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A B S T R A C T   

Global biodiversity loss is most pronounced in the tropics. Monitoring of broad-scale patterns of habitat is 
essential for biodiversity conservation. Image texture measures derived from satellite data are proxies for habitat 
heterogeneity, but have not been tested in tropical forests. Our goal was to evaluate image texture to predict 
tropical forest bird distributions across Thailand for different guilds. We calculated a suite of texture measures 
from cumulative productivity (1-km fPAR-MODIS data) for Thailand's forests, and assessed how well texture 
measures predicted distributions of 86 tropical forest bird species in relation to body size, and nesting guild. 
Finally, we compared the predictive performance of combining (a) satellite image texture measures, (b) habitat 
composition, and (c) habitat fragmentation. We found that texture measures predicted occurrences of tropical 
forest birds well (AUC = 0.801 ± 0.063). Second-order homogeneity was the most predictive texture measure. 
Our models based on texture were significantly better for birds with larger body size (p < 0.05), but did not 
differ among nesting guilds (p > 0.05). Models that combined texture with habitat composition measures (AUC 
= 0.928 ± 0.038) outperformed models that combined fragmentation with habitat composition measures (AUC 
= 0.905 ± 0.047) (p < 0.05). The incorporation of texture, composition, and fragmentation variables signifi-
cantly improved model accuracy over texture-only models (AUC = 0.801 ± 0.063 to AUC = 0.938 ± 0.034; p <
0.05). We suggest that texture measures are a valuable tool to predict bird distributions at broad scales in tropical 
forests.   

1. Introduction 

Confronting the crisis of biodiversity loss due to human activities and 
climate change requires efficient and accurate measures of broad-scale 
patterns of biodiversity (Kissling et al., 2018; Radeloff et al., 2019; 
Razenkova et al., 2020). Habitat variables derived from remotely sensed 
data are key to predict species distributions (Estes et al., 2010; He et al., 
2015; Suttidate et al., 2019). However, habitat variables derived from 
land cover classifications often overlook within-class heterogeneity, 
which is an important component of wildlife habitat. The challenge is to 
develop habitat variables that can capture habitat features that are 
associated with species' ecological needs and can be used to monitor 

species distributions over large areas. 
Habitat heterogeneity influences species distributions (Fischer et al., 

2008; Haralick et al., 1973; Tuttle et al., 2006). Here, we consider 
habitat heterogeneity in forests to be both the vertical structure of 
vegetation layers and the horizontal structure of different vegetation 
forms, heights, and canopy gaps (Culbert et al., 2012). Habitat hetero-
geneity affects individual animals by influencing the availability of 
habitat components, exposure to habitat edges, degree of habitat con-
nectivity, and interactions among individuals (Cuervo and Møller, 
2019). Individual species may select habitat for nesting and foraging in 
association with specific levels of vertical and horizontal vegetation 
structure (Bellis et al., 2008; St-Louis et al., 2014). 
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Species distribution models often include habitat variables derived 
from satellite land-cover classifications (Turner, 2014), but those ignore 
within-class heterogeneity, which is ecologically important for many 
species, especially birds (St-Louis et al., 2014). Image texture measures 
derived from satellite data can capture both between-habitat and 
within-habitat structure, providing a potential advantage over, or 
complement to, measures characterizing habitat composition and 
habitat fragmentation derived from a given land cover classification. 
Indeed, image texture measures improve models of species distributions 
(Bellis et al., 2008; St-Louis et al., 2014). The texture of a satellite image 
contains information about the spatial arrangement of objects, or 
habitat patches and is described with two classes of texture measures: 
first-order (occurrence) and second-order (co-occurrence). First-order 
texture measures are based on the frequency distribution of pixel 
values in a defined neighborhood within an image, typically imple-
mented as a moving window. Second-order texture measures are based 
on the differences in spectral values among neighboring pixels (i.e., the 
grey-level co-occurrence matrix, GLCM) (Culbert et al., 2012; Haralick 
et al., 1973; St-Louis et al., 2014). In other words, first-order measures 
are based on individual-pixel values, which reflect their compositional 
variability, whereas second-order measures are determined by the 
interaction or co-occurrence of pixel values, which reflect their spatial 
arrangement and dependence. For example, a closed-canopy, single- 
species forest has high second-order homogeneity if adjacent pixels have 
similar reflectance values. In contrast, a multi-species forest with canopy 
gaps has strong differences in reflectance values among adjacent pixels 
and hence low second-order homogeneity. Additionally, texture mea-
sures reflect heterogeneity among land cover classes, such as reflectance 
differences between forest and grassland (Culbert et al., 2009; Wallis 
et al., 2016). 

