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A B S T R A C T   

Animals select habitat at multiple spatial scales, suggesting that biodiversity modeling, for example of species 
richness, should be based on environmental data gathered at multiple spatial scales, and especially multiple grain 
sizes. Different satellite sensors collect data at different spatial resolutions and therefore provide opportunities 
for multi-grain habitat measures. The dynamic habitat indices (DHIs), which are derived from satellite data, 
capture patterns of vegetative productivity and predict bird species richness well. However, the DHIs have only 
been analyzed at single resolutions (e.g., 1-km), and have not yet been derived from high-resolution satellite data 
(< 10 -m). Our goal was to predict bird species richness based on measures of vegetation productivity (DHIs, 
NDVI median and NDVI percentile 90th) across a range of spatial resolutions both from different sensors, and 
from resampled high-resolution imagery. We analyzed bird species richness within 215 forest, grassland and 
shrubland plots (56.25 ha) located at 26 terrestrial field sites of the National Ecology Observatory Network 
(NEON), in the continental US. To obtain our multi-resolution measures of vegetation productivity, we acquired 
data from Planetscope (3-m), RapidEye (5-m), Sentinel-2 (10-m), Landsat-8 (30-m) and MODIS (250-m) from 
2017 to 2020, generated time series of NDVI, calculated the three DHIs (cumulative, minimum and variation), 
NDVI median and the 90th percentile NDVI and calculated 1st and 2nd order texture measures. We evaluated the 
performance of the derived measures to predict bird species richness of habitat specialist guilds based on (i) 
univariate models (ii) multivariate models with single-resolution measures and (iii) multivariate models with 
multi-resolution measures. Single-spatial resolution measures predicted bird species richness moderately well (R2 

up to 0.51) and the best performing spatial resolution and measure differed among bird species guilds. High- 
spatial resolution (3–5 m) measures outperformed medium-resolution measures (10–250 m). Models for all 
guilds performed best when incorporating multiple resolutions, including for all species richness (R2 = 0.63) and 
for forest (R2 = 0.72), grassland (R2 = 0.53) and shrubland specialists (R2 = 0.46). In addition, models based on 
multi-resolution data from different sensors performed better than models based on resampled high-resolution 
data for any of the guilds. Our results highlight, first, the value of the DHIs derived from high-resolution sat-
ellite data to predict bird species richness and, second, that remotely-sensed vegetation productivity measures 
from multiple spatial resolutions offer great promise for quantifying biodiversity.   

1. Introduction 

Ecological theory suggests that environmental data with multiple 
resolutions can capture habitat heterogeneity better than those with just 
a single resolution (Mayor et al., 2009). Furthermore, because birds 
select habitat at multiple spatial scales, inclusion of environmental data 

of different spatial resolutions, or ‘grains’, is necessary when predicting 
bird species richness (McGarigal et al., 2016). Habitat heterogeneity is 
related to the spectral variation captured by remote sensing images, as 
stated in the spectral variability hypothesis (Palmer et al., 2000), how-
ever, relationships between spectral variation, habitat heterogeneity 
and species diversity are affected by scale (Fassnacht et al., 2022). 
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Among the two aspects of scale, grain and extent (Guisan and Thuiller, 
2005; Jackson and Fahrig, 2012, 2015), we focus here on grain. 
Analyzing bird-habitat relationships at a single grain, such as satellite 
data with a single spatial resolution, fails to fully capture the multiple 
spatial scales at which birds select habitat (Cushman and McGarigal, 
2004). Combining data from multiple grains can better capture impor-
tant local and landscape features across different habitat types and 
features of interest, improving models of all-bird richness and the rich-
ness of habitat specialists. 

Satellite data provide exceptional opportunities for habitat measures 
at a wide range of grains ranging from sub-meter to kilometer (Estes 
et al., 2008; Woodcock and Strahler, 1987). Grain size is especially 
important when utilizing image textures (Haralick et al., 1973) derived 
from individual reflectance bands or vegetation indices to quantify 
biodiversity (Culbert et al., 2012; Farwell et al., 2020, 2021; Tuanmu 
and Jetz, 2015). For example, high-resolution image texture from 1-m 
aerial photos explains up to 57% of the variability in bird species rich-
ness in a semiarid landscape in US (St-Louis et al., 2006). Similarly, 
textures derived from RapidEye (5-m), SPOT-5(10-m), and Aster (15-m) 
images are strong predictors of bird species richness in Turkish pine 
forests (R2 = 0.73) (Ozdemir et al., 2018). Across grassland, shrubland, 
and forest sites in the conterminous US, medium-resolution Sentinel-2 
(10-m) and Landsat-8 (30-m) texture measures of vegetation heteroge-
neity perform well in bird species richness models (Farwell et al., 2020, 
2021). Similarly, productivity measures derived from MODIS-1-km 
(Moderate Resolution Imaging Spectroradiometer) data are strong pre-
dictors of bird species richness both across the conterminous US (Hobi 
et al., 2017, 2021) and globally (Radeloff et al., 2019). However, bird 
biodiversity models are usually based on satellite data from one sensor 
and hence with a single spatial grain. The question is if it is beneficial to 
combine data from different satellite sensors with different grains as 
ecological theory predicts (McGarigal et al., 2016). 

Spatial resolution affects which vegetation characteristics are 
captured by satellite images and that may affect how well they can 
predict bird species richness (Bar-Massada et al., 2012). In general, the 
explanatory power of higher resolution data outperforms that of coarser 
resolution data in models of bird species richness because finer resolu-
tion data can better capture vegetation complexity that is important for 
bird communities (e.g., vegetation height heterogeneity) (Farwell et al., 
2021). For example, vegetation measures based on 2-5 m resolution 
imagery outperform those derived from 10 to 250 m in models of 
woodlands bird species richness in France (Sheeren et al., 2014) and 
pine forests in Turkey (Ozdemir et al., 2018). Similarly, medium- 
resolution Sentinel-2 (10-m) texture measures outperform 30-m 
texture measures in models of bird species richness in the US (Farwell 
et al., 2021). 

