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The global wildland–urban interface

Franz Schug1 ✉, Avi Bar-Massada2, Amanda R. Carlson3, Heather Cox1, Todd J. Hawbaker3, 
David Helmers1, Patrick Hostert4,5, Dominik Kaim6, Neda K. Kasraee1, Sebastián Martinuzzi1, 
Miranda H. Mockrin7, Kira A. Pfoch1 & Volker C. Radeloff1

The wildland–urban interface (WUI) is where buildings and wildland vegetation  
meet or intermingle1,2. It is where human–environmental conflicts and risks can be 
concentrated, including the loss of houses and lives to wildfire, habitat loss and 
fragmentation and the spread of zoonotic diseases3. However, a global analysis of  
the WUI has been lacking. Here, we present a global map of the 2020 WUI at 10 m 
resolution using a globally consistent and validated approach based on remote 
sensing-derived datasets of building area4 and wildland vegetation5. We show that the 
WUI is a global phenomenon, identify many previously undocumented WUI hotspots 
and highlight the wide range of population density, land cover types and biomass 
levels in different parts of the global WUI. The WUI covers only 4.7% of the land surface 
but is home to nearly half its population (3.5 billion). The WUI is especially widespread 
in Europe (15% of the land area) and the temperate broadleaf and mixed forests biome 
(18%). Of all people living near 2003–2020 wildfires (0.4 billion), two thirds have their 
home in the WUI, most of them in Africa (150 million). Given that wildfire activity is 
predicted to increase because of climate change in many regions6, there is a need to 
understand housing growth and vegetation patterns as drivers of WUI change.

Humans have greatly affected the Earth’s land surface in recent centu-
ries7–11. In particular, the expansion of the built environment and the 
growth of settlements and their long-term resource requirements 
have been dramatic across the globe12–14. The growth of settlements 
can have remote effects via teleconnected processes15,16 but the most 
immediate human–environmental conflicts arise where buildings are 
built in or near wildland vegetation, an area known as the wildland– 
urban interface (WUI)1,17. The WUI is widespread across Australia, 
Europe and North America18–22 and there is evidence for WUI in some 
other countries23–26. However, the worldwide distribution of the WUI 
is unknown2.

The WUI is a desirable place to live for many people as a result of its 
proximity to natural amenities but it is also an area of manifold hazards 
to both humans and natural ecosystems. Wildfires are a particular threat 
to houses and lives, often caused by human ignition and facilitated by 
altered fire regimes where settlements sprawl into fire-dependent 
ecosystems. The availability of buildings themselves as fuel, along 
with swiftly moving fire, makes evacuations difficult19,27–29. Indeed, the 
number of wildfires has increased in the WUI over the past few decades2 
owing to both housing growth and climate change. Other hazards to 
humans or their environment include the loss of biodiversity and car-
bon storage due to habitat loss and fragmentation, predation of wildlife 
by cats and dogs, light and noise pollution, the introduction of inva-
sive species, an increased risk for the spread of zoonotic diseases and 
changes in hydrology3,30–33. Quantifying any of these hazards requires a 
consistent global assessment of the WUI. This is particularly important 
because the number of exposed buildings and people in the WUI is 
expected to grow as population grows and because climate change is 

expected to further increase the risk for many of these hazards, such 
as higher wildfire frequency and intensity18,34,35.

Here, we present a global map of the 2020 WUI at 10 m resolution 
using a globally consistent and validated approach based on remote 
sensing-derived datasets of building area4 and wildland vegetation5. We 
distinguished between two types of WUI: intermix WUI (where build-
ings and wildland vegetation intermingle) and interface WUI (where 
buildings are close to large wildland vegetation patches). We further dis-
tinguished between WUI dominated by forest, shrubland and wetland 
versus that dominated by grassland. We then summarized population 
and biomass in the WUI for each country and biome, using the biome 
definition of ref. 36. To identify areas of increased fire hazard in the 
WUI, we assessed wildfire occurrence using two remote sensing-based 
datasets—Moderate Resolution Imaging Spectroradiometer (MODIS) 
Active Fire data for 2003–2020 and Visible Infrared Imaging Radiom-
eter Suite (VIIRS) Active Fire data for 2013–2020. Our identification of 
WUI types by dominant land cover allowed for a regionalized evalua-
tion of fire hazard in the WUI. For example, whereas natural grasslands 
exhibit frequent wildfires in some of the world’s WUI, wildfires are not 
a concern where grasslands are highly managed pastures. In contrast, 
both managed and wild forests provide fuel for wildfires.