Texture measures derived from remotely sensed data predict both 
bird species richness and individual bird species distributions well. For 
example, texture predicts bird species richness in North American desert 
shrub- and grassland (St-Louis et al., 2009; St-Louis et al., 2014), in a 
Wisconsin habitat complex of grassland, savanna, and woodland (Wood 
et al., 2013), in the US Midwest (Culbert et al., 2012), across the United 
States (Tuanmu and Jetz, 2015), in South American highland forests 
(Bellis et al., 2015), tropical forests in southeastern Ecuador (Wallis 
et al., 2016), and the Andes (Wallis et al., 2017). Similarly, texture 
predicts many individual species distributions, including mountain 
bongo antelope (Tragelaphus eurycerus isaaci) in East African montane 
forest (Estes et al., 2008; Estes et al., 2010), Loggerhead Shrike (Lanius 
ludovicianus) in the Chihuahuan Desert of New Mexico (St-Louis et al., 
2010), or Greater Rhea (Rhea Americana) in Argentina grassland (Bellis 
et al., 2008). Image texture differences are related to differences in 
habitat use between phenotypes of the white-throated sparrow (Zono-
trichia albicollis) (Tuttle et al., 2006), are useful in determining proba-
bility of occurrence of bird species in Maine (Hepinstall and Sader, 
1997) and in Switzerland (Zellweger et al., 2013). These studies show 
the successful application of image texture derived from remotely sensed 
data in explaining species distributions. 

When analyzing texture, one important question is the spatial reso-
lution of the data that are analyzed. The advantage of high (< 10 m) or 
medium (10–30 m) resolution imagery is that it captures considerable 
structural detail. In contrast, the advantages of coarse (> 250 m) reso-
lution data are that they are recorded more frequently, which is espe-
cially important in cloudy areas, that larger areas can be analyzed more 
efficiently, and that global products such as the MODIS product suite are 
available. However, the question is if texture measures derived, for 
example, from 1-km MODIS fPAR data can capture within-class habitat 
heterogeneity accurately enough to predict bird distributions. MODIS 
fPAR data are available at high temporal resolution and over broad 
scales, thus providing a potentially great opportunity to develop rele-
vant, consistent, texture measures for biodiversity assessments in the 
tropics (Coops et al., 2019; Radeloff et al., 2019; Suttidate et al., 2019). 
Given differences in the scale of habitat selection among bird species, it 

may well be that textures from coarse-resolution satellite data can pre-
dict some species' distributions well, but not others. For example, pre-
dictive power may vary according to body size, or nesting requirements 
so that larger-bodied birds with larger territories are predicted better. 
The question how well satellite image texture predicts bird species dis-
tributions is especially relevant in the tropics given both rampant 
biodiversity loss and frequent cloud cover there. 

Our goal was to evaluate the usefulness of satellite-derived texture 
measures as proxies for habitat heterogeneity for avian distribution 
models in tropical ecosystems in Thailand. Our objectives were to:  

(a) test the relationships between texture measures and overall 
tropical forest bird distributions, as well as distributions of 
different nesting guilds and body sizes;  

(b) compare species distribution models based on texture measures 
with models based on measures of habitat composition and 
habitat fragmentation, and to examine whether these variables 
complement each other when modeling species distribution of 
tropical birds. 

2. Methods 

2.1. Study area 

Our study area was Thailand's tropical forest area (Fig. 1). Forest 
covers approximately 163,765 km2 (about 30 % of the country), and 
major forest types are (a) montane evergreen forest, (b) dry evergreen 
forest, (c) lowland evergreen forest, (d) mixed deciduous forest, (e) dry 
dipterocarp forest, and (f) secondary-growth forest. Elevation ranges 
from 0 to 2564 m (DNP, 2000), annual precipitation ranges from 1000 to 
4000 mm, and average annual temperature from 26 to 29 ◦C (Thai 
Meteorogical Department, 2010). Thailand is a global biodiversity hot-
spot (Myers et al., 2000), and home to >1000 bird species (Bird Con-
servation Society of Thailand Records Committee, 2012). However, 
agriculture, illegal logging, and urban growth have caused habitat loss 
and fragmented forests in Thailand, and many bird species are threat-
ened (Laurance et al., 2012; Pattanavibool and Dearden, 2002; Sutti-
date, 2022). This is why there is an urgent need for ecologically relevant 
habitat metrics, consistently produced, for modeling distributions of 
individual bird species across broad areas. 

2.2. Data 

2.2.1. Study species and occurrence data 
We chose tropical forest birds in Thailand as our focal taxa for several 

reasons. First, there are many bird species in Thailand experiencing 
population decline due to habitat loss and fragmentation (Pattanavibool 
and Dearden, 2002; Suttidate, 2022). Second, each bird species' 
ecological niche is unique, so the heterogeneity of primary productivity 
may be closely related to various aspects habitat that birds select in 
association with various life history characteristics, including choice of 
nesting habitat, feeding habitat, mating sites, and migratory stopover 
sites. Heterogeneity may also be perceived differently by birds of 
different body size. Image texture may capture aspects of habitat het-
erogeneity that reveal how individual species respond to (Etard et al., 
2020; Newbold et al., 2016). Finally, birds are well studied taxon in 
Thailand, so there is good occurrence data available. 