However, measures derived from high spatial resolution data do not 
always have good performance in biodiversity models (e.g., models of 
tree species or bird species richness), particularly if pixels are much 
smaller than habitat features of interest or when there is high intra-class 
spectral variability, such as among the crown, shade, leaves, and bark of 
trees (Nagendra and Rocchini, 2008). Conversely, if spatial resolution is 
too coarse, then small or dispersed habitat features and finer resolution 
landscape characteristics that influence animal distributions may be lost 
(Gottschalk et al., 2011; Turner, 1989). The size, complexity, and spatial 
arrangement of landscape features will depend on habitat type 
(Nagendra, 2001), and the scale-dependence of many landscape metrics 
suggests there is no single grain that is optimal for all habitat types and 
landscape patterns (Wu et al., 2002). The grain at which birds select 
their habitat is often unknown, which is especially problematic when 
dealing with many species. 

In addition to spatial resolution, it is important to consider which 
satellite image measures explain bird species richness patterns best. 
Remotely-sensed productivity measures are good indicators of available 
energy and habitat heterogeneity. More available energy can support 
higher species richness (Wright, 1983) and the spatial variability or 

spatial heterogeneity of vegetated surfaces affects species richness. The 
spectral variability hypothesis states that species richness will be posi-
tively related to spatial measure (e.g., standard deviation). Higher 
spectral variation of remote sensing images is related to higher habitat 
heterogeneity (Palmer et al., 2000) and hence higher bird species rich-
ness (St-Louis et al., 2006). For example, the dynamic habitat indices 
(DHIs) (Berry et al., 2007), which summarize satellite data in three 
indices relevant for biodiversity (cumulative, minimum, variation) are 
strong predictors of bird species richness in North America (Coops et al., 
2009a, 2009b; Hobi et al., 2017, 2021), Asia (Suttidate et al., 2019; 
Zhang et al., 2016), and globally (Coops et al., 2018; Radeloff et al., 
2019). 

Image texture analysis holds promise for quantifying habitat het-
erogeneity in structurally complex landscapes (Wood et al., 2012), 
which is why texture measures are also strong predictors in models of 
bird species richness (Farwell et al., 2021). Image texture can be derived 
from individual reflectance bands (Lu and Batistella, 2005), vegetation 
indices such as the as the Normalized Difference Vegetation Index 
(NDVI) (Wood et al., 2012, 2013), or annual measures of productivity, 
such as the cumulative DHI (Carroll et al., 2022). For example, homo-
geneity texture measure derived from cumulative DHI is an effective 
predictor in models of tropical forest birds’ richness (Suttidate, 2016). 
However, while DHIs and derived measures have been successfully 
employed in biodiversity models, they were always obtained at a single 
grain (medium or coarse spatial resolution). Furthermore, DHIs derived 
from high-resolution data have yet to be derived and tested in bird 
species richness models. Accordingly, the question remains if measures 
derived from DHIs across multiple spatial resolutions can better predict 
total species richness and richness of forest, grassland and shrubland 
specialists and if high-resolution DHI measures have higher explanatory 
power than medium-resolution measures in models of bird species 
richness. 

Our goal here was to predict bird species richness based on measures 
of vegetation productivity derived at multiple spatial resolutions. Spe-
cifically, we aimed to:  

(1) calculate DHIs (cumulative, minimum and variation), median 
NDVI and the 90th percentile NDVI to derive a suite of vegetation 
productivity measures (1st and 2nd order textures) based on 
PlanetScope (3-m), RapidEye (5-m), Sentinel-2 (10-m), Landsat-8 
(30-m), and MODIS (250-m) NDVI data;  

(2) evaluate the performance of vegetation productivity measures in 
univariate models of bird species richness. We expected that all 
productivity measures would have a positive relationship with 
bird species richness, but high-resolution measures would have 
higher explanatory power than lower resolution measures;  

(3) assess if there is a best-performing resolution and measure to 
predict richness. We expected that best-performing resolution 
and measure differs by bird habitat guild because forest, grass-
land, and shrubland habitats are typified by landscape features 
and patterns of differing size and complexity, so that birds that 
specialize in each of these habitats may be more or less responsive 
to habitat measures at different resolutions;  

(4) compare the performance of the multi-resolution productivity 
measures versus single-resolution 3-, 5-, 10-, 30-, and 250-m 
NDVI data in multivariate models to predict all-species richness 
and richness of forest, grassland and shrubland habitat specialist 
guilds. We predicted that multi-resolution models would 
outperform single resolution models;  

(5) resample the high-resolution data (3-m, PlanetScope) to 5-, 10-, 
30-, and 250-m to compare resampled productivity measures 
versus original sensor-derived measures in bird species richness 
models. 
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2. Methods 

2.1. Study area 

Our study area encompassed 215 plots located within 26 terrestrial 
sites of NEON (National Ecological Observatory Network) in the conti-
nental US (Fig. 1). Each site has a variable number of plots (ranging from 
1 to 13) depending on the size of the site. Plots were places based on a 
spatially balanced random design (Barnett et al., 2019a, 2019b) and all 
plots are separated by a minimum distance of 250-m. We selected sites 
where bird data was available and which are dominated by forests (106 
plots), grasslands (49 plots), or shrublands (60 plots), totaling 215 plots. 
NEON sampling plots are 750 × 750 m in size (56.25 ha). We selected 
sites dominated by forests, grasslands, and shrublands because these 
represent broad-scale vegetation associations for breeding birds in the 
US. 