We found that the total global WUI area in 2020 was 6.3 million km2 
or 4.7% of global land area, which is an order of magnitude larger than 
the global urban area37 or twice the size of India. The global land share 
of intermix and interface WUI is 3.6% (4.8 million km2) and 1.1% (1.5 mil-
lion km2), respectively. Two thirds of the overall WUI area are dominated 
by forests, shrublands and wetlands, versus one third by grasslands. 
Globally, 3.5 billion people live within the WUI (1.7 billion in intermix 
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and 1.8 billion in interface WUI) and two thirds of those live in WUI 
dominated by forests, shrublands and wetlands. In total, nearly half 
of all buildings and people on the globe are potentially affected by 
the human–environmental hazards that are concentrated in the WUI. 
However, only 4.1% of the total aboveground living plant biomass occurs 
within the WUI, with most of it in the intermix WUI.

The WUI occurs on all continents. However, within continents, the 
distribution of the WUI is highly uneven. Large WUI areas occur along 
the Pacific coast of North America; in eastern North America and the 
Caribbean; along the Brazilian coast; across Europe; in West, South and 
East Africa, including Nigeria and Uganda; in Southeast Asia, including 
India, China, Indonesia and Japan; and in Australia (Fig. 1a). In some 
of these places, such as in California, Mediterranean Europe or South 
Africa, the WUI has been well studied because many buildings and peo-
ple are affected by wildfires there38,39. In many other places, however, 

including East Africa, Brazil or Southeast Asia, widespread WUI has not 
been reported. Among the two most populated countries in the world, 
China has large WUI areas in southern and eastern regions, which are 
previously undocumented in the literature. However, India has much 
smaller WUI area in the southeast and the Himalayas, probably because 
cropland density is high in other regions40, not providing enough wild-
land vegetation to create WUI. The area-adjusted overall accuracy of 
our WUI map is between 79.6% (when distinguishing all WUI classes) 
and 82.0% (when distinguishing WUI from non-WUI; Supplementary 
Data A).

The characteristics of the WUI vary considerably among continents. 
The WUI covers only 3% of South America but 15% of Europe. Europe and 
Asia have especially high shares of interface WUI area, whereas intermix 
WUI dominates in North America. South America is the only world 
region where grassland WUI area dominates, whereas Asia has the least. 
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In South America, 33% of the population live in grassland-dominated 
WUI but only 7% in Asia. In Oceania, 56% of the total population lives 
in WUI dominated by forest, shrublands and wetlands, compared to 
only 24% in Asia. Europe has the largest share of its biomass, 10.5%, 
within the WUI (Fig. 2a–c). Seventy per cent of the global WUI area is 
in very low or low density rural areas and only 8% in urban clusters and 
centres (Extended Data Table 1, classes according to ref. 41). However, 
this pattern differs strongly by world region: in North America, 84% of 
the WUI is rural (5% in urban areas) but in Asia only 53% (14% in urban 
areas). Lastly, the WUI occurs in countries across all income classes 
(Extended Data Table 2).

We selected 12 hotspot countries on the basis of WUI area share 
and wildfire occurrence for closer examination: Uganda, Lebanon, 
Sri Lanka, Japan, France, Poland, Jamaica, El Salvador, Indonesia, the 
Philippines, Brazil and Ecuador (Fig. 1b–g, Extended Data Fig. 1 and 
Fig. 2d–f). Uganda, Sri Lanka, Jamaica and El Salvador have an excep-
tionally high share of population in the WUI (>80%) and many people 
there were affected by fires since 2003 (for example, 8.7 million in 
Uganda and 1.4 million in El Salvador). Lebanon has an exceptionally 

high share of biomass in the WUI (60%) because most WUI occurs near 
its coastal regions where biomass is concentrated. In Japan, more than 
half of all wildfires occurred within the WUI and most of the people liv-
ing in the WUI live in the interface because settlements are generally 
well demarcated and abut wildland vegetation. France and Poland have 
an especially high share of WUI area and population in the grassland 
WUI. In Indonesia, the Philippines, Brazil and Ecuador, WUI area share 
is small but high proportions of people live in those small WUI areas 
and are affected by wildfires (0.7 to 13.1 million, depending on the  
country). Those different WUI patterns reflect the diversity of reasons 
for both WUI development and wildfire occurrence and highlight that 
different management responses are required to mitigate the human–
environmental conflicts that are concentrated in the WUI3.