To examine if texture performs better in modeling distributions of 
birds that share similar traits, we first grouped forest birds based on 
nesting habitat into the following guilds: (a) canopy nesting birds, (b) 
tree cavity nesters, (c) understory nesting birds, (d) ground nesting 
birds, and (e) all birds, which included all birds in the four guilds. 
Second, we grouped forest birds based on body size (average body mass 
of males and females) and classified them into four quartile groups: (1) 
body size >110 g (average 703 g), (2) body size from 31 g to 110 g, 
(average 52 g), (3) 15 g to 31 g (average 25 g), and (4) 5 g to 15 g 
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(average 9 g). We obtained all bird life history information from Birds of 
the World database (Billerman et al., 2020). 

As our source of birds locations, we obtained data on bird species 
occurrences from the Global Biodiversity Information Facility (GBIF) 
(http://www.gbif.org/) (GBIF.org, 2020). The GBIF data for birds in 
Thailand is mainly based on opportunistic observations and some field 
survey data, and includes data from eBird and iNaturalist. For our 
investigation of the ability of texture measures to predict bird distribu-
tions, we focused on resident forest bird species that inhabit the various 
forest types of Thailand all year round. We analyzed all georeferenced 
records collected from 2000 to 2015, to temporally coincide with our 
image texture and landscape metric data. We included all species with 
>30 unique localities, the minimum sample size required for species 
distribution modeling (Hernandez et al., 2006; Pearson et al., 2007). 
Using these criteria, we assembled 12,858 georeferenced locations of 86 
forest specialist bird species that were taxonomically distributed within 
5 orders and 28 families. All bird occurrence records were georeferenced 
to the spatial resolution of the environmental data (1 km). 

2.2.2. Texture measure data 
We calculated a suite of texture measures (Fig. 1) based on cumu-

lative annual productivity, one of the three Dynamic Habitat Indices that 

captures the amount of green vegetation that is available in a given pixel 
(DHIs http://silvis.forest.wisc.edu). The cumulative DHI that we 
analyzed was based on the median fPAR values from 2003 to 2015 at 1- 
km resolution, resulting in 13 cumulative DHI metrics (one for each 
year). For details on the DHIs calculation see (Hobi et al., 2017; Radeloff 
et al., 2019). 

We calculated three first-order texture measures: (a) entropy, (b) 
mean, and (c) coefficient of variation in a 3 × 3 pixel moving window. 
We also calculated eight second-order texture measures: (a) angular 
second moment, (b) contrast, (c) correlation, (d) dissimilarity, (e) en-
tropy, (f) homogeneity, (g) mean, and (h) coefficient of variation 
(Haralick et al., 1973). We selected these texture measures based on 
their ability to characterize vegetation structure, and hence relevant 
measures for modeling bird species distributions (Bellis et al., 2008; 
Hepinstall and Sader, 1997; Wood et al., 2012). We reduced the radio-
metric resolution of the imagery to 6 bits (64 values) to limit the size of 
the Grey Level Co-occurrence Matrix (GLCM) and avoid matrices that 
were too sparsely populated (Culbert et al., 2012). We calculated the 
texture measures on GLCMs composed of the mean of the four possible 
adjacent pixels (0◦, 45◦, 90◦ and 135◦) (Haralick et al., 1973). All texture 
measures were calculated using ENVI software. Many texture measures 
are correlated and we therefore applied a Pearson correlation coefficient 

(f) 

Lowland Evergreen
Dry Evergreen 
Montane Evergreen
Mixed Deciduous 
Dry Dipterocarp 
Secondary growth 

Fig. 1. Spatial patterns of habitat heterogeneity captured by the five texture measures of cumulative productivity (i.e., the cumulative Dynamic Habitat Index) 
derived from 1-km resolution MODIS fPAR and habitat composition measures: (a) First-order coefficient of variation, (b) second-order homogeneity, (c) second-order 
contrast, (d) second-order correlation, (e) second-order entropy, and (f) proportion of six forest habitat types. 
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threshold (|r| > 0.7) to exclude collinear variables (Dormann et al., 
2013) (Fig. A1). Using the threshold, we reduced the original eleven 
texture measures to five texture measures: (a) first-order coefficient of 
variation, and second-order, (b) homogeneity, (c) correlation, (d) 
contrast, and (e) entropy. 