2.2. NEON bird data 

To calculate bird species richness, we analyzed the NEON breeding 
landbird dataset from 2017 to 2020 (NEON, 2020). The dataset is 
designed to characterize landbirds, i.e. terrestrial species exclusive of 
raptors and upland game birds, but not typically associated with aquatic 
habitats (Thibault, 2020). Birds were sampled using point counts, which 
were conducted by skilled, paid observers who had prior experience 
conducting avian field surveys and who had received a score of >90% on 
a NEON-administered test of knowledge of birds by sight and sound 
(Thibault, 2020). Each site was surveyed by 1–3 observers annually, 
often by the same observers across years, with a total of 49 unique ob-
servers conducting counts at the 26 terrestrial sites from 2017 to 2020 
(NEON, 2020). Counts at each point consisted of a 2-min settling-in 
period followed by a 6-min count period during which all birds seen 
and heard were recorded (Thibault, 2020). Counts were conducted 
during the early morning, from 30 min before sunrise, given sufficient 
light to identify birds visually, and ended no later than 5 h after official 

sunrise, depending on the weather and other ambient conditions (Thi-
bault, 2020). Counts were conducted annually, during the optimal 
sampling window for breeding birds at each site (specific sampling 
windows listed in Thibault, 2020), although we cannot know whether 
every bird detected was breeding or attempting to breed. Within each 
sampling plot, birds were surveyed at nine points distributed in a 3 × 3 
array, with 250-m spacing between points (Fig. 1). We excluded species 
that were poorly sampled and observations >125 m from the observer. 
Additional information on the landbird dataset is available at NEON 
Breeding landbird point counts, 2020. We aggregated data on bird 
species presence from 2017 to 2020 to calculate total species richness as 
the cumulative number of species recorded within each sampling plot, 
across all years of the study. We also calculated richness within three 
habitat specialist guilds: forest (75 species), grassland (14 species), and 
shrubland (27 species). 

2.3. Multi-resolution measures of vegetation productivity 

We generated our measures of vegetation productivity in four steps: 
(1) image acquisition, (2) calculation of time series of NDVI, (3) calcu-
lation of DHIs, median and the 90th percentile NDVI, (4) calculation of 
texture measures. Then, to obtain our multi-resolution measures of 
vegetation productivity within NEON sites (objective 1), we acquired 
data from satellite sensors with different spatial resolutions from 2017 to 
2020: PlanetScope (3-m), RapidEye (5-m), Sentinel-2 (10-m), Landsat-8 
(30-m) and MODIS (250-m). We used all images from all seasons from 
2017 to 2020 to match the available NEON bird data and to generate a 
monthly composite from which to calculate DHIs. We selected the NDVI 
as our vegetation productivity proxy because it can be calculated from 
all sensors, whereas actual measures of productivity, such as GPP (gross 
primary productivity), can not. 

We acquired cloud-free images of Planet Surface Reflectance (SR) 
Product (4-band scene orthorectified, surface reflectance, 16 bit) and 
RapidEye ortho tile product Level 3A (5-band scene, orthorectified, 
surface reflectance, 16 bit) from planet explorer (Planet Team, 2021). 

Fig. 1. The NEON terrestrial sites in the continental US and the moving window sizes that we used to calculate texture measures from PlanetScope, RapidEye, 
Sentinel-2 Landsat-8, and MODIS NDVI images. 
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For Sentinel-2 and Landsat-8, we analyzed surface reflectance data (12 
bit), available in Google Earth Engine (“COPERNICUS/S2_SR” and 
“LANDSAT/LC08/C01/T1_SR”, respectively) (Gorelick et al., 2017). We 
used the Sentinel-2 and Landsat-8 scene classification band to mask 
clouds, shadows, and snow (Foga et al., 2017). For MODIS we analyzed 
the NDVI from MOD13Q1, Collection 6.1, 12 bit, available in Google 
Earth Engine (Gorelick et al., 2017). We also masked clouds, shadows 
and snow based on MODIS quality assurance (QA) flags. Details on QA 
flags for Sentinel-2, Landsat-8 and MODIS are presented in Table S1. 

For PlanetScope, RapidEye, Sentinel-2 and Landsat-8 (for MODIS we 
used MOD13Q1 NDVI product), we then calculated NDVI. We did not 
adjust the NDVIs to account for differences in bands among sensors, 
because we wanted to maintain the original spectral sensor character-
istics when calculating NDVI (Table S2). However, the differences are 
relatively small when vegetation indices are calculated from surface 
reflectance data (Guyot and Gu, 1994; Steven et al., 2003). Thus, based 
on the NDVI from each sensor, first, we selected the highest NDVI value 
in each month of each year from 2017 to 2020. Second, we selected 
median monthly values to generate a monthly time series. We then 
summed the values to generate the cumulative DHI (Fig. 2), selected the 
minimum value to have the minimum DHI and calculated the coefficient 
of variation to generate the variation DHI. Pixels classified as snow (zero 
productivity) we set to zero. In addition, to ensure we did not have to fill 
any gaps due to cloud cover, we computed the valid observation in each 
pixel to ensure we had at least two valid pixel per month among the four 
possible years. We also calculated median NDVI, and the 90th percentile 
NDVI of each sensor. 

Finally, we calculated 1st and 2nd order texture metrics (Haralick 
et al., 1973) based on the three DHIs (cumulative, minimum and vari-
ation), the median NDVI, and the 90th percentile NDVI of each sensor. 
For the texture analyses, we applied moving windows of 250 × 250 
pixels for PlanetScope, 151 × 151 pixels for RapidEye, 75 × 75 pixels for 

Sentinel-2, 25 × 25 pixels for Landsat-8 and 3 × 3 pixels for MODIS. We 
assumed that sensors geolocation errors did not affect our analysis 
because our moving window sizes are large in terms of the number of 
pixels that were included, and thereby compensate for such errors. The 
only possible is MODIS (3 × 3 window size), however MODIS data have 
excellent geolocation accuracy with means close to zero and root-mean- 
square errors (RMSEs) of only 54 m (Lin et al., 2019). 

We adopted different window sizes in order to capture the same 
spatial extent (56.25 ha equivalent to the size of a single NEON plot) 
with each sensor (Fig. 1). For each resolution, we calculated two 1st 
order texture measures (statistical summaries of mean and standard 
deviation), and three 2nd order texture measures (GLCM; gray- level co- 
occurrence matrix): homogeneity (contrast group), uniformity (order-
liness group) and correlation (descriptive statistics group). We chose 
these textures because they are less correlated with each other than 
other textures and provide high predictive power in bird species richness 
models (Farwell et al., 2021). We extracted the value of the central pixel 
of the moving window to obtain our 25 measures for each spatial res-
olution and for each plot (total of 125 measures) (Table S3). 