Among biomes, the WUI is highly concentrated in a few (Fig. 2g–i 
and Extended Data Fig. 2). The temperate broadleaf and mixed for-
est biome covers only 9% of global land area, yet contains 35% of total 
WUI area. Similarly, subtropical and tropical moist broadleaf forests 
represent only 15% of the global land but contain 26% of WUI area. In 
contrast, deserts and xeric shrublands cover 20% of the land area but 
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contain only 3% of the global WUI area. We also observed large dif-
ferences in population patterns: in both boreal forests/taiga and in 
subtropical and tropical coniferous forests over 80% of the population 
lives in the WUI, whereas in the deserts and xeric shrublands, only 10% 
does. The distribution of WUI area across biomes is important because 
WUI-related hazards, such as wildfires and their effects on people prob-
ably differ among biomes. Wildfire hazard is higher either where the 
WUI is widespread and where many people are affected by wildfire (such 
as in subtropical and tropical moist broadleaf forests) or where WUI 
area itself is small but both people and wildfires are concentrated there 
(such as boreal forests/taiga and mangroves that are highly vulnerable 
to fire). Wildfire hazard is also driven by the available biomass. In both 
the broadleaf/mixed forests and in subtropical and tropical coniferous 
forests, a substantial share of their biomass is in the WUI (about 13% in 
both biomes) as a result of their high overall share of land in the WUI 
(18% and 14%, respectively). By contrast, in the temperate grassland, 
savanna and shrubland biome, the overall WUI area share is low but a 
large portion of the biomass occurs in vegetation-rich coastal areas, 
which is also where the WUI is concentrated.

Wildfires are of increasing concern across the globe, as their fre-
quency, intensity and season-length have increased because of climate 
change, more human ignitions and rising fuel loads42. Wildfires are par-
ticularly problematic in the WUI and cause substantial losses of houses 
and lives there43. Indeed, more than two thirds of all people affected by 
wildfires during 2003–2020 (those experiencing a fire within 1 km of 
their homes) live in the WUI. This is partly because population density 
in the WUI is higher than in non-urban non-WUI areas but nevertheless 
substantial because only a small share of all global wildfire occurrences 
was directly in the WUI (Fig. 3a). Effects of WUI wildfires on the popula-
tion differ among world regions and countries. In North America, 85% 
of the population affected by wildfire lives in the WUI but in Africa only 
55% (nearly 150 million) does. In all world regions, except Europe and 
South America, most people were affected by wildfires that occurred 
in WUI dominated by forests, shrublands and wetlands (Fig. 3b). This 
suggests that, despite the WUI’s small overall area, and, despite the 
comparatively rare occurrence of wildfires, buildings and people in 
the WUI may face an elevated wildfire hazard across the world.

The role of wildfires in the WUI differs among biomes but wildfire 
distribution suggests increasing effects of wildfires on people in the 
future. In some biomes, for example, in the tundra or in deserts and xeric 
shrublands, wildfires in the WUI are not a widespread phenomenon and 

relatively few people are affected (Fig. 3c). Some biomes, for example, 
Mediterranean forests, woodlands and shrublands, are small in area 
but are hotspots of recurring severe wildfire and destruction42. In other 
biomes, the large share of population living in the WUI (for example, 
80% in boreal forests/taiga) and the fact that most people affected by 
wildfire during 2003–2020 lived in the WUI suggests that changing wild-
fire regimes could quickly increase the likelihood of wildfire exposure 
in the future. Particularly, there is a high probability that temperate 
broadleaf and mixed forests and subtropical and tropical moist broad-
leaf forests, the biomes with the largest WUI area and home to 130 mil-
lion people previously affected by wildfire in the WUI, will experience 
increased fire hazard towards the middle of the twenty-first century 
if rising trends in wildfire fire frequency and intensity continue6,44–46.

Discussion
The WUI is where people live within or near wildland vegetation. We 
found that the WUI covers nearly 5% of the global land area, even 
though the WUI has not been a class in any previous global land cover 
or land-use maps. We quantified the global extent of the WUI at high 
spatial resolution, characterized it by dominant land cover and related 
it to wildfires of the last two decades. Our analysis yielded three prin-
cipal insights. First, we found that the WUI is a global phenomenon. 
Although previous work showed that the WUI is widespread in Medi-
terranean Europe, the United States and Australia2, our results show 
large WUI areas in all continents, including previously undocumented 
hotspots in eastern Asia, East Africa and parts of South America. Sec-
ond, the WUI is highly diverse in terms of population density, biomass 
quantity and dominant vegetation type. Third, the WUI is where wild-
fires affect the most people. Globally, two thirds of all the people that 
experienced wildfires live in the WUI. Among our WUI hotspots with 
frequent wildfires, many lack assessments of wildfire regimes, settle-
ment patterns and wildfire risk, as is true for many WUI hotspots where 
wildfires are likely to become more prevalent as a result of changing 
climatic conditions.

