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A B S T R A C T   

Accurate maps of gains in tree cover are necessary to quantify carbon storage, wildlife habitat, and land use 
changes. Satellite-based mapping of emerging smallholder woodlots in heterogeneous landscapes of sub-Saharan 
Africa is challenging. Our goal was to evaluate the use of time series to detect and map small woodlots (<1 ha) in 
Tanzania. We distinguished woodlots from other land cover types by woodlots’ distinct multi-year spectral time 
series. Woodlots exhibit greening from planting to maturity followed by browning at harvest. We compared two 
time series approaches: 1) a linear model of Tasseled Cap Wetness (TCW) and other indices, and 2) LandTrendr 
temporal segmentation metrics. The approaches had equivalent woodlot detection accuracy, but LandTrendr 
segments had lower accuracy for characterizing woodlot age. We tested the effect of the following factors on 
woodlot detection and mapping accuracy: the length of the time series (2009–2019), frequency of observations 
(all Landsat vs. only Landsat-8), spatial resolution (30-m Landsat vs. 10-m Sentinel-2), and woodlot age and size. 
Woodlot mapping accuracies were higher with longer time series (54% at 3-yrs vs 77% at 7-yrs). The accuracies 
also improved with more observations, especially when the time series was short (3-yrs Landsat-8 only: 54% vs. 
all-Landsat: 64%, p-value <0.001). Sentinel-2’s higher spatial resolution minimized commission errors even for 
short time series. Finally, less than half of young and small (<0.4 ha) woodlots were detected, suggesting 
considerable omission errors in our and other woodlot maps. Our results suggest that the accurate detection of 
woodlots is possible by analyzing multi-year time series of Landsat and Sentinel-2 data. Given the region’s 
woodlot boom, accurate maps are needed to better quantify woodlots’ contribution to carbon sequestration, 
livelihoods enhancement, and landscape management.   

1. Introduction 

Mapping tree cover in different kinds of landscapes is crucial for 
understanding the climatic and economic benefits of trees (Crowther 
et al., 2015; Hansen et al., 2013), and remote sensing is an essential tool 
for such mapping. While mapping forests versus non-forests is generally 
highly accurate, separating native forests from forest plantations is more 
difficult, especially when plantations are small (Sexton et al., 2016). 
Accordingly, while the Food and Agriculture Organization estimates 
that there are 278 million hectares of tree plantations worldwide, it also 
notes high uncertainty of this estimate because of difficulties in quan-
tifying smallholder woodlots (Payn et al., 2015). That is problematic 
because smallholder woodlots in Africa and southeast Asia contribute 
substantially to those regions’ timber needs (Jacovelli, 2014; Mather, 

2007; Rudel, 2009), and they are becoming more common (Payn et al., 
2015; Kimambo et al., 2020). In addition to timber supply, smallholder 
woodlots are also being promoted as a valuable carbon mitigation and 
landscape restoration strategy, even as the carbon stocks associated with 
woodlots remain poorly quantified (Fagan et al., 2020; Veldman et al., 
2015; Dave et al., 2017). Thus, suitable remote sensing approaches are 
needed to accurately map smallholder woodlots. 

Whereas natural forests are declining globally, the extent of woodlots 
has been increasing, especially in developing countries (e.g., in Vietnam 
(Nawir et al., 2007), India (Mather, 2007), Indonesia (Torbick et al., 
2016), Uganda (L’Roe and Naughton-Treves, 2016), and Ethiopia 
(Jenbere et al., 2012)). We define a woodlot as smallholder-planted 
trees, typically on their own private land and in a small area (<5 ha), 
to be used for firewood, timber, or fruit (Ngaga, 2011; Kimambo and 
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Naughton-Treves, 2019). The increase in woodlots in East Africa is 
partly due to increased demand for tree products like timber and fuel 
wood due to rapid urbanization and population growth (Held et al., 
2017; Indufor, 2011; Jacovelli, 2009). In some countries, including in 
India, Vietnam, and China, smallholder woodlots have increased partly 
due to government promotion and subsidies (Nawir et al., 2007; Borah 
et al., 2018; Frayer et al., 2014; Arvola et al., 2020). Despite strong 
evidence for the increasing contribution of smallholder woodlots to tree 
cover gain trends, there is a lack of systematic methods to detect 
woodlots and quantify their extent for both local and global level sta-
tistics (Torbick et al., 2016; Kröger, 2012). 