2.2.3. Habitat composition data 
Habitat composition measures are commonly used to predict bird 

species distributions at broad scales (Jetz and Rahbek, 2002; Kerr and 
Packer, 1997; Kreft and Jetz, 2007). We calculated habitat composition 
at 1-km resolution based on categorical 30-m resolution land-cover data. 
Our land cover data source was the 2000 Thailand land cover map, 
derived from Landsat TM, ETM+ (DNP, 2000). We estimated the relative 
abundance of primary and second-growth forests in six forest habitat 
types: (a) montane-evergreen forest, (b) dry-evergreen forest, (c) 
lowland-evergreen forest, (d) mixed-deciduous forest, (e) dry- 
dipterocarp forest, and (f) secondary-growth forest. 

2.2.4. Habitat fragmentation data 
We calculated five fragmentation measures of forest habitat from the 

2000 Thailand land cover map: (a) core, (b) edge, (c) perforation, (d) 
bridge, and (e) loop by applying Morphological Spatial Pattern Analysis 
(MSPA) as implemented in GUIDOS (Vogt et al., 2007), setting the edge 
width to 30-m. MSPA is based on morphological image segmentation 
and results in a per-pixel classification and description of the geometry, 
pattern, fragmentation, and connectivity of a landscape (Soille and Vogt, 
2009; Vogt et al., 2007). Among our five fragmentation metrics, (a) core 
is defined as forest pixels whose distance to the non-forested areas is 
greater than the given edge width, and is considered focal habitat area 
for birds, (b) edge as those forest pixels whose distance to the patch edge 
is lower than or equal to the given edge width and corresponds to the 
outer boundary of a forest core area, (c) perforation is the edge within a 
forest interior where forested areas are adjacent to other land cover 
classes, (d) bridge is a set of contiguous non-core forest pixels connecting 
at least two forest patches, (e) loop is a group of pixels that connect 
different parts of the same forest patch (Saura et al., 2011; Soille and 
Vogt, 2009). 

2.3. Species distribution models 

We parameterized generalized linear models (GLM) using logistic 
regression to (a) evaluate how well fPAR MODIS texture measures alone 
can predict bird species distributions, and (b) evaluate whether 
combining measures of texture with habitat composition and fragmen-
tation variables derived from a land cover classification could improve 
model performance. We fitted six possible combinations of the different 
types of measures: (a) texture, (b) composition, (c) fragmentation, (d) 
texture + composition, (e) fragmentation + composition, and (f) texture 
+ fragmentation + composition. 

To check for multicollinearity among the 16 variables characterizing 
texture, habitat composition, and fragmentation, we calculated Pearson 
correlation coefficients and found that |r| < 0.7 among all variables 
(Fig. A2). To address potential nonlinearities in the relationship between 
species distributions and predictors, we included both linear and 
quadratic forms of the predictors in models. We selected the best model 
by ranking all models based on the Akaike Information Criterion (AIC). 
We conducted each model run with two sets of pseudo-absences, each 
chosen at random within 3 km of species presence locations, to obtain 
reliable distribution model predictions (Thuiller et al., 2009). We chose 
the 3-km buffer size based on the size of the home range of Wreathed 
Hornbill (Rhyticeros undulatus) during non-breeding season, which is 28 
km2 determined by a telemetry study in Khao Yai National Park, 
Thailand (Poonswad and Tsuji, 1994). We used Wreathed Hornbill home 
range because it is the largest bird we analyzed and individual home 
range size estimates for most of our other bird species were not avail-
able. We generated ten times as many pseudo-absences as we had 

presence records for each species (Barbet-Massin et al., 2012). 
To evaluate model performance, we used 10-fold cross-validation on 

the two pseudo-absence replicates, for a total of 20 replicates for each 
species (Elith et al., 2011). During model calibration, we gave equal 
weighting to presence data and pseudo-absence data. We used AUC 
values to test model performance, and considered values above 0.7 to be 
indicative of useful models (Elith et al., 2006; Swets, 1988). GLMs were 
fitted within the BIOMOD2 package (Thuiller et al., 2009). 

The importance of the variables included in each species' model was 
derived from default setting of BIOMOD2 package. Each variable's 
importance was calculated in BIOMOD2 by computing one minus the 
Pearson correlation coefficient between a model prediction with all 
variables and model prediction in which the considered variable was 
randomly permutated. Therefore, one minus the correlation coefficient 
represents the probability that the variable contributes to the model. The 
higher the probability, the more that variable contributed in predicting 
the distribution (Thuiller et al., 2009). We then computed the explained 
variance for each texture measure as a percentage. 

2.3.1. Species distribution model comparison 
To determine if including texture measures improved species distri-

bution models of tropical forest birds in Thailand, we compared the 
average AUC values for all birds in a given guild between models con-
structed with composition, texture, and fragmentation variables sepa-
rately, between composition versus texture + composition, and between 
fragmentation + composition versus texture + fragmentation +

composition. We used Wilcoxon signed rank tests for related samples to 
test for significant difference among models. Additionally, we checked if 
the texture + composition + fragmentation models for all bird species 
consistently included texture measures (Araújo and Luoto, 2007; Bate-
man et al., 2012). All statistical analyses were conducted in R program 
(RCoreTeam, 2021). 