Local and regional patterns of the WUI are highly variable. We found 
major differences in the proportion of area that is WUI in different 
countries, how many people live there, how much biomass occurs in the 
WUI and what the dominant land cover is. Although some WUI areas are 
well-known due to a history of disastrous wildfires (for example, Medi-
terranean areas of California and Europe and in Southeastern Australia), 
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we found many more places where the WUI is widespread. Some of these 
also have frequent wildfires, whereas other hazards and conflicts may 
dominate in other WUI areas. Furthermore, the patterns of the WUI vary 
greatly, from large continuous WUI areas in East Africa, stretching over 
hundreds of kilometres, to small and patchy WUI in the heterogeneous 
landscapes of Mediterranean Europe (Fig. 1d,e). Irrespective of whether 
a WUI area is large or small, it is likely to be a current or future hotspot 
of human–environmental conflicts affecting many people and many 
different types of ecosystems. As fire-prone areas expand globally, our 
WUI data can help guide proactive actions to prepare for future wildfire 
in the WUI and tailor such preparations according to the dominant 
vegetation types and associated fire regimes.

Wildfire damage to buildings is a global problem and we show that 
most people who experienced wildfire live in the WUI. This applies 
even in areas where wildfires are common but population density is 
low, such as in boreal forests or where wildfires are rare and few people 
live, such as in deserts. However, the subtropical and tropical moist 
forests, subtropical and tropical grasslands and shrublands and tem-
perate broadleaf and mixed forests are the biomes where the most 
people live in the WUI and experienced wildfires. In these biomes, a 
future increase in the exposure of people to wildfire is probably due 
to (1) population and WUI growth45; and (2) an increasing frequency of 
extreme weather events due to climate change, such as longer and more 
severe drought, causing lower fuel moisture and a higher frequency 
and severity of wildfires46. How climate change affects wildfires will 
differ by vegetation type though. Grasslands, for example, can respond 
rapidly even to incremental climate change47 and herbaceous fuels can 
increase rapidly after periods of high precipitation. Given that 15% of 
the global population lives in the grassland-dominated WUI, more 
intensive grassfires could become a big challenge for both wildfire 
preparedness and response44.

Our WUI maps provide an accurate and high-resolution global per-
spective on a land-use type that is home to nearly half of the global 
population. The overall accuracy of our WUI maps was consistently 
high across regions and classes with only slight differences caused by 
uncertainties in the underlying building and land cover datasets (for 
example, 79% for Oceania versus 86% in Africa). Our WUI maps enable 
researchers to identify WUI hotspots where climate change, population 
growth, land-use change and increasing wildfire and other hazards 
are likely to cause the most pressing problems. Our maps are valu-
able because they offer a consistent global assessment at a resolution 
that is sufficiently fine to inform local and regional management, in 
addition to showing how global fire regimes are caused by and affect-
ing humans48. Future research will need to assess wildfire risk in the 
WUI in detail because that risk and the associated social vulnerability 
are affected by a multitude of factors, including land management 
practices, ecological and economic value, community preparedness, 
natural disturbance regimes, regional precipitation, temperature and 
vegetation patterns and wildfire management and prevention49. For 
example, our maps treat both wild steppes and managed pastures as 
grasslands, yet the former are highly susceptible to wildfire whereas the 
latter are not. Similarly, our maps do not distinguish between natural 
forests and plantations, yet forest type can affect fire dynamics and 
wildfire likelihood. In WUI areas, fire risk can either increase as a result 
of higher fuel loads and more human ignitions or decrease as a result 
of fire suppression and fuel treatments, especially when buildings 
and people are threatened45. The global WUI is, and will be, an area of 
both human–wildlife conflicts and coexistence. It is, thus, a key area to 
discover how to shape resilient, sustainable and livable settlements, in 
addition to minimizing human–environmental conflicts50. Although 
fine-scale research is required to understand local drivers of WUI pat-
terns, our globally consistent assessment highlights that WUI occurs 
on all continents, reveals its broad-scale patterns and provides a basis 
for future research on global WUI dynamics and the socioeconomic 
and biophysical processes that make the WUI unique.
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Methods

Defining the wildland–urban interface
Although the WUI is defined in different ways for different regions 
and applications19–24,51–54, we used the conceptual WUI definition of 
the US Federal Register53, first operationalized by ref. 1, which is the 
most widely used WUI definition in the United States and many other 
countries1,19–21,54. This approach defines the intermix WUI as areas with 
more than 6.17 buildings per km2 (or one building per 40 acres) and a 
wildland vegetation area share of greater than or equal to 50%. The 
interface WUI is defined as areas with more than 6.17 buildings per 
km2 but less than 50% wildland vegetation that lie in proximity (less 
than 2.4 km) of a large patch (at least 5 km2) of wildland vegetation 
(with a share of more than 75%). The minimum patch size excludes 
small urban parks from wildland vegetation1. The minimum distance 
of 2.4 km (1.5 miles) is included in the US Federal Register definition53 
and represents the distance embers can fly during a wildfire55.