Woodlot expansion has been especially rapid in East Africa after 
2010 (Jacovelli, 2014), coincident with a period of increased image 
availability from medium-resolution sensors such as Landsat and 
Sentinel-2. However, three factors make woodlot detection and mapping 
from satellite images challenging: 1) woodlots are established asyn-
chronously – smallholders plant their woodlots in different years and 
manage them differently, which means that woodlots as a land cover 
class are highly heterogeneous; 2) woodlots are small – the majority are 
<1 ha, and their average size is 0.45 ha (Kimambo et al., 2020); and 3) 
woodlots are part of heterogeneous landscapes and are often planted 

next to annual crops, shrubland, and native forests. 
The first challenge for woodlot detection and mapping – asynchro-

nous establishment and variability – is both a challenge and a potential 
methodological advantage because woodlots’ spectral time series and 
visual characteristics may separate woodlots from other land covers 
(Deng et al., 2020). Spectral time series have been used to distinguish 
land cover that have intra-annual variability (e.g., rice paddies (Kontgis 
et al., 2015) and maize (Lobell et al., 2003), or rubber plantations (Hurni 
et al., 2017)). These studies relied on an annual and synchronous time 
series signature. Woodlots’ spectral trajectory, however, is multi-year, 
and each woodlot exhibits an increase in greenness over 2–7 years 
after planting (Fig. 1). A multi-year spectral time series can identify a 
woodlot’s greening trend (Deng et al., 2020; Gao et al., 2016), but not 
distinguish it from shrub encroachment or forest regeneration. 
Furthermore, woodlots will have a wide range of time series trajectories 
due to asynchronous establishment. Therefore, woodlot’s spectral time 
series may require additional data such as visual characteristics 
(Kimambo et al., 2020) in order to accurately distinguish woodlots from 
other greening trends. 

To chart any multi-date spectral time series, multispectral reflec-
tance for each date is typically reduced to an index value, such as the 

Fig. 1. Woodlot growth as seen A) on the ground, B) in high-resolution (1–3 m) Google Earth Pro (CNES/Airbus) images, C) in Sentinel-2 images (RGB/B4, B3, B2), 
D) in Landsat Images (RGB/B4,B3,B2) E) in temporal segments generated by LandTrendr, with fitted lines for different LandTrendr segments and F) in all the Tasseled 
Cap Wetness values for all available images (2005–2020), with a fitted trendline generated from Locally Estimated Scatterplot Smoothing (LOESS(TCW ~ date)). 
Pictures (Row A) are illustrative and do not represent the same location. Rows B – F are the same location (35.319463◦E, 8.522063◦S). 
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Normalized Difference Vegetation Index (NDVI) or the Enhanced 
Vegetation Index (EVI) (Deng et al., 2020; Hurni et al., 2017; Qiao et al., 
2016). Tasseled Cap Transformation converts multi-band reflectance 
into three components (brightness, greenness, and wetness), thereby 
reducing noise from senesced vegetation and soil characteristics (Son-
nenschein et al., 2011). Comparisons of NDVI and the Tasseled Cap 
Transformation show the later to be less susceptible to noise and the 
components represent biophysically interpretable aspects of land cover 
(Dymond et al., 2002; Healey et al., 2005). A woodlot could be captured 
with a positive slope or cumulative value of Tasseled Cap greenness or 
wetness (Fig. 1). The magnitude of the values and may allow dis-
tinguishing woodlots that are at different points in their establishment 
trajectories but may fail to capture a woodlot that has experienced a 
harvest cycle. 

Landsat-based Detection of Trends in Disturbance and Recovery 
(LandTrendr) algorithm performs temporal segmentation of spectral 
time series data that could potentially identify a woodlot’s growth and 
harvest cycle (Kennedy et al., 2010). LandTrendr identifies periods of 
stability versus periods of change based on seasonal or annual satellite 
observations. LandTrendr was originally designed to map forest distur-
bance and recovery, and a spectral time series of woodlot establishment 
and subsequent harvest presents an analogous temporal pattern. 
Compared to related time-series analysis algorithms such as Continuous 
Change Detection Classification (CCDC) or Breaks for Additive Seasons 
and Trend (BFAST), LandTrendr requires fewer images in a given year 
(Zhu, 2017) and has been tested for disturbance and recovery mapping 
in a wide range of ecoregions (Kennedy et al., 2018). However, Land-
Trendr has only be applied once in the smallholder systems of 
sub-Saharan Africa (Schneibel et al., 2017). Detecting small woodlots 
would be an excellent test case for LandTrendr’s applicability, given East 
Africa’s limited image availability (Goward et al., 2006), heterogeneous 
landscapes, variable field sizes, and flexible cropping systems (Xu et al., 
2018). The algorithm can be useful for characterizing woodlots at 
different points in their establishment trajectory, including harvest and 
replanting cycles. 

