevalent in the spring for all sub-regions, while the
Mid-Atlantic and New England had higher summer and fall

probabilities than the Upper and Lower Midwest (Fig. 6b).
Spring fire occurrence probabilities were higher throughout
the region than those for summer and fall, which were more

spatially clustered (Fig. 7). Summer and fall fire occurrence
probabilities were highest along the Atlantic coast, around cities
in the Midwest, and in some forested portions of the Upper

Midwest, the Ozarks and Appalachians, and low throughout
most of the Lower Midwest and New England.

The most important variables predicting occurrence of all
fires were agricultural land cover (contributing 53.5% of the

model’s explanatory power), low/open developed land cover
(28.6%), climatic deficit (6.7%), road density (5.1%), soil
available water supply (3.7%) and elevation (1.2%). Response
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Fig. 3. Variable contributions to MaxEnt models fit to individual states for (a) all fires; and (b) fires .4 ha.
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curves showed that higher occurrence probabilities were asso-
ciated with higher proportions of low/open developed land

cover and lower proportions of agricultural land cover, as well
as higher climatic deficits, higher road densities and soils with
low available water supply (Fig. 8a). The most important
variables predicting large fire occurrences were agricultural

land cover (contributing 35.6% of the model’s explanatory
power), climatic water deficit (14.9%), elevation (11.5%),
terrain roughness (10.8%), mixed forest cover (8.7%) and

low/open density development (8.1%). Occurrence probability
decreased with increasing agricultural land cover and mixed
forest cover, increased with increasing climatic deficit and

terrain roughness, and was highest at intermediate levels of
low/open developed land cover across the region (Fig. 8b).

Discussion

Ourmodels identified clear patterns in small wildfire occurrence
throughout the Northeast. Wildland fire activity was strongly

influenced by human development, with wildfires occurring
more frequently in WUI than in non-WUI areas and near roads

and cities in both region-wide and individual state MaxEnt

models. Agricultural land cover and low-density urban devel-
opment were the most important predictors of fire occurrences
in almost all state models and in region-wide models, with most

fires occurring in non-agricultural areas with higher proportions
of low-density urban land cover. However, while the occurrence
probabilities for fires of all sizes increased with increasing
proportions of low/open developed land cover, probability of

larger fires peaked at intermediate levels of developed cover
(Fig. 8). Furthermore, models predicting occurrences of large
fires only resulted in substantially different patterns of wildfire

hazard and had different explanatory variable contributions than
models of fires of all sizes. These differences highlight the
importance of considering small wildfires in regional and

national-scale hazard and risk assessments.
Our results indicate that wildfire occurrence in the Northeast

is most strongly driven by human ignitions, similarly to what

others have found (Cardille and Ventura 2001; Yang et al. 2008;
Miranda et al. 2012). In addition to the WUI being where
structures face the greatest risk from wildfires (Kramer et al.
2018), the presence of human development in areas with

flammable vegetation also increases the frequency of wildfire
ignitions (Mietkiewicz et al. 2020). In the Northeast, higher

Fig. 4. Map of MaxEnt model predictions of relative wildfire occurrence

probability for individual state models. Probabilities are scaled from 0 to 1

for each state (i.e. relative probabilities for different states may correspond

with different absolute probabilities). Hashed symbols indicate states where

models could not be fitted owing to a low number of fire locations.

Fig. 5. Map of MaxEnt model predictions of relative wildfire occurrence

probability for models fitted to the Northeast region.
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proportions of fire in the intermix v. interface WUI may

indicate that increased ignitions result from the intermingling
of human development with wildland vegetation, but that the
proximity to larger patches of vegetation in the interface does

not increase fire occurrence to as great an extent. This result is
consistent with prior findings that wildfire occurrence is
typically highest in areas with low to intermediate develop-

ment densities, because there is a combination of frequent
human ignitions and flammable vegetation (Syphard et al.