We further extended this WUI classification approach by stratifying 
WUI areas on the basis of the dominant land cover, into intermix or 
interface WUI dominated by forest, shrubland and wetland versus WUI 
dominated by grassland (Extended Data Fig. 3). We added that strati-
fication because grasslands are among the most diverse and dynamic 
land cover types across the globe, with a large range of management 
practices, from wild steppe to managed pasture, almost resembling 
agricultural use56,57. As a result, grasslands in a given place may or may 
not cause wildfire risk in the WUI, which is why previous national-level 
WUI maps purposefully either included58 or excluded21 grasslands. 
Our separation of grassland-dominated WUI supports subsequent 
map interpretation.

Wildland vegetation and building data
We used two freely available global high-resolution datasets on land 
cover and buildings to map the WUI. Both datasets are derived from 
Earth observation satellite images and come in a raster format.

We used the European Space Agency WorldCover dataset to capture 
land cover information5. It is representative for 2020 (v.100) and pro-
vides land surface cover information distinguishing 11 classes globally 
with 10 m resolution. The overall accuracy of this dataset is about 75% 
(ref. 59). The information was derived from Sentinel-1 and Sentinel-2 
satellite imagery using an ensemble of gradient-boosting decision 
trees with expert rule-based postprocessing to map many land cover 
classes at the same time (Supplementary Information)5.

We used the Global Human Settlement GHS-BUILT-S—R2022A data-
set (hereafter, GHS-BUILT-S) as a reference for building location and 
density4. GHS-BUILT-S is representative for 2018 and provides pixel- 
wise estimates of built-up surface area (from 0% to 100% in steps of 1%)  
globally at 10 m resolution. The dataset contains all building types  
(with residential, commercial, industrial, agricultural, service or 
other purposes). The information was derived from Sentinel-2 satel-
lite imagery using a symbolic machine learning approach designed to 
accurately capture built-up surface area (Supplementary Information).

We organized all spatial data in a data cube structure60,61 using the 
FORCE software61, matching the first tier of the EQUI7 reference grid62. 
This grid defines an equidistant projection for seven world regions 
(Africa, Antarctica, Asia, Europe, North America, Oceania and South 
America) divided into 100 km tiles. The grid facilitates mass data stor-
age and efficient processing, meanwhile avoiding spatial grid oversam-
pling and raster distortion. We used tiles over land for all EQUI7 world 
regions excluding Antarctica (Extended Data Fig. 4 and Supplementary 
Information).

Mapping the wildland–urban interface
We implemented a globally consistent workflow to map the WUI. 
Building on WUI-mapping approaches that use census block19 or 
building location data54, we made some adaptations for our raster 

data approach. Most notably, we could not apply the building density 
threshold of 6.17 km−2.

We reclassified the land cover data into wildland versus non-wildland. 
Wildland vegetation included tree cover/forest, shrubland, grassland, 
herbaceous wetland, mangroves and moss and lichen. Non-wildland 
vegetation included cropland, built-up area, bare soil and sparse veg-
etation, snow and ice and water. For the interface WUI, we performed 
two reclassifications, where grassland was either included as wildland 
vegetation or not. Accordingly, we mapped two sets of large vegetation 
patches. We used the reclassified datasets to compute the wildland 
vegetation share within a circular kernel for intermix mapping (radius 
of 500 m following precedent)54. We also identified patches of more 
than 5 km2 where wildland vegetation share is greater than 75% for 
interface mapping. Pixels within 2,400 m (following precedent54) of 
large vegetation patches were included as interface WUI.

On the basis of initial tests, we set building density to zero where 
slope is more than 25° (based on a gap-filled SRTM63/ASTER64 digital 
elevation model) or where intra-annual water occurrence in the Global 
Water Surface dataset65 is more than 20%, that is, where water was pre-
sent during at least 20% of the year to reduce commission errors on 
steep bare rock and in temporary river beds where false detections 
of buildings were more common (Supplementary Information). Also, 
we only considered pixels with an estimated building density of more 
than 20%, thereby removing areas with very low building density for 
which data accuracy can be limited. We defined all pixels with an aggre-
gated building density greater than 0.5% in their surrounding (500 m 
radius) as candidate WUI pixels. Compared to the commonly used  
definition of 6.17 buildings per km2, this threshold is usually slightly 
higher (depending on local building sizes). We chose this threshold 
to avoid WUI commission errors in low building density areas, which 
means that our WUI estimates are conservative. Similarly, we defined 
pixels with an average building density greater than 15% in a 500 m 
radius as having an urban character. These areas, for example, densely 
vegetated and high-density suburban environments, could not be clas-
sified as intermix WUI because urban vegetation often differs from 
wildland vegetation in terms of species identity, management prac-
tices and habitat restrictions and stronger fire control systems are in 
place that prevent fires. WUI mapping was subsequently performed 
as illustrated in Extended Data Fig. 3.