The second challenge for woodlot detection and mapping – small size 
of smallholder woodlots – may limit ability to separate woodlots from 
adjacent land cover with similar spectral signature. Spectral similarity 
may differ at different points in woodlot’s establishment trajectory 
(Fig. 1). For example, a newly planted woodlot may resemble annual 
cropland or grassland, a mature woodlot may resemble woody vegeta-
tion, and a newly harvested woodlot may resemble bare ground. This 
challenge may be overcome by higher spatial resolution of the input 
images. The availability of ESA’s Sentinel-2 10-m images provides 9 
times more pixels per woodlot compared to Landsat, but Sentinel-2 has a 
shorter time series Fig. 1C). In single-date analyses, including Sentinel-2 
imagery improved woodlot mapping accuracies in Tanzania (Koskinen 
et al., 2019) and in south Asia (Hurni et al., 2017; Nomura and Mitchard, 
2018; Torbick et al., 2016). The utility of Sentinel-2’s higher spatial 
resolution in woodlot mapping needs to be evaluated while controlling 
for time series length. 

The third challenge for woodlot detection and mapping – limited 
class separability due to within-class and landscape heterogeneity – 
stems from the asynchronous establishment and the small field sizes. 
Ultimately, accurate mapping of any land cover type depends on 
whether it is separable from the surrounding context (Lu and Weng, 
2007; Ozdogan and Woodcock, 2006). Spectral distinctness of a woodlot 
might depend on its characteristics such as age and size: mature and 
large woodlots would be more spectrally distinct (Fassnacht et al., 2016; 
Grabska et al., 2019; Sheeren et al., 2016). One-time woodlot maps 
rarely explicate the heterogeneity of woodlots as a landcover by indi-
cating characteristics like woodlot age (Koskinen et al., 2019). Without 
sub-characterization, the maps could be favoring spectral signals from 
large and mature woodlots. Analyses are needed that determine whether 
woodlot detection and mapping are sensitive to woodlot characteristics 
(e.g., size and age). 

Our overall goal was to develop and test two time series-based 
methods for mapping smallholder woodlots. Our first objective was to 
quantify woodlot mapping accuracy given: a) length of the satellite 
images time series; b) frequency of observations; and c) spatial resolu-
tion of the images. Our second objective was to compare woodlot 
detection accuracy given: a) time series described by a linear model of 
tasseled cap wetness index versus LandTrendr temporal segments; and 
b) woodlot’s age and size characteristics. 

2. Methods 

2.1. Study area 

To develop and test time series approach for woodlot detection, we 
performed our study on an area of 10,000 km2 in the Southern High-
lands of Tanzania, centered on 8.9◦S, 34.7◦E (Fig. 2). The Southern 
Highland (ca. 202,770 km2) is a high-elevation (avg. elevation: 1800 m) 
region with high rainfall (up to 2000 mm per year at 2000 m asl) and 
moderate temperatures (Fick and Hijmans, 2017). These climatic con-
ditions are well-suited for tree plantations, which is why the region 
produces most of Tanzania’s timber and contains 15 government and 
privately-owned large timber plantations (Kimambo et al., 2020; Kos-
kinen et al., 2019). The region is experiencing a substantial smallholder 
tree planting boom since c. 2010 (Kimambo et al., 2020; Ngaga, 2011; 
Indufor, 2011) due to market demand for construction timber, electric 
poles, firewood, and other tree products (Koskinen et al., 2019; Arvola 
et al., 2019). The smallholder woodlots average 0.45 ha in size and are 
of variable age, with the majority established between 2012 and 2015 
(Kimambo et al., 2020). These smallholder woodlots typically contain 
fast-growing species of pine and eucalyptus and have very short rotation 
cycles (7–10 years) because smallholders harvest the woodlots early to 
meet cash needs (FDT, 2015). Woodlots are interspersed with other 
smallholder land uses, including rain-fed annual crops, tea, and pasture. 
Other land cover types in the study area include natural grasslands, wet 
montane forests, miombo woodlands, shrublands, and urban areas. 