To calculate the 2nd order texture metrics, we reduced the quanti-
zation level of all NDVI images to 8-bit (GLCMs with dimensions of 256 
rows × 256 columns) to minimize zeros in the co-occurrence matrix. 
Because the GLCM summarizes the likelihood that specific combinations 
of gray levels will occur next to each other, an image with a higher 
number of gray levels will tend to contain mostly zeroes because any two 
gray levels are unlikely to occur next to each other in a given analysis 
window. 

2.4. Statistical analyses 

Our statistical analysis encompassed three main steps: (i) univariate 
models of bird species richness, (ii) multivariate models of bird species 

Fig. 2. Examples of the input data for forest, grassland and shrubland habitats (rows 1–3). Columns: (a) true-color satellite image from Google Earth (WorldView 
images acquired in 10/22/2019, 10/20/2017 and 06/11/2021 for forest, grassland and shrubland habitats, respectively); (b) NDVI Cumulative DHI from Planet-
Scope (3-m); (c) NDVI Cumulative DHI form RapidEye (5-m); (d) NDVI Cumulative DHI from Sentinel-2 (10-m); (e) NDVI Cumulative DHI from Landsat-8 (30-m); (f) 
NDVI Cumulative DHI from MODIS (250-m). We calculated the DHIs based on available images from each respective sensor from 2017 to 2020. Squares represent 
750 × 750 m NEON plots. 
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richness, and (iii) hierarchical partitioning analysis. To evaluate the 
performance of our measures in univariate models of bird species rich-
ness (objective 2) and assess if there is a best performing resolution and 
measure (objective 3), we explored the relationships between our 125 
measures versus the richness of all bird species and of habitat guild 
specialists in univariate linear regression models. We based the selection 
of best predictors on the coefficient of determination-R2 > 0.30 (Moore 
et al., 2013). 

For objective 4 we compared the performance of the multi-resolution 
measures (3-250 m) versus 3-, 5-, 10-, 30-, and 250-m single spatial 
resolution NDVI in models of bird species richness. To do so, we fitted 
multivariate models of bird species richness including all 125 predictors 
for each habitat group. We generated linear models with all possible 
subsets of predictors for each category (3-, 5-, 10-, 30-, and 250 and 3- 
250 m) to identify the top-ranked model for each category and guild 
based on the Bayesian information criterion (BIC) (Brewer et al., 2016). 
We chose BIC instead of the Akaike information criteria because BIC is 
more conservative in terms of how many variables are included. One of 
the main drawbacks of AIC is its tendency to favor high dimensional 
models (Chakrabarti and Ghosh, 2011). 

To check for multicollinearity, we evaluated the variance inflation 
factors (VIFs) (Booth et al., 1994). We then compared the performance 
of multi-grain multivariate models versus single-grain multivariate 
models based on the adjusted coefficients of determination (R2 adj). We 
also assessed the relative influence of predictors in each top-ranked 
model of bird species richness. To do so, we conducted hierarchical 
partitioning analyses of the top-ranked models to calculate the per-
centage of the independent effect of each predictor. Hierarchical parti-
tioning estimates the contribution of each predictor to the total variance 
explained of a regression model. (Chevan and Sutherland, 1991). All 
statistical analyses were conducted in R (R Core Team, 2020). 

To check for spatial autocorrelation of NEON sampling locations, we 
fitted non-parametric covariance functions and analyzed model re-
siduals of all bird richness, forest, grassland and shrubland specialists. 
We generated spline correlograms with bootstrap confidence envelopes, 
using 1000 permutations and a 95% confidence level as our threshold 
(Bjornstad and Falck, 2001). 

2.5. Resampling analysis 

Different spatial resolutions can be analyzed either by (1) combining 
data from satellite sensors with different resolutions, or by (2) resam-
pling high-resolution satellite data to coarser resolutions. The advantage 
of combining satellites is that coarser-resolution satellites typically have 
better signal-to-noise ratio (i.e., the degree to which the signal is affected 
by noise), and often provide more frequent observations, which makes 
the calculation of the DHIs more robust. The advantage of upscaling 
high-spatial resolution data is that comparisons are unaffected by dif-
ferences in band characteristics and image dates. Thus, for objective 5, 
we resampled the 3-m PlanetScope imagery to 5-, 10-, 30-, and 250-m 
resolutions. Because there is a big gap between the 30-m Landsat and 
the 250-m MODIS data, we also resampled the 3-m PlanetScope to 100- 
m and added the 100-m derived-measures in our modeling approach. 
For the comparisons, first, we generated Spearman correlation matrix to 
evaluate differences between resampled PlanetScope and original- 
sensor measures. Second, we tested the resampled data in our multi-
variate models of bird species richness to compare the performance of 
the corresponding resampled predictors as selected in our multivariate 
multi-resolution top-ranked models versus our original-sensor data. 

3. Results 

3.1. The dynamic habitat indices, median NDVI and the 90th percentile 
NDVI from multiple resolutions 

We successfully generated the three DHIs (cumulative, minimum and 

variation), median NDVI and the 90th percentile NDVI from Planet-
Scope, RapidEye, Sentinel-2, Landsat-8 and MODIS imageries for the 
215 plots located within 26 terrestrial sites of NEON (Fig. 3). Based on 
these, we then obtained our texture measures (mean, standard devia-
tion, uniformity, homogeneity, and correlation). Among the three DHIs, 
minimum DHI was the most strongly correlated with cumulative and 
variation DHI while the correlation of cumulative and variation DHI was 
at most − 0.54 for any sensor (Table S4). We found positive relationships 
among cumulative and minimum DHI versus NDVI median, and NDVI 
percentile 90th, and negative relationship with variation DHI. In addi-
tion, when values for variation DHI were around one, minimum DHI was 
zero (Fig. S1 – S5). 

When comparing measures derived from cumulative DHI of different 
sensors, mean had the highest Spearman correlation (r = 0.9–1), fol-
lowed by uniformity (r = 0.5–0.9). Homogeneity from cumulative DHI 
had moderate correlation (r = 0.3–0.9), while standard deviation and 
correlation, presented weak correlations among sensors (r = 0.2–0.7 and 
0.1–0.7, respectively) (Fig. S6). When comparing measures derived from 
minimum DHI, mean also had the highest correlation (r = 1), however, 
standard deviation, uniformity, homogeneity, and correlation) had low 
to moderate correlations (r = 0–0.7). Exceptions were between Planet-
Scope and RapidEye, reaching r = 0.9 (Fig. S7). Variation DHI also had 
higher correlation among mean-derived measures (r = 0.9–1), however, 
the remaining textures had lower to moderate correlations (r = 0–0.7) 
(Fig. S8). 