The WUI maps were masked where land cover was water. For inter-
mix WUI, we determined the dominant land cover type within a pixel 
based on the area share of wildland vegetation. We distinguished pixels 
dominated by forests, shrubland and wetlands from those dominated 
by grassland.

We identified candidate hotspot countries as the top ten countries 
in their respective world region with the highest WUI area share, that 
had more than 20% of their wildfire area within the WUI and were more 
than 10,000 km2 in size. Among these, we selected the two countries 
with the most people affected by wildfire in the WUI. If their borders 
were within 200 km, we replaced the second-ranked country with the 
third-ranked (until border distance greater than 200 km).

Population, biomass and fire
We analysed the extent and distribution of the global WUI and also 
calculated the population living in the WUI, proportion of biomass in 
the WUI and WUI area affected by wildfire.

For population data, we analysed the Global Human Settlement 
Population dataset (GHS-POP66) that represents population per grid 
cell, with 100 m resolution. This dataset is based on the building density 
dataset we used to map the WUI but excludes non-residential build-
ings. It was created by disaggregating census data to grid cells using 
building density as weight. We computed area-weighted summaries 
of population data.

For biomass, we analysed global maps of aboveground biomass car-
bon density for 2010 (ref. 67), with 300 m resolution. We converted 
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biomass carbon density (MgC ha−1) to mass (kg) and applied a factor 
of two to convert carbon equivalent mass to dry matter biomass68. We 
computed area-weighted summaries of biomass data.

For wildfire data, we analysed the MODIS Collection 6.1 Active Fire 
dataset (MCD14ML)69 and extracted grid cell-based fire frequency data 
from 2003 to 2020 (the years with complete data records for both Aqua 
and Terra). We selected only fires categorized as vegetation fires and 
excluded those representing active volcanoes and static land sources 
such as gas flares. Furthermore, we distinguished wildfires from agri-
cultural or structural fires by only including fires for which the share 
of wildland vegetation in that MODIS pixel was more than 50% accord-
ing to the WorldCover dataset. We reduced fire frequency data to fire 
presence by setting many fire occurrences within one grid cell to one. 
We defined a grid cell with fire presence as an area affected by wildfire. 
We used the MODIS Active Fire dataset because it provides the long-
est consistent spatially explicit global time series information of fire. 
However, MODIS active fire data have some limitations, for example 
caused by the wide sensor swath of 2,230 km, which can result in pixel 
area differences between nadir and the swath edges of a factor of 10, 
thereby potentially underestimating fire area at the swath edges70. This 
is a particular issue as active fires are detected by thermal anomalies 
that, if classified as fire, are represented by a single point in the cen-
tre location of the pixel. Furthermore, its nominal pixel resolution of 
1,000 m can result in the non-detection of small fires, particularly in 
low tree cover areas. This is why we also analysed data from the VIIRS 
Active Fire product which has 375 m spatial resolution since 2013. VIIRS 
data are comparable to the MODIS product but overcome some of its 
challenges as a result of higher resolution and narrower sensor swath71. 
We compared fire area and population affected by fire derived from 
VIIRS (2013 to 2020) or the MODIS data (2013–2020 for comparison 
and 2003–2020 for our main summary statistics).

Area correction
Where applicable, we used a pixel-based area-correction factor when 
computing area statistics to adjust skewed area statistics caused by 
our projection system (Supplementary Information).

Accuracy assessment and uncertainty
We evaluated the accuracy of the global WUI maps thoroughly using 
a stratified random sample72. Validation sites were stratified on the 
basis of the mapped area shares of our five classes: forest/shrub/
wetland-dominated and grassland-dominated intermix and interface 
WUI and non-WUI. We conducted our validation independently for 
each of the six world regions based on expert-opinion reference data 
derived from the visual interpretation of submetre to metre resolution 
satellite imagery available in Google Earth.

According to ref. 72, the number of required validation sites is based 
on the mapped area proportion Wi of each validated class i, the target 
user’s accuracy Ui and the target standard error S for the estimated 
overall accuracy (equation (1)).
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The number of sites n was drawn for each world region. The sites were 
then equally allocated to the five classes. A class-area proportion of the 
distribution would have complicated data handling, as non-WUI was 
expected to be by far the dominant class. The total number of validation 
sites was 1,504 per world region, that is, 300 or 301 per world region 
and class, based on a target user’s accuracy of 0.75 and a target stand-
ard error of 0.01. The sites were randomly drawn within the respective 
strata (Extended Data Fig. 5).