3. Results 

3.1. Texture measures versus habitat composition and fragmentation as 
predictors of species distributions 

Texture measures alone predicted the distributions of our 86 tropical 
forest bird species well with an average AUC value of 0.801 ± 0.063 
(Table 1). However, the predictive accuracies of models varied consid-
erably among species, body size classes, and nesting guilds. Of all species 
modelled, Brown Hornbill (the combined records of Tickell's Brown 
Hornbill (Anorrhinus tickelli) and Austen's Brown Hornbill (A. austeni) 
(Kemp and Boesman, 2020)) had the highest AUC values, at 0.937 
(Table A1). When we compared each variable category separately, we 
found that the composition models (0.890 ± 0.055) outperformed 
fragmentation models (0.844 ± 0.040) (p < 0.05), and texture models 
(0.801 ± 0.063) (p < 0.05). However, we found again considerable 
variation in AUC values among species, and AUC values of the compo-
sition models were not the highest for all species. For example, texture 
measures predicted Grey Peacock-pheasant (Polyplectron bicalcaratum), 
Yellow-vented Flowerpecker (Dicaeum chrysorrheum), Greater Neck-
laced Laughingthrush (Pterorhinus pectoralis), Lesser Necklaced Laugh-
ingthrush (Garrulax monileger), and Buff-vented Bulbul (Iole charlottae) 
distributions better than measures of composition or fragmentation 
alone (Table A1). 

The AUC values of our models based on texture measures were 
significantly better for birds with larger body size (p < 0.05) (Fig. 2). 
While texture measures alone predicted distributions of birds in all four 
body size quartiles well, they best predicted birds with large body size 
(AUC score 0.823 ± 0.068) (Table 2). The composition-only models had 
significantly better AUC values than texture-only models and 
fragmentation-only models (p < 0.05) in all body size quartiles and 
when summarizing across all species (Figs. 3 and 4). 

Among nesting guilds, texture measures predicted each nesting guild 
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well with no significant difference among guilds (p > 0.05). However, 
models composed of fragmentation variables alone performed differ-
ently among nesting guilds. We found that birds that nest in tree cavities 
(0.853 ± 0.036) and on the ground (0.862 ± 0.044) had significantly 
higher AUC values than birds that nest in understory (0.834 ± 0.036) (p 
< 0.05). Again, composition models showed better predictive perfor-
mance than fragmentation-only models and texture-only models in all 
nesting guilds. Whereas fragmentation models performed significantly 
better than texture models for ground nesting birds and understory 
birds, there was no significant difference for canopy and cavity birds. In 
addition, texture + composition models significantly outperformed 
fragmentation + composition models for understory birds (p < 0.05) but 
not for canopy, cavity, and ground nesting birds (Fig. 3). 

3.2. Texture measures complement other habitat variables in species 
distribution models 

In models for all bird species, texture variables complemented the 

other habitat variables well, and models that combined the three types 
of variables had the best performance. The incorporation of texture 
measures with habitat composition and fragmentation measures signif-
icantly improved species distribution models for the 86 bird species, on 
average 0.938 ± 0.034 SD (Table 1). In addition, the models including 
all measures for all bird species consistently included texture measures, 
especially contrast and homogeneity (Fig. 6). Likewise, including 
texture measures significantly improved model performance compared 
with habitat composition-only models from an average of 0.890 ± 0.055 
SD to 0.928 ± 0.038 SD for all species (p < 0.001) (Table 1 and Fig. 3). 
Interestingly, the models that combined texture with composition 
(0.928 ± 0.038) were significantly better than those that combined 
fragmentation with composition (0.905 ± 0.047) (p < 0.05). 

Among different body size quartiles, adding texture measures to 
composition-only models and to fragmentation + composition models 
significantly improved model performance for birds with large body size 
(0.924 ± 0.030 versus 0.896 ± 0.046), and for birds with small body 
size (0.938 ± 0.035 versus 0.913 ± 0.041) (p < 0.05). However, 

Table 1 
AUC scores (average and standard deviation) for species distribution models including texture, composition, and fragmentation, separately and in combination. Results 
are shown for all 86 species together, and grouped by bird nesting guilds.  

Nesting guild Texture Composition Fragmentation Texture + Composition Fragmentation + Composition All 3 variable categories 

All species 0.801 0.890 0.844 0.928 0.905 0.938 
(86 species) ± 0.063 ± 0.055 ± 0.040 ± 0.038 ± 0.047 ± 0.034 
Canopy 0.806 0.900 0.846 0.934 0.912 0.939 
(11 species) ±0.086 ±0.039 ±0.043 ±0.042 ±0.040 ±0.040 
Cavity 0.817 0.894 0.853 0.927 0.911 0.939 
(17 species) ±0.071 ±0.054 ±0.036 ±0.035 ±0.044 ±0.027 
Understory 0.788 0.884 0.834 0.923 0.895 0.934 
(45 species) ±0.052 ±0.055 ±0.036 ±0.041 ±0.052 ±0.036 
Ground 0.820 0.895 0.862 0.938 0.926 0.950 
(13 species) ±0.057 ±0.069 ±0.044 ±0.027 ±0.034 ±0.025  

Body size 
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Fig. 2. Relationship between texture measures and bird body size: (a) relationship between AUC values for texture only-models and average body size for all in-
dividual birds, (b) comparison AUC values among different bird body size groups. 