3.2. Performance of vegetation productivity measures in univariate 
models of bird species richness 

Results of our univariate linear regression models showed that in-
dividual measures were very weak (R2 < 0.3), weak (0.3 < R2 > 0.5) or 
moderately (0.5 < R2 > 0.7) correlated with bird species richness pat-
terns. Most measures were positively related with richness of all birds 
and of forest specialists (the exceptions being homogeneity and unifor-
mity because these textures are measures of habitat homogeneity), but 
negatively related with grassland and shrubland specialist richness. The 
coefficient of determination (R-squared) ranged from 0.01 to 0.43 (all 
bird species), 0.02–0.51 (forest specialists), 0.01–0.33 (grassland spe-
cialists) and 0.01–0.38 (shrubland specialists) (Table S5 – S9). 

We also evaluated the performance of productivity measures in 
univariate models of bird species richness to assess if there is a best 
performing resolution and measure. We found that best performing 
resolution and measures differed among bird species guilds in univariate 
models (Fig. 4, Table S10), thus birds that specialize in each of these 
habitats may be more or less responsive to habitat measures at different 
resolutions. Measures derived from RapidEye imagery performed best 
for all bird species richness, and for grassland and shrubland specialists, 
whereas measures derived from Landsat-8 and MODIS imagery were 
best of forest specialist richness. In models of all bird species richness, 
the 5-m homogeneity texture from cumulative DHI (RE_CumDHI_HOM) 
had the highest explanatory power (R2 = 0.43). In models of forest 
specialist’ richness, the 30-m cumulative DHI (L8_CumDHI_MEAN) and 
250-m cumulative DHI (MOD_CumDHI_MEAN) had the highest 
explanatory power (R2 = 0.51), followed by 10-m cumulative DHI 
(S2_CumDHI_MEAN; R2 = 0.49) and 3-m 90th percentile NDVI 
(PS_NDVIp90_MEAN; R2 = 0.48) (Fig. 4; Table S10). 

In models of bird grassland specialist richness, the 5-m minimum 
DHI (RE_MinDHI_MEAN) had the highest explanatory power (R2 =

0.33), followed by the 3-m mean texture of minimum DHI and the 10-m 
mean texture of NDVI (PS_MinDHI_MEAN and S2_NDVI median_MEAN, 
respectively; R2 = 0.30). In predictions of bird shrubland specialist 
richness, the 5-m uniformity texture of minimum DHI (RE_MinDHI_U-
NIF) had the highest explanatory power (R2 = 0.38), followed by 3-, 10-, 
and 30-m resolution 90th percentile NDVI (PS_NDVIp90_MEAN, 
S2_NDVIp90_MEAN, L8_NDVIp90_MEAN; R2 = 0.37) (Fig. 4; Table S10). 

Which resolution and measures predicted bird species richness in 
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univariate models best differed among bird habitat guilds, but 
commonly included mean, homogeneity and uniformity measures 
derived from both cumulative and minimum DHI. In models of all bird 
species richness, homogeneity derived from RapidEye imagery was the 
strongest predictor, while in models of shrubland specialist richness, 
uniformity derived from RapidEye, was best. In models of forest and 
grassland specialist richness, the means of the DHIs performed best, 
however, the strongest predictor of forest specialist richness was derived 
from Landsat-8 and MODIS while for grasslands, measure derived from 
RapidEye performed best (Fig. 4). 

3.3. Multivariate bird species richness models 

Our multivariate analysis resulted in one top-ranked model for each 
grain (single resolution 3-, 5-, 10-, 30-, 250-m and multi-resolution 3- 
250 m) and guild (all bird species, forest, grassland and shrubland) 
ranked by the Bayesian information criterion (Table S11 – S14). Among 
multivariate models with single resolutions, the multivariate models 
with higher resolution measures (3–5-m) had greater explanatory power 
than the multivariate models with lower resolution measures (10–250- 
m) to predict all bird species richness and grassland specialist. However, 
for forest and shrublands specialists, both multivariate models with 
higher (3-5 m) and lower resolution measures (30–250-m) had high 

explanatory power (Table S15; Fig. 5). 
When comparing multivariate models with single-resolution mea-

sures versus multivariate models with multi-resolution measures, our 
multi-resolution models of bird species richness outperformed all single- 
resolution models for all species, and for habitat guild specialists. The 
multi-resolution measures of vegetation productivity had moderate (0.5 
< R2 < 0.7) and high (R2 > 0.7) explanatory power to predict all bird 
species richness and forest-specialist richness (R2 = 0.63 and 0.72, 
respectively) and moderate and weak explanatory power to predict 
grassland- and shrubland-specialist richness (R2 = 0.53 and 0.46, 
respectively) (Table S15; Fig. 5). 

For all bird species, the top-ranked model (R2 = 0.63) included five 
measures with 3- and 5-m resolution. The 5-m homogeneity texture of 
cumulative DHI contributed the most independent explanatory power 
(RE_CumDHI_HOM; 35.36%), followed by the 3-m standard deviation of 
the median NDVI (PS_NDVImedian_SD; (20.59%). For forest specialists, 
the top-ranked model included 3-, 5- and 30-m texture measures. For 
forest specialists, the top-ranked model included 3-, 30- and 250-m 
texture measures. The 3-m mean of the median NDVI contributed the 
most independent explanatory power (PS_NDVIp90_MEAN; 18.71%), 
followed by the 250-m homogeneity of the minimum DHI (MOD_-
MinDHI_HOM; 14.47%). For grassland specialists, the top-ranked model 
included 3- and 5-m texture measures and the 3-m mean of the median 