The overall area-adjusted mapping accuracy when distinguishing 
WUI versus non-WUI classes was 82.1% (Extended Data Fig. 6). The 

area-adjusted overall accuracy when all five classes were separately 
assessed was 79.6%. Class-wise user’s and producer’s accuracies ranged 
considerably and so did overall accuracies without area-adjustment 
(Supplementary Data A). Area-adjusted accuracy is largely affected 
by the high area share and high user’s accuracy of the non-WUI class, 
whereas all WUI classes have a minor area share across the globe. The 
overall accuracy varied only slightly among the world regions (between 
five and ten percentage points), with no clear recurring patterns. The 
overall accuracy between different interpreters differed by similar 
margins. Only 3% of all validation points were labelled as ‘uncertain’ 
during the validation process. The quality of the WUI map is largely a 
function of the quality of the underlying land cover data. For example, 
despite the overall high accuracy of the ESA WorldCover product, the 
user’s accuracy of shrublands, one of the key land cover types for WUI 
mapping, is only 39% (ref. 59). The quality of our WUI map also depends 
on the quality of building data. However, we found that because WUI 
requires only to be above the minimum building density threshold, 
even fairly widespread omission errors in areas with scattered build-
ings typically do not lead to missed WUI. On the other hand, in areas 
where small, isolated buildings are missed, the mapped WUI area was 
not greatly affected either because such isolated buildings do not form 
WUI even when mapped correctly.

We also compared our global WUI map with previously generated 
census-based and building location-based WUI maps across the United 
States19,54 and found high agreement in total WUI area (Pearson correla-
tion of 0.80) (Extended Data Fig. 7a). In densely populated northeastern 
states (for example, Connecticut, Massachusetts, New Jersey and Rhode 
Island), we found considerably more WUI area than census-based and 
building location-based approaches. In most other states, our WUI 
area estimate is very close to or slightly higher than estimates from 
the census-based approach and slightly lower than from the build-
ing location-based approach. We also compared our map results with 
data from two previous studies across 36 European countries20,73 and 
found high agreement in total WUI area with ref. 27 (r = 0.94 across all 
countries) and medium agreement with ref. 20 (r = 0.55) (Extended 
Data Fig. 7b). However, in Europe, we consistently map more WUI than 
those two studies. Compared to ref. 73, we mapped more WUI because 
our distance threshold for interface mapping is larger (2.4 km versus 
0.6 km) and ref. 20 defined the WUI as the overlap of the buffers around 
built-up land cover (200 m buffer) and vegetation (400 m buffer), which 
resulted in considerably less WUI.

We developed our WUI maps on the basis of a well-established defini-
tion of the WUI that was originally developed in the United States and 
successfully applied in other world regions (for example, Argentina23,74 
and Poland21) However, WUI maps depend on the mapping criteria, 
especially the radius that is considered when computing mean building 
density for a given area and the distance to a large vegetation patch that 
determines the interface WUI. Previous sensitivity analyses confirmed 
the general suitability of the parameters that we selected, that is, a 
500 m radius for density calculations and a 2,400 m distance to a large 
vegetation patch. In the United States, radii smaller than 500 m make 
the resulting WUI maps highly sensitive to commission or omission 
errors in the underlying building dataset, whereas larger radii resulted 
in minimal changes in WUI area54. In Europe, overall WUI area is 25% 
lower when limiting interface WUI to areas within 600 m of a large 
vegetation patch compared to 2,400 m but WUI area estimates based 
on either distance were highly correlated (R² = 0.94; ref. 73). Because 
there are no published WUI-mapping thresholds for most parts of the 
globe, we decided to apply the most established approach across the 
globe but acknowledge the value of further regionalized research that 
accounts for local particularities.

The comparison of wildfire area in the WUI and population affected 
by wildfire between the MODIS Active Fire and the VIIRS Active Fire 
datasets showed very similar patterns for both. Globally, 3.1% of wild-
fire area is in the WUI according to MODIS (2013–2020), compared to 



3.5% in VIIRS (2013–2020), with a difference of less than 2.6 percentage 
points in any world region. The slight difference is probably due to the 
ability of VIIRS to capture smaller fires and potentially more fires in 
areas located at the MODIS swath edges (see Supplementary Data B–E 
for more detailed information and comparisons by biome, region, 
country and subnational administrative units).