Table 2 
AUC scores (average and standard deviation) for species distribution models including texture, composition, and fragmentation, separately and in combination. Results 
are shown for all 86 bird species grouped by quartile of body mass; number is average body mass (grams) within the quartile.  

Body size Texture Composition Fragmentation Texture + Composition Fragmentation + Composition All 3 variable categories 

Q1 0.823 0.874 0.846 0.924 0.896 0.933 
(703.190 g) ±0.068 ±0.067 ±0.049 ±0.030 ±0.046 ±0.027 
Q2 0.793 0.897 0.854 0.930 0.918 0.940 
(51.98 g) ±0.045 ±0.048 ±0.033 ±0.034 ±0.040 ±0.027 
Q3 0.789 0.885 0.832 0.919 0.893 0.931 
(24.57 g) ±0.066 ±0.057 ±0.038 ±0.048 ±0.059 ±0.045 
Q4 0.795 0.900 0.840 0.938 0.913 0.949 
(9.11 g) ±0.060 ±0.046 ±0.032 ±0.035 ±0.041 ±0.029  
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medium size birds showed no significant difference. For models 
including all variables, birds with small body size (0.949 ± 0.029) had 
significantly better AUC values than birds with large body size (0.933 ±
0.027) (p < 0.05) (Fig. 4). 

Among nesting guilds, adding texture measures to composition-only 
models significantly improved model performance for ground (p < 0.05) 

and understory nesters (p < 0.001). Furthermore, models included all 
variables significantly improved model performance for cavity (p <
0.05) and understory nesters (p < 0.001) (Fig. 3). We found that there 
was no model improvement when incorporating texture measures for 
canopy nesters, and there were no significant differences between 
texture-only models and fragmentation-only models, or between texture 

(c)

(a)

(e)

(d)

(b)

Fig. 3. Species distribution model comparisons for (a) all birds, (b) birds nested in tree canopy, (c) tree cavity, (d) understory, and (e) ground.  
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+ composition models versus fragmentation + composition models. 

3.3. Variable importance of different texture measures 

Second-order homogeneity was the best predictor of overall bird 
species distributions when using texture measure alone (Fig. 5). Among 

nesting guilds canopy, cavity, and understory nesters were most strongly 
associated with second-order homogeneity, while ground nesters were 
most strongly associated with second-order entropy. Among different 
body size groups, larger birds were strongly associated with second- 
order homogeneity and entropy whereas smaller birds were highly 
associated with second-order homogeneity and contrast. Contrast was 

Fig. 4. Species distribution model comparisons for different bird body size groups: (a) large body size birds (Q1), (b) medium body size birds (Q2), (c) medium body 
size birds (Q3), and (d) small body size birds (Q4). 

Fig. 5. Variable importance of five texture measures contributed to bird distribution model. Variable importance is calculated as a percentage for (a) all birds and 
birds nested in tree canopy, tree cavity, understory, and on the ground, (b) for different bird body size groups. 
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the best complementary measure in models that included all variables 
(Fig. 6). The nature of the relationships between texture measures and 
species distributions varied, being positive, negative, or nonlinear for 
different species and guilds. Almost all texture measures had nonlinear 
relationships in the most parsimonious model for each species (lowest 
AIC) (results not shown). For example, for the Brown Hornbill, which 
had the highest model accuracy, we found that the probability of 
occurrence increased as homogeneity and correlation values increased 
but not linearly, while the probability of occurrence decreased as coef-
ficient of variation and contrast increased. The probability of occurrence 
was highest at medium entropy values. These results indicate that the 
probability of occurrence of Brown Hornbill was highest in the most 
homogeneous forest cover (Fig. 7). 

4. Discussion 

Our goal was to evaluate the utility of image texture derived from 
satellite data as proxies for habitat heterogeneity, and to incorporate 
texture measures with habitat composition and habitat fragmentation 
measures in avian habitat models in tropical forest, Thailand. We found 
that image texture measures derived from cumulative primary produc-
tivity of 1-km MODIS fPAR effectively predicted the distributions of 
tropical forest birds across Thailand. Texture measures performed well 
in bird species distribution models for a range of body sizes and nesting 
guilds, and large-bodied species were predicted especially well. Addi-
tionally, we found that the incorporation of image texture, habitat 
composition, and habitat fragmentation improved the predictions of 
models significantly for all birds, and for different body sizes and nesting 
guilds. 