Fig. 3. Example of one NEON plot, the 
Great Smoky Mountains National Park 
(GRSM) which represents forest habitat. 
Shown are: the three DHIs (cumulative, 
minimum and variation), median NDVI, 
and the 90th percentile NDVI from Planet-
Scope, RapidEye, Sentinel-2, Landsat-8 and 
MODIS from 2017 to 2020. The top row 
shows a color composite of the three DHIs 
with cumulative DHI in green, minimum 
DHI in blue, and variation DHI in red (dis-
played with a percent clip stretch). Cumu-
lative DHI is calculated as the sum of NDVI 
monthly median values, Minimum DHI as 
the minimum values and Variation DHI as 
the coefficient of variation of the monthly 
median time series. (For interpretation of 
the references to color in this figure legend, 
the reader is referred to the web version of 
this article.)   
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NDVI contributed the most independent explanatory power in the multi- 
grain model (PS_NDVImedian_MEAN; 59.10%), followed by 5-m mean 
of the variation DHI (RE_VarDHI_MEAN; 40.90%). For shrubland spe-
cialists, the top-ranked model included 3-, 5-, and 250-m texture mea-
sures and 5-m uniformity of the minimum DHI contributed the most 
independent explanatory power (RE_MinDHI_UNIF; 45.62%), followed 
by the 3-m mean of the 90th percentile NDVI (PS_NDVIp90_MEAN; 

41.31%) (Fig. 6). 
Our confidence intervals for spline correlograms of model residuals 

of total bird richness, forest, grassland and shrubland specialists, sug-
gested low- to moderate-levels of spatial autocorrelation of lag distances 
up to approximately 500 km (Fig. S9 – S12), suggesting that significance 
levels may be somewhat inflated. However, spatial autocorrelation does 
not affect model coefficients or marginal effects, (Fletcher and Fortin, 

Fig. 4. Selection of top-ranking univariate linear regression models (for those with R2 values >0.30) showing relationships between measures of vegetation pro-
ductivity and the four habitat classes: all species combined and, forest, grassland and shrubland specialists. PS = PlanetScope, RE = RapidEye, S2 = Sentinel-2, L8 =
Landsat-8, MOD = MODIS. SD=Standard deviation, UNIF = Uniformity, HOM = Homogeneity, and CORR = Correlation. 

Fig. 5. Top-ranking multivariate models for all species combined and habitat guild specialists based on the original resolution of the data. Comparison between the 
multivariate single-resolution models for 3-, 5-, 10-, 30- and 250-m and the multivariate multi-resolution models (R2 values of top models). 
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2018; Farwell et al., 2021). 

3.4. Comparison of measures based on original versus resampled 
resolution 

Our Spearman correlation analysis between original resolution and 
resampled productivity measures resulted in values ranging from 0.32 to 
0.99. Correlations between measures based on RapidEye versus 5-m 
resampled, Sentinel-2 versus 10-m resampled, Landsat-8 versus 30-m 
resampled, and MODIS versus 250-m resampled PlanetScope data 
were on average 0.82, 0.83, and 0.83 and 0.59, respectively. In general, 
mean-derived measures had higher correlations than standard devia-
tion, uniformity, homogeneity, and correlation (Table S16). 

Among multivariate models with resampled single-resolution 

measures versus multivariate models with resampled multi-resolution 
measures, the multi-resolution models outperformed all single- 
resolution models for all species, and for forest and grassland special-
ists, reaching R2 of 0.54, 0.66, and 0.41, respectively. However, for 
shrubland specialists, models with 5-m had greater explanatory power 
(R2 = 0.49) (Table S17). In addition, according to our results, 100-m 
resolution measures did not outperform 3-m, 5-m, 10-m, 30-m and 
250-m resolution measures in correlation analysis (except 100-m 
NDVImedian_SD for forest specialist bird richness; Table S18 – S21). 
The best multi-resolution models did not include any 100-m resolution 
measures, suggesting that 100-m spatial resolution measures did not 
improve our modeling approach (Table S22). 

When comparing the performance of original multi-resolution 
models versus resampled multi-resolution models, original resolution 

Fig. 6. Relative influence of predictors from hierarchical partitioning in each top-ranked model of bird species richness for all species combined, and habitat guild 
specialists. PS = PlanetScope, RE = RapidEye, S2 = Sentinel-2, L8 = Landsat-8, MOD = MODIS. 
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performed best for all bird species and all habitat specialists. However, 
when comparing single resolution models, for all bird species, 10-, and 
30-m resampled models (R2 = 0.45 and 0.44, respectively) out-
performed original models (R2 = 0.33). For forest specialists, all 
multivariate models with single original resolutions outperformed 
resampled multi-resolution models, however, 10-m resampled measures 
(R2 = 0.45) and 30-m resampled measures (R2 = 0.44) outperformed 
original measures (R2 = 0.33) for all bird species richness. In addition, 
30-m resampled measures (R2 = 0.31) and 5-m resampled measures (R2 

= 0.49) outperformed original measures in models of grasslands and 
shrublands specialists (Fig. 7). 

4. Discussion 

4.1. Measures of vegetation productivity derived from satellite sensors 
with different resolutions 

Ours is the first study to calculate DHIs based on high resolution 
images (3, 5-m) resolution images. Previously, the DHIs have only been 
calculated based on medium-resolution Landsat (Carroll et al., 2022), or 
coarse resolution from MODIS (Hobi et al., 2017; Radeloff et al., 2019). 
We calculated multi-year composite DHIs (cumulative, minimum and 
variation), median NDVI and the 90th percentile NDVI from Planet-
Scope (3-m), RapidEye (5-m), Sentinel-2 (10-m), Landsat-8 (30-m) and 
MODIS (250-m). Based on these measures we calculated texture 

measures (mean, standard deviation, uniformity, homogeneity, and 
correlation). 

We found that all three DHIs (cumulative, minimum and variation), 
median NDVI and percentile 90th NDVI were highly correlated among 
sensors (Table S4). However, the derived texture measures were weakly 
(correlation) to moderately (standard deviation, uniformity, homoge-
neity) correlated among sensors (Fig. S6). Texture measures exhibited 
strong differences among sensors due to their differences in spatial 
resolution. Landscape characteristics captured by texture metrics are 
likely to vary among image resolutions because spatial resolution de-
fines the level of detail of the landscapes that is measured (Warner, 
2011, Hall-Beyer, 2017a, 2017b). First-order texture measures, such 
mean, consider all the pixel values within the neighborhood but do not 
account for their spatial arrangement, the way 2nd order textures such 
as uniformity, homogeneity, and correlation do (Haralick et al., 1973). 