Data availability
All raster data are available in a public data repository (https://zenodo.
org/record/7941460). The data are also accessible at https://geoserver.
silvis.forest.wisc.edu/geodata/globalwui. We share the data for visu-
alization purposes in an interactive data view at https://silvis.forest.
wisc.edu/data/globalwui. Source data are provided with this paper.

Code availability
The algorithm to map the WUI with our raster-based approach is shared 
here and in the data publication: https://github.com/franzschug/
global_wildland_urban_interface. 
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Extended Data Fig. 1 | The global Wildland–Urban Interface. a, Area share 
(%) of the Wildland–Urban Interface (WUI) in ca. 2020 per hexagon with 50 km 
diagonal length. b–g, WUI and non-WUI map at 10 m resolution for parts of  

El Salvador (b), Ecuador (c), Poland (d), Lebanon (e), Japan (f), and the 
Philippines (g). Interactive global map at https://silvis.forest.wisc.edu/data/
globalwui/.

https://silvis.forest.wisc.edu/data/globalwui/
https://silvis.forest.wisc.edu/data/globalwui/


Extended Data Fig. 2 | WUI area share by biome. Per cent area share of the total of the four mapped WUI classes per biome. Black lines: Biome boundaries as 
defined by Olson et al. (2001)36. Map projection: Robinson. Grid coordinates: WGS 84.
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Extended Data Fig. 3 | The Wildland–Urban Interface mapping workflow. 
Classifying the Wildland–Urban Interface based on a, moving window mean 
building density and b, wildland vegetation in a circular kernel (r = radius = 
500 m, black outline) and c, distance to the closest large wildland vegetation 

patch (d = distance = 2,400 m). G = grassland, F/S/W = forest/shrubland/
wetland. d, Combining building density and wildland vegetation to map the 
Wildland–Urban Interface.



Extended Data Fig. 4 | World regions and tiling scheme, EQUI7 reference 
grid. Tile counts: Africa – 3814 (purple), Asia – 4547 (orange), Europe – 1374 
(green), North America – 3155 (blue), Oceania – 2026 (yellow), South America – 

2055 (red). Adapted from Bauer-Marschallinger et al. (2014)62. Map projection: 
Robinson. Grid coordinates: WGS 84.
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Extended Data Fig. 5 | Global Wildland–Urban Interface, Validation Sites. Global distribution of all validation sites, 1,504 per world region for a total of 9,024, 
world regions defined according to Extended Data Fig. 4. Map projection: Robinson. Grid coordinates: WGS 84.



Extended Data Fig. 6 | Overall Accuracy of global Wildland–Urban Interface 
(WUI) mapping. Iterative overall and area-adjusted accuracy (%) globally (top) 
and by world region (bottom). Columns represent different class aggregations. 
All classes (left): all mapped classes individually (non-WUI, forest/shrubland/
wetland-dominated intermix WUI, grassland-dominated intermix WUI, forest/

shrubland/wetland-dominated interface WUI, grassland -dominated interface 
WUI). Intermix/Interface/Non-WUI (centre left): intermix and interface classes 
aggregated respectively. WUI vs. Non-WUI A (centre right): all WUI classes 
aggregated. WUI vs. Non-WUI B (right): aggregates forest/shrubland/
wetland-dominated WUI as WUI, and grassland-dominated WUI as non-WUI.



Article

Extended Data Fig. 7 | Total WUI area comparison with previous studies states 
in the conterminous United States and for selected European countries.  
a, Comparison of aggregated global mapping results for 48 conterminous  
US states to Census block-level and building centroid point-based WUI mapping 
(Radeloff et al. 201819, Carlson et al. 202257). The data in Radeloff et al. are 
representative for 2010. The data in Carlson et al. are representative for  
2015–2018. b, Comparison for 36 European countries: The data in Modugno et al. 

are representative for 200620. The data in Bar-Massada et al. are representative for 
2019–202072. Neither European study considers grassland areas as wildland 
vegetation. Differences in WUI area share are due to smaller distance thresholds 
for WUI Interface mapping (600 m distance to closest large vegetation patch in 
Bar-Massada et al.73) and lower mapping resolution with a simplified buffering 
approach for building detection (only buffer overlaps of built-up land cover and 
vegetation are considered WUI in Modugno et al.20).



Extended Data Table 1 | The global Wildland–Urban Interface and the degree of urbanization

WUI area in different degree of urbanization classes. Classes according to Dijkstra et al. (2021)41).
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Extended Data Table 2 | The global Wildland–Urban Interface and income

WUI Area Share, Share of population and biomass in the WUI as well as population affected by fire in the WUI per World Bank Income Group 2023 (https://datahelpdesk.worldbank.org/knowl-
edgebase/articles/906519-world-bank-country-and-lending-groups).

https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
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