Our results are in line with previous findings that image texture 
measures contribute to predicting bird distributions (Bellis et al., 2008; 
St-Louis et al., 2014). We advanced understanding of the contribution of 
image texture to predicting species distributions through our findings 
that image texture derived from 1-km MODIS data (versus finer reso-
lution data) provides considerable predictive power, and that this is true 
for tropical forest bird species, a group that was previously not explored. 

Texture measures predicted the distributions for forest bird species 
with large body size best. This may be because large birds, such as 
hornbill, woodpecker, and pheasant species perceive and utilize forest 
structure at broader scales than smaller species, and thus are more 
affected by forest heterogeneity as captured by 1-km resolution MODIS 
data. We also compared the predictive power of texture measures for 
different nesting guilds, and found that texture measures predicted birds 
in all nesting guilds equally well, including ground, understory, tree 
cavity, and canopy nesters. While modeling bird distribution patterns 

has been effective in habitats with low vertical structure, such as 
grassland (Bellis et al., 2008), and for habitat generalists in temperate 
forests (Hepinstall and Sader, 1997), our results highlight that image 
textured derived from MODIS fPAR can capture habitat heterogeneity 
and successfully predict species distribution patterns even in tropical 
forests with their highly complex vertical and horizontal structure. 

When comparing model accuracy of the texture-based models with 
those based on habitat composition and fragmentation, composition 
measures outperformed fragmentation and texture measures across 
different nesting guilds and body size groups, as we expected. This 
supports the theory that structural heterogeneity of vegetation structure 
is more important in explaining species diversity at small-scales (Bellis 
et al., 2008; St-Louis et al., 2010; St-Louis et al., 2014), but spatial 
patterns of landscape elements are more important at broad-scales 
(Culbert et al., 2012; Hutto, 1985; Wood et al., 2016). However, we 
did find exceptions to this theory, in that birds nesting in tree canopy, 
tree cavities, and large bodied birds showed no significant difference in 
model accuracy when modeling with texture-only variables or 
fragmentation-only variables. We speculate that this may be because of 
large body size birds, and birds that nest in tree canopies or tree cavities 
may perceive within-forest areas of low structural complexity similarly 
to their perception for fragmented forest. 

Texture measures complemented habitat composition measures 
significantly, and the combination of texture and composition out-
performed the combination of composition and fragmentation measures 
in predictions of all birds, understory birds, and birds of both large and 
small body size. This indicates that texture measures successfully 
captured detailed habitat heterogeneity, which can complement mea-
sures of habitat composition when predicting patterns of species distri-
butions. Given this, we suggest that texture–based MODIS fPAR 
measures can contribute to a better understanding of patterns of species 
distributions and diversity at broad temporal and spatial scales. The 
combination of texture with habitat composition and fragmentation 
measures yielded the highest model accuracies. Interestingly, the best 
models included a relatively even mix of texture, fragmentation, and 
habitat composition suggesting that each measure is important and is 
complementary to the other measures, in that it contributes to different 
factors that shape species distributions, and each species may respond to 
those factors differently. 

Among the texture measures, second-order homogeneity was most 
important in predicting tropical forest bird distributions and exhibited 
nonlinear relationships with most species. Second-order homogeneity is 
a measure of uniformity and is high when adjacent pixels have similar 
reflectance values, suggesting that tropical bird occurrences are more 
likely in homogeneous habitats. This may be related to the fact that 

Fig. 6. Variable importance of all three categories of texture, habitat composition and fragmentation contributed to bird distribution models. Variable importance is 
calculated as a percentage for (a) all birds and birds nested in tree canopy, tree cavity, understory, and on the ground, (b) for different bird body size groups. 
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among different forest types, evergreen forests are generally more 
texturally homogenous than deciduous forests and secondary-growth 
forests (Fig. A3). Most of our study species inhabit evergreen forests, 
which may be why homogeneity of habitat was more important than 
other texture measures. In contrast, we found that second-order entropy 
was the most important factor in predicting ground nesting species, such 
as pheasants and partridges. Birds nesting on the ground utilizes a va-
riety of forest habitat structure from evergreens to scrub and have a 
mixed diet of invertebrate, grains, buds, seeds, and fallen fruits. Ground 
nesters may therefore respond positively to higher heterogeneity 
(Tuanmu and Jetz, 2015; Wallis et al., 2016; Wood et al., 2016). 