4.2. Measures of vegetation productivity to predict bird species richness 

We derived from the DHIs, median NDVI and 90th percentile NDVI 
texture measures to estimate bird species richness. Our measures pro-
vide information about spectral variability which characterizes habitat 
heterogeneity linked to bird species richness. Our findings support the 
spectral variability hypothesis (Palmer et al., 2000) in that spectral 
variability in our results was positively related to habitat heterogeneity 
and hence species richness. When characterizing habitat heterogeneity, 

Fig. 7. R2 values of top-ranking multivariate models for all species combined and for habitat guild specialists based on the resampled PlanetScope data. Comparison 
between the multivariate single-resolution models for 3-, 5-, 10-, 30-, and 250-m and the multivariate multi-resolution models. 
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texture measures are well-suited for capturing specific habitat features 
such as vegetation height and basal area (Tuominen and Pekkarinen, 
2005), canopy structural properties (Estes et al., 2010), foliage-height 
diversity (Wood et al., 2012), and vegetation structure and composi-
tion (St-Louis et al., 2009; Campos et al., 2018; Farwell et al., 2021), 
which is why they improve broad-scale models of bird richness (Tuanmu 
and Jetz, 2015; Farwell et al., 2020). 

Our single-spatial resolution measures predicted bird species rich-
ness very weak, weak and moderately well. Our positive relationship 
between remotely sensed productivity measures and both all-bird spe-
cies richness and the richness of forest specialists were consistent with 
the more-individuals and habitat heterogeneity hypothesis. The more- 
individuals hypothesis predicts that species richness is higher where 
the total amount of available energy is higher because more productivity 
increase food availability and thus supporting more species (Leveau, 
2019; Wright, 1983), although species richness sometimes declines at 
very high levels of energy (Mittelbach et al., 2001). The habitat het-
erogeneity hypothesis also explains species richness. Heterogeneity of 
vegetation types offers more ways to obtain resources and to provide 
refugia from adverse environmental conditions, resulting in an 
increased number of species (MacArthur, 1964; Fjeldsa et al., 2012). 

However, we also found negative relationships for grassland, and 
shrubland specialists. This finding is consistent with some studies that 
found inverse relationship between heterogeneity and species diversity 
for these guilds in grasslands (Farwell et al., 2020; Tews et al., 2004). 
However, we also found negative relationships for grassland, and 
shrubland specialists. This finding is consistent with some studies that 
found inverse relationship between heterogeneity and species diversity 
for these guilds in grasslands (Farwell et al., 2020; Tews et al., 2004). 
However, in semi-arid ecosystems there is a positive relationship be-
tween texture measures and shrubland and grassland bird species rich-
ness (St-Louis et al., 2009). The negative relationship in grassland 
habitats may be due to grassland birds’ sensitivity to patch area. For 
example, of 32 grassland obligate birds in North America, 16 are sen-
sitive to the grassland patch size, and they either occur only in larger 
grassland patches, or their density is higher there. These species tend to 
avoid the edges of grasslands and have greater density away from the 
edges (Ribic et al., 2009). Similarly, shrubland birds avoid habitat edges 
(Rodewald and Vitz, 2010). Habitat edges are where image texture 
contrast is likely higher than in the center of patches where homogeneity 
is higher. 

Spectral variability is influenced by both location and extent, and 
spectral variability characterized by a given spatial grain size is not 
necessarily linked to bird species richness (Schmidtlein and Fassnacht, 
2017). For example, there is likely little correlation between spectral 
variability and bird species richness when that spectral variability stems 
from different agricultural crops, which provide little habitat for birds. 
On the other hand, apparently homogeneous spectral variability may be 
heterogeneous at sub-pixel levels. Habitats with little spectral variability 
may yet contain comparably high species richness (Schmidtlein and 
Fassnacht, 2017; Wilson et al., 2012). 

4.3. Best performing resolution and measures to predict bird species guilds 

In our univariate models of all bird species richness, grasslands and 
shrubland specialists, higher resolution measures performed best. For 
grassland and shrubland specialists, mean and uniformity from mini-
mum DHI of 5-m RapidEye had the best R2 (R2 of 0.33 and 0.38, 
respectively). Some guilds are more likely to respond and be dependent 
on fine-scale habitat measures (i.e., grassland and shrubland) and are 
sensitive to how cumulative and minimum productivity are captured in 
the area (e.g., if by first or second order texture measures). We speculate 
that high spatial resolution (5-m) imagery captured microhabitat vari-
ations that are important for birds (vegetation density and height) (Ja-
cobs et al., 2012). For example, individual trees could be captured at this 
spatial resolution. 

In contrast, in univariate models of forest specialist richness, the 
mean cumulative DHI from Landsat-8 (30-m) and from MODIS (250-m) 
had the highest explanatory power (R2 = 0.51). 

Texture measures derived from medium resolution (10-m Sentinel-2 
and 30-m Landsat) satellite imagery are strong predictors of bird species 
richness within forest habitats (Culbert et al., 2012; Farwell et al., 2021). 
However, medium spatial resolution data is too coarse to effectively 
capture finer features within shrubland and grassland habitats (Ali et al., 
2016). In addition, globally, individual DHIs derived from MODIS (1- 
km) predicted bird species richness well, reaching Spearman correla-
tions of 0.63, 0.83 and − 0.83 (Radeloff et al., 2019). 

In addition to spatial resolution, the type of measure that performed 
best also differed among bird species guilds in univariate models. Cu-
mulative DHI and minimum DHI had a better performance to predict 
bird species richness compared to variation DHI, median NDVI and 90th 
percentile NDVI. In forested areas, because vegetation productivity is 
high, cumulative and minimum DHIs are good indicators of vegetation 
productivity. The minimum DHI was a good predictor of bird species 
richness in Argentina (Nieto et al., 2015) and was the most important 
predictor of grassland bird species across the conterminous USA (Coops 
et al., 2009a). In general, in the US, the cumulative DHI has the highest 
predictive power in models of bird species richness, however it is highly 
dependent on the guild (Hobi et al., 2017). 