2.2. Analysis 

We conducted most of our analysis for the two objectives (Fig. 3) in 
Google Earth Engine (Gorelick et al., 2017). For each objective, we first 
prepared the input image stacks, the training data, and independent 
validation data (see 2.2.1). For Objective 1, we assessed woodlot map-
ping accuracy given imagery input parameters (see 2.2.2 and Fig. 3). For 
Objective 2, we compared woodlot detection success between our 
mapping approach from Objective 1 and LandTrendr temporal seg-
mentation (see 2.2.3 and Fig. 3). Finally, we analyzed woodlot detection 
patterns given woodlot size and age characteristics. 

2.2.1. Data 

2.2.1.1. Input image stacks. We created input image stacks with varied 
time series length, frequency of observations, and spatial resolution 
(Table 1). The image stacks were based on Landsat and Sentinel-2 data. 
For Landsat data, we analyzed all the available Landsat scenes from 
Google Earth Engine’s Landsat Surface Reflectance Tier 1 data 
(2010–2019, accessed January 2021). We used the CFMask-generated 
pixel quality band to remove clouds and cloud shadows. We harmo-
nized Landsat-8 (OLI) to Landsat-5 (TM) and Landsat-7(ETM+) 
following Roy et al., 2016. For Sentinel-2 data, we downloaded 
Sentinel-2A and 2B MSI (Multi-Spectral Instrument) Level 1C data from 
Sentinel’s scihub for 2017–2019. Our study area corresponds to tile 
T36LYR. We used Sen2Cor (version 2.9) to process the images to Level 
2A, including atmospheric correction and cloud detection, and uploaded 
the corrected imagery to Google Earth Engine for subsequent analysis. 
We masked clouds using pixel quality information produced by Sen2Cor 
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(Appendix A). 
To summarize the reflectance data of Landsat images, we calculated 

four indices for each image: the Normalized Difference Vegetation Index 
(NDVI), Normalized Difference Water Index (NDWI) ((B3 – B5)/(B3 +
B5)), Bare Soil Index (BSI) ((B7+B4) –(B5 +B2))/((B7 +B4) +(B5+B2)), 

and the wetness index from the Tasseled Cap Transformation (TCW). For 
Sentinel-2, we selected the 10-m bands (B2, B3, B4, B5, and B8) and a 
20-m band (B11) and resampled B11 to 10-m to match the spatial res-
olution of the other bands. We calculated the same four indices as 
Landsat. To capture spectral time series that could distinguish woodlots 

Fig. 2. A) The study area extent. Circles labeled loc 1 – loc 5 are manual digitization locations. The underlying image is a 1-year (Jan–Dec 2019) Sentinel-2 true-color 
median composite (RGB: B4, B3, B2). Context map shows Tanzania and the study area extent. B) Sample woodlots that we manually digitized at location 2 in Google 
Earth Pro (CNES/Airbus), with four woodlot classes: “Young” (aqua), “Intermediate” (purple), “Mature” (green) and “Harvested” (tan). C) LandTrendr segments 
(2009–2019) for each of the woodlots shown in panel B. The fitted lines are LandTrendr-generated segments D) Tasseled Cap Wetness (TCW) spectral time series 
(2009–2019) for the four woodlots. The fitted trendline is a Locally Estimated Scatterplot Smoothing (LOESS(TCW ~ date)). (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Summary of analysis steps for woodlot mapping and detection. Shape of text boxes indicates input data, analysis steps, and intermediate and final outputs (see 
legend). The Data are fully described in Section 2.2.1. The Analysis are described under each objective. In Objective 1 (section 2.2.2) we performed woodlot mapping 
under different time series constraints. In Objective 2 (section 2.2.3), we analyzed woodlot detection patterns given time series analysis approach and woodlot 
characteristics. 
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from other land cover classes, we calculated the slope and intercept of a 
linear model for each pixel using the four indices and varying the time 
series length (Table 1). We also calculated the average monthly TCW for 
a given time period. 

We tested the effects of the length of the time series, frequency of 
observation, and spatial resolution on woodlot detection accuracy. Our 
shortest time series was three years (2017–2019) and then we increased 
the length in reverse chronology by one-year increments. To examine 
frequency of observation effect, we created five image stacks from 
Landsat-8 only (2013–2019) and eight from Landsat-8, Landsat-5, and 
Landsat-7 combined (2010–2019). We also created two image stacks 
based on Sentinel-2 images (2017–2019) to test the advantages of 10-m 
resolution versus Landsat’s 30-m resolution (Table 1). 