Texture measure derived from MODIS fPAR improved model pre-
dictions for tropical bird distributions, but many texture measures are 

difficult to interpret in terms of their relationships with individual 
species and ecological processes (Bar-Massada and Wood, 2014; Culbert 
et al., 2012). To improve ecological interpretability, we developed 
texture measures based on fPAR rather than individual spectral bands of 
satellite imagery (Estes et al., 2010; Tuttle et al., 2006). Texture mea-
sures from MODIS fPAR can be conceptualized as a measure of spatial 
variability and spatial arrangement of vegetation productivity (i.e., the 
available energy within a landscape). This makes texture measures 
based on fPAR more ecologically meaningful and thus more applicable 
for biodiversity modeling at broad-scales (Coops et al., 2009; Hobi et al., 
2017; Radeloff et al., 2019). For example, we found that second-order 
homogeneity, which reflects uniformity of green biomass, was the 
most important texture measure in models of the distribution of large 

Fig. 7. Response curves depict the relationship between the probability of occurrences of Brown Hornbill and texture measures: (a) coefficient of variation, (b) 
contrast, (c) correlation, (d) entropy, and (d) homogeneity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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bodied birds, especially those that utilize large tree canopies and cav-
ities, such as hornbills. We suggest that these species require highly 
productive habitat and may perceive areas of homogeneous primary 
productivity within a large area as suitable habitat for foraging and 
nesting. However, the ecological meaning of texture based on 1-km 
MODIS fPAR differs from texture measures derived from higher reso-
lution remote sensing images, such as 30-m Landsat data, and the two 
capture different aspects of vertical and horizontal complexity of vege-
tation structure (Wood et al., 2012). For example, 1-km texture mea-
sures can capture habitat heterogeneity aspects that are more 
meaningful for larger birds with large home ranges, while 30-m Landsat 
can capture a variety of microhabitats that are more important for 
smaller birds or birds that can persist in disturbed habitat or birds that 
require complex habitat for nesting, foraging, or predator avoidance. 
MODIS 1-km spatial resolution may have been one reason for the 
somewhat lower predictive power for some smaller body size species 
utilizing understory habitat. However, the lower temporal frequency of 
Landsat images can make it challenging to acquire cloud free imagery 
that characterizes the same phenological stages over broad spatial scales 
as MODIS does (Culbert et al., 2009; Wallis et al., 2016), and MODIS 
data is also more user-friendly because derived products, such as fPAR, 
are available across the globe. 

4.1. Study limitations 

Limited availability of occurrence data for some bird species, 
particularly endangered and threatened species, make our texture 
measure analysis of the distributions of these species less reliable. 
Additionally, there were four bird species for which body mass and 
length estimates were unavailable, which is why we had to exclude them 
from our analyses of body size versus texture measures. More generally, 
we could only analyze occurrence points, and lacked true absence data, 
which would have strengthened our analysis of texture measures in 
species distribution models. However, our finding demonstrated that 
texture measures had high predictive performance with presence-only 
data, suggesting texture can be useful in characterizing habitat struc-
ture in species distribution models. Furthermore, while it was beyond 
the goals of our study, incorporating texture measures with other habitat 
variables, such as climate and disturbances, to predict bird distributions 
could improve prediction accuracy for conservation planning purposes. 

4.2. Conservation implications 

Our results showed that texture explained tropical bird distributions 
well, particularly for species with large body size, and canopy and cavity 
nesting species. This suggests that species distribution models would 
benefit from inclusion of texture measures as proxies for habitat het-
erogeneity, because habitat heterogeneity is difficult to assess directly, 
but has a large influence for the distribution of many bird species. 

Texture measures from MODIS can overcome the limited availability 
of medium-resolution (i.e. 30 m) remotely sensed data in tropical re-
gions. While Landsat data offers the advantage of 30-m resolution, 
frequent cloud cover limits its availability in many tropical regions. 
Moreover, MODIS texture measures derived from proxies of primary 
productivity measure not only represent horizontal and vertical 
complexity of tropical forests but also reflect the amount of energy 
available for species. 

Texture can be incorporated into species distribution models with 
other variables such as disturbance, land use change, and climate to 
predict potential suitable habitat and improve distribution maps in 
order to more accurately identify priority areas for conservation and 
potentially expand protected areas, improve connectivity, and monitor 
forest quality. Furthermore, texture measures could be used as in-
dicators to assess deforestation effects on birds in tropical regions. For 
example, pristine evergreen forests are highlighted in texture analyses 
due to their high homogeneity, whereas deforested areas have values in 

contrast or entropy metrics. Using this technique, species distributions 
and conservation status can be rapidly updated when new occurrence 
data or new satellite data become available. 

In summary, we found that texture measures derived from coarse- 
resolution MODIS data are valuable when predicting tropical forest 
bird species distribution patterns across large areas. Texture measures 
derived from MODIS fPAR captured habitat heterogeneity for several 
taxonomic groups, and across a variety of forest habitats, ranging from 
secondary-growth forests to moist evergreen forests. The combination of 
texture measures and with composition and fragmentation metrics 
improved model performance highlighting the texture provided com-
plementary information. The successful application of texture-based 
MODIS fPAR indicate its broader applicability for biodiversity assess-
ments as a promising tool for assessing and predicting biodiversity 
patterns in response to environmental change. 
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