2009, 2013). Our models showed that fire was less strongly
associated with high/medium-density development, and we

assume that this is due to lower availability of flammable
vegetation in these areas. However, the result may also be
influenced by underreporting of occurrences based on incon-

sistency in defining what constitutes a ‘wildland fire’ in highly
developed areas.

The influence of climaticwater deficit on large fire occurrence

in our models indicates that climate change will likely have an
effect on future wildfire activity in the Northeast. Warming
temperatures and decreased precipitation have a clear effect on

wildfire activity in theWest (Abatzoglou andWilliams 2016) and

similar climate changes would likely produce similar effects in
the Northeast. While it is unclear whether precipitation will
increase or decrease in the eastern USA over the 21st century,

warming temperatures may increase fire activity by increasing
atmospheric evaporative demand and reducing fuelmoisture (Liu
et al. 2010) and by causing more extreme short-term weather

conditions (Jain et al. 2017). Our models demonstrated that fire
occurrence increaseswith increasing climaticwater deficits at the
regional scale, although responses were varied in individual state
models (seeSupplementarymaterial). This effectwas particularly

strong for summer and fall fires, during months when climatic
water deficits are highest. Fire hazard in the Northeast is greatest
in the spring months when snowmelt exposes dry fuels before

summer green-up (Haines et al. 1983), but our models indicate
that summer and fall drought, which may become more frequent
and severe in the future owing to climate change, have the

potential to shift fire hazard later in the year.
Our large-fire models resulted in substantially different

patterns of occurrence than the all-fire models, indicating that
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there are different factors determining wildfire ignitions v. the

probability of fires growing to a large size. Small fires may be
more likely to occur near urban areas because fuels are more
fragmented in these areas, but also because road accessibility

allows firefighters to respond to events more quickly (Plucinski
2019). Although large wildfires pose greater threats to struc-
tures, frequent small fire ignitions contribute to suppression
costs and can strain firefighting resources. The occurrence of

large fires is also strongly correlated with the frequency of
human-caused ignitions in the eastern USA (Nagy et al. 2018).
Models of small fire ignitions can therefore be a valuable

complement to simulation-based models that predict additional
components of large-fire hazard, such as the expected rate of
spread or intensity of burning (Scott et al. 2013).

Our fire occurrence probability maps highlighted the consid-
erable differences in variable importance among models for
different states (Figs 3 and 4). In a few states (Illinois, Iowa,

Massachusetts, New York and Rhode Island), wildfire occur-
rence was tightly clustered around urban population centres,
while some other states (e.g. Michigan, New Jersey, Ohio,

Pennsylvania and Wisconsin) showed the opposite pattern.
Some of these differences corresponded to differences in pat-
terns of reported wildfire locations. For example, density of
wildfire records in New York was noticeably higher than in

adjacent states, and occurrence probabilities for NewYork were
noticeably higher around cities (Fig. S1, Supplementary
material). Model results for New Jersey did not show the same

clustered pattern in occurrence probability, and there was not a
high density of fire occurrence records in the highly urbanised
Northeast portion of the state. Differences between the region-

wide model and models for individual states were greatest for the
Mid-Atlantic and southern New England states, where state
models showed stark differences in whether or not fire occur-

rences were explained by proportions of low/open or high/
medium-density developed land cover. Validation scores indi-
cated that our models were reasonably accurate according to the
available data, but differences in observed fire occurrence pat-

terns among states raise the question of how closely the model
predictions match true occurrence probabilities in some states.

Differences in wildfire reporting methods between states

potentially reflect ambiguities in defining wildland fires in
urban areas in addition to the logistical challenges of compiling
fire records. The 13-year record of fire occurrences used in our

models was obtained by compiling incident reports from thou-
sands of disparate federal, state and local firefighting agencies,
which resulted in inconsistent reporting patterns both within and
among states (Fig. 1b). In some instances, there are clear

differences in reporting methods – for example, the state of
New Jersey only creates incident records for fires that required
response from the state wildland firefighting agency rather than

local municipal fire departments alone (Marie Cook, pers.
comm.), while the state of New York collects all local fire
department events reported through the National Fire Incident

Reporting System (NFIRS; https://www.nfirs.fema.gov/; Chris-
tine Purpura, pers. comm.). Standardising wildfire reporting
among states would have clear benefits for assessing wildfire

hazards. However, this requires clear definitions of what types
of events constitute a ‘wildland fire’, which may be ambiguous
in urban areas where uncontrolled burning may occur in areas
not typically considered as ‘wildland’ vegetation, such as city

parks or vacant lots (Pyne 2019).