Among the texture measures, the mean, homogeneity, and unifor-
mity performed best. In first-order texture metrics (e.g., mean) high 
values indicate more productive areas. Second-order texture metrics are 
calculated from the gray-level co-occurrence matrix (Haralick et al., 
1973). The second-order homogeneity and uniformity reflect homoge-
neity of the image. Homogeneity is high when adjacent pixels have 
similar values, and high uniformity means that certain pixel values occur 
frequently on adjacent pixels (Culbert et al., 2012). Similar to our 
findings, homogeneity is a good predictor of total bird species richness at 
10-m and 30-m spatial resolution across the conterminous USA (Farwell 
et al., 2021). 

4.4. High resolution measures versus low resolution measures to predict 
bird species richness 

This is the first study to test measures of vegetation productivity 
based on cumulative, minimum and variation DHIs, median NDVI, and 
90th percentile NDVI from high-resolution data in models of bird species 
richness. However, our finding that high-resolution satellite data had 
the greatest explanatory power in models of bird species richness in the 
US is consistent with results of similar models of bird species richness in 
other countries. For example, high resolution spatial data (2-m 
WorldView-2) had higher predictive power than lower resolution spatial 
data (10-m SPOT-5, 20-m SPOT-4, 30-m Landsat 5 and 250-m MODIS) 
when modeling bird species richness in woodlands of southwestern 
France (Sheeren et al., 2014). Similarly, 1-m resolution data had better 
performance for predicting bird species spatial distribution in Germany 
than 3-, 10-, 32-, 100-, 316- -and 1000-m resolution data (Gottschalk 
et al., 2011). In addition, in a forested ecosystem (pine) in Turkey, 
texture measures from 5-m RapidEye outperformed 10-m SPOT-5 and 
15-m Aster in models of bird species richness (Ozdemir et al., 2018). 

For complex environments, high-resolution data is needed to capture 
small elements (Lausch et al., 2015) because coarse resolution images 
have mixed pixels, and thus are not suited to capture habitat heteroge-
neity (Foody and Cox, 1994; Goetz et al., 2007; Saveraid et al., 2001). 
Coarse resolution imagery depicts landscapes as homogenized and 
captures only dominant landscape patches (Saura, 2002). Smaller ob-
jects, important for birds (i.e., trees) are not captured, affecting the 
quality of the bird biodiversity models (Sheeren et al., 2014). 
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4.5. Multi-resolution versus single resolution models to predict bird species 
richness 

We compared the performance of the multi-resolution models versus 
3-, 5-, 10-, 30-, and 250-m single spatial resolution models to predict 
total species richness and richness of specialists. Habitat selection in 
birds is hierarchical (Guisan and Thuiller, 2005; Jackson and Fahrig, 
2012, 2015; Johnson, 1980), suggesting that habitat measures repre-
senting a range of resolutions are best suited for predicting bird distri-
butions, especially when modeling multiple species. Our result strongly 
supports that assertion. Single resolution approaches may limit the 
effectiveness of the models because the best performing resolution that 
captures the spatial pattern of species are usually unknown (Cushman 
and McGarigal, 2004), and also, species may interact with their envi-
ronments at different spatial scales at the same time (Lawler and 
Edwards, 2006). Thus, as predicted, our multi-resolution models of bird 
species richness performed better than single-scale models for all guilds. 
For all species combined and grassland and specialists, a combination of 
measures based on PlanetScope (3-m) and RapidEye (5-m) imagery 
performed best while for forest and shrubland specialists, a combination 
of measures from PlanetScope (3-m), RapidEye (5-m), Landsat-8 (30-m) 
and MODIS (250-m) imagery produced the best results (Fig. 6). 

Our top-ranked multi-resolution models’ forest and shrubland spe-
cialists, included both high- and low-resolution measures. This may 
reflect the hierarchical manner in which birds select habitat across 
multiple spatial scales (Guisan and Thuiller, 2005; Jackson and Fahrig, 
2012, 2015). Coarser resolution landscape measures capture dominant 
vegetation classes (e.g., forest, shrubland) that determine territory se-
lection at broad spatial scales, while higher resolution measures capture 
microhabitat features of vegetation structure and composition that in-
fluence fine-scale foraging and nesting site selection (Lawler and 
Edwards, 2006). In contrast, for grassland specialists, only high- 
resolution measures (3-m PlanetScope/5-m RapidEye) were included 
in top-ranked models. This may reflect the importance of microhabitat 
features in grassland-dominated landscapes (Fletcher and Koford, 
2002). The 10–250 m resolution of Sentinel-2, Landsat-8 and MODIS are 
likely too coarse to effectively capture such microhabitats (Ali et al., 
2016, Fisher and Davis, 2010). 

5. Conclusion 

By analyzing remotely-sensed vegetation productivity measures 
from multiple spatial resolutions in bird species richness models, we 
found that the best performing resolutions and measures differ among 
bird habitat guilds, emphasizing the importance of matching the spatial 
resolution of predictors to the species or guilds of interest. Our finding 
that habitat measures derived from higher resolution imagery (3-, 5-m) 
are more effective predictors of bird species richness than measures 
derived from lower resolution imagery (10-, 30-, and 250-m) is timely, 
given recent advances in the availability and accessibility of high- 
resolution satellite imagery. In addition, our finding that multi- 
resolution models of bird species richness outperform single resolution 
models is important, because most bird diversity and distribution 
models use single-resolution habitat measures, but ecological theory 
buttresses the use of multi-resolution models. Lastly, we demonstrate 
that models based on multi-sensor data performed better than resampled 
data, emphasizing the importance of the spectral characteristics of each 
sensor to retrieve measures of vegetation productivity. We recommend 
that future studies of bird diversity incorporate habitat variables derived 
from high- and coarse-resolution satellites to capture a range of habitat 
patterns and features across the hierarchy of scales at which birds select 
their habitat. 
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