2.2.1.2. LandTrendr temporal segments. We used the Google Earth En-
gine implementation of the LandTrendr algorithm to generate temporal 
segments (Kennedy et al., 2018). The input images were from Landsat 
and atmospherically corrected, harmonized, and masked for clouds with 
procedures outlined above. The images covered a ten-year time window 
(2010–2019), all available months (01-Jan – 31-Dec) and used Land-
Trendr’s default medoid function to create a single image per year. For a 
given pixel and image index, this medoid implementation picks a pixel 
value that is numerically closest (in Euclidian spectral distance) to the 
median of all the pixels under consideration, calculated annually 
(Kennedy et al., 2018). By creating a median image for each year, 
consistency among images, which is necessary for temporal segmenta-
tion, is ensured. 

In LandTrendr terms, woodlot establishment is equivalent to fast tree 
cover gain (Figs. 1, 2), so we parameterized LandTrendr to optimally 
capture this type of change. We followed Kennedy et al. (2010) guide-
lines for parameterization to better identify timing of woodlot estab-
lishment: setting higher maximum segments (max_segments = 6) and 

turning off the recovery threshold (recovery_threshold = 1.0). We did not 
apply a minimum mapping unit because woodlots can be very small. For 
the other ten LandTrendr parameters, we conducted a sensitivity anal-
ysis following Rodman et al. (2021). The final set of parameters maxi-
mized detection of rapid tree cover gain consistent with how woodlots 
establish and minimized sensitivity to within-year variability (Appendix 
B). We generated segments from four indices (NDVI, TCW, TCB, and EVI, 
(Table 2)) because they have been shown to be the best-performing 
indices in LandTrendr (Cohen et al., 2018), and compared their 
woodlot detection accuracies. 

2.2.1.3. Training and validation data. Our training sample generation 
emphasized distinguishing woodlots from other classes based on both 
time series (Deng et al., 2020) and visual characteristics (Kimambo 
et al., 2020; Koskinen et al., 2019). We selected 778 samples across 12 
land cover classes (“Cropland”, “Forest”, “Grassland”, “Tea”, “Urban”, 
“Wetland”, “Woodland”, “Water”, “Intermediate”, “Mature”, “Young”, 
and “Harvested”). To label samples, we interpreted a sample’s time se-
ries via a publicly available time series viewing tool based on Landsat 
and Sentinel-2 images (Yin, 2019)(Appendix C). Concomitantly, we 
visually interpreted high-resolution Google Earth Pro images (Appendix 
C). If no Google Earth Pro image was available, we checked Sentinel-2 
10-m images from 2019. For the four woodlot classes (“Harvested”, 
“Young”, “Intermediate”, and “Mature”), we recorded woodlot age by 
approximating planting date visually (Fig. 2 and next section for details) 
and by inspecting the 2010–2019 time series. In the time series, “Har-
vested” woodlots had a greening-then-loss signal with no re-greening. 
“Young” woodlots were planted within four years of target map date 
(2019), so the time series showed a greening trend after year 2015. 
“Intermediate” woodlots were planted four to six years prior, and their 
time series greening began between years 2013 and 2015. “Mature” 
woodlots were more than six years old, and their greening began prior to 

Table 1 
The characteristics of input image stack used to map woodlots. The input image stacks varied by the length of the time series, observation density, and spatial 
resolution.   

Calendar 
Range 

Time series length 
(years) 

Spatial Resolution 
(m) 

Monthly TCW averages 
(bands) 

Slope + Intercept (bands) Total no. of 
Bands 

NDVI BSI NDWI TCW  

2010–2019 10 30 113 2 2 2 2 121 
Landsat-8, 7, & 

5a 
2011–2019 9 30 108 2 2 2 2 116 
2012–2019 8 30 96 2 2 2 2 104 
2013–2019 7 30 84 2 2 2 2 92 
2014–2019 6 30 72 2 2 2 2 80 
2015–2019 5 30 60 2 2 2 2 68 
2016–2019 4 30 48 2 2 2 2 56 
2017–2019 3 30 36 2 2 2 2 44 

Landsat-8 2013–2019 7 30 80 2 2 2 2 89 
2014–2019 6 30 72 2 2 2 2 80 
2015–2019 5 30 60 2 2 2 2 68 
2016–2019 4 30 48 2 2 2 2 56 
2017–2019 3 30 36 2 2 2 2 44 

Sentinel-2 2016–2019 4 10 48 2 2 2 2 56 
2017–2019 3 10 36 2 2 2 2 44 

Abbreviations: NDVI: Normalized Difference Vegetation Index; BSI: Bare Soil Index; TCW: Tasseled Cap Wetness. 
a Images for Landsat-5 only available up to year 2013, Landsat-8 starting in 2013. 