Implications for wildfire planning and management

Quantitative wildfire hazard and risk assessments are increas-

ingly important tools formanaging a futurewith the potential for
growing wildfire danger. Our wildfire occurrence probability
models demonstrated the need to account for small fires and

small burnable areas (0.1–4 ha in size) in these assessments in
theNortheast, where small, human-caused fires represent a large

Fig. 7. Maps ofMaxEntmodel predictions of seasonal wildfire occurrence

probabilities for models fitted to the entire Northeast region for all wildfire

sizes.
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proportion of fire occurrences. Estimations of burn probability
that only consider occurrences of large fires (e.g. .4 ha in our
study) do not adequately capture wildfire hazards in small

vegetation patches intermixed with developed land cover, as
seen in the differences between our all-fires and large-fires-only
models. We demonstrated that small wildfire occurrence prob-
abilities can be accurately assessed using point-based species

distribution models, which may be better-suited to characteris-
ing these types of events than simulation-based fire spread
models (Finney et al. 2011). Our small-fire occurrence

probability model can therefore be a valuable supplement to the
burn probability component of national wildfire risk assess-
ments based on large-fire hazard simulation models, such as the

USFS’s Wildfire Risk to Communities project (https://wild-
firerisk.org/). Because these products are used to inform
resource allocation for firefighting and fuel treatment, consid-
ering small-fire hazard in the WUI can have major implications

for effective wildfire planning.
Accounting for hazards of small wildfires has substantial

implications for fire suppression in the Northeast in terms of
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planning and resource allocation.Maps of fire hazard near urban
areas are therefore useful for determining where firefighting
resources are most needed, allocating those resources efficiently

and identifying where resources are currently lacking
(Thompson et al. 2020). Understanding seasonal differences
in wildfire hazard will additionally aid in effective resource

allocation. Although wildfire danger is relatively low in the
Northeast, generally, warming temperatures and more extreme
droughts in the next several decades have the potential to create

conditions where fires are more difficult to suppress and
resources may be strained by multiple simultaneous events
(Butler-Leopold et al. 2018). During the summer of 2020, for
example, multiple large fires in Massachusetts occurred owing

to a combination of factors including extreme drought, an
increase in use of illegal fireworks and strain on firefighting
departments associated with the COVID-19 pandemic (Lisinski

2020). While fire has many positive effects in Northeast eco-
systems (Pausas and Keeley 2019), effective management of
ignitions near where people live will be increasingly important

for minimising fire danger.
Developing more reliable assessments of small fire occur-

rence probabilities will depend on collecting reliable data on

small wildfire occurrence patterns, requiring consistent defini-
tions of what constitutes a significant ‘wildland fire’ in human-
modified landscapes. Federal guidance on defining wildland
fires in the USA is provided by the National Wildfire Coordi-

nating Group, which defines a wildland fire as ‘any non-
structure fire that occurs in vegetation or natural fuels’ (Fire
Management Board 2009). This highly inclusive definition can

include a wide range of event sizes in varying levels of devel-
oped land cover types. Effort is therefore needed to (1) use
consistent methodology across agencies to report all fires that

meet this definition; and (2) improve the accuracy of spatial
information included with fire reports. Spatially complete
datasets are vital for reliable quantitative wildfire hazard assess-
ments, while fire location data that match actual burned areas

can allow data users to refine wildfire definitions based on
detailed fuel types or vegetation patch size. Given that frequent,
small fires are important to overall wildfire hazard in regions

with high WUI exposure, improved efforts to quantify these
events can be of great benefit for informing fire management.
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