Table 2 
The characteristics of LandTrendr segments used to detect woodlots. The segments were of the same time series length but from different indices.  

Indexa Calendar 
Range 

Time series length 
(years) 

Spatial Resolution 
(m) 

Landtrendr segmentation output (bands) Total no. of 
Bands 

Magnitude DSNR Year-of- 
detection 

Segment 
Duration 

pre- 
value 

gain 
rate 

NDVI 2010–2019 10 30 1 1 1 1 1 1 6 
TCW 2010–2019 10 30 1 1 1 1 1 1 6 
EVI 2010–2019 10 30 1 1 1 1 1 1 6 
TCG 2010–2019 10 30 1 1 1 1 1 1 6  

a Abbreviations: NDVI: Normalized Difference Vegetation Index; TCW: Tasseled Cap Wetness, EVI Enhanced Vegetation Index; TCG: Tasseled Cap Greenness; DSNR: 
Disturbance Signal to Noise Ratio. 
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year 2012. The final training dataset contained 326 samples for the four 
woodlot classes and 452 samples for the other seven classes. 

For validation, we aggregated the classified map into five classes 
(“Other”, “Harvested”, “Young”, “Intermediate”, and “Mature”). We 
performed a stratified random sample with the Area Estimation & Ac-
curacy Assessment toolbox (Bullock et al., 2019), following Olofsson 
et al. (2014) accuracy assessment recommendations. We randomly 
generated 415 validation samples by balancing sample distribution 
across strata and maintaining a target standard error on the overall ac-
curacy of 0.02. The final validation sample distribution was: “Other 
(118)”, “Harvested (48)”, “Young (90)”, “Intermediate (80)”, and 
“Mature (79)”. 

2.2.1.4. Independent database on woodlot size and age data from manual 
digitization. We required independent information on woodlots’ char-
acteristics in order to analyze woodlot detection patterns. We manually 
digitized woodlots to generate independent woodlot characteristics, 
namely woodlots’ age and size. We randomly selected five subregions 
that were each 10,000 ha (100 km2), they covered 5% of the study area 
(Fig. 2). In each subregion we manually digitized all woodlots based on 
visual interpretation in the most recent (year 2018/2019) high- 
resolution (1-m) Google Earth Pro images (Fig. 1B). The availability of 
up-to-date high-resolution Google Earth images varied by subregion. 
Some subregions’ most recent image dated back to the early 2000s. 
Thus, we recorded the date the image was acquired and the age category 
for the woodlot. Each woodlot was delineated following borders such as 
fire breaks and farm boundaries, while ensuring uniform texture within 
the woodlot (See Fig. 2 for examples, and (Kimambo et al., 2020) for 
details). We assigned each the woodlot an age category of either: 
“Young”, “Intermediate”, “Mature” or “Harvested” based on its tree 
density and crown size. The “Young” category represents woodlots 
where tree planting is evident, but trees are very sparse with the bare 
ground visible between tree rows. The “Intermediate” category are 
woodlots with round tree crowns that are almost touching, but the tree 
rows are still separated. The “Mature” category are woodlots where the 
tree canopy is dense and fully closed, and bare ground and planting rows 
are no longer visible. 

2.2.2. Woodlot mapping 
To map woodlots, we performed supervised classification with 

random forest because woodlots are a heterogeneous land cover. Our 
input image stacks differed in a) the length of the time series; b) fre-
quency of observations; and c) image resolution. We performed 
parameter tuning for random forest (Breiman, 2001) and tested sensi-
tivity of the classifier to the size of the training sample and input image 
stack (Appendix C). We used 500 trees, the square root of the number of 
variables at each split and set no minimum leaf population. Each input 
image stack was classified with the same training points into 12 land 
cover classes (Fig. 3). We then simplified the classification output from 
12 classes to two (“Other” and “Woodlot”) and used the independent 
validation data to assess overall accuracy in separating woodlots from 
all other land covers. Subsequently, we repeated the accuracy assess-
ment with five classes (“Other”, “Harvested”, “Young”, “Intermediate”, 
and “Mature”) and determined mapping accuracy for each woodlot age 
class. For each output map, we estimated overall accuracy as well as 
commission and omission errors for each class. 

To determine which input image characteristics best mapped 
woodlots, we tested whether any of the accuracies were significantly 
different. We applied Crochan’s Q test, an omnibus test that extends the 
McNemar’s test for more than two comparisons (Foody, 2004). Cro-
chan’s Q test indicated if any of the 15 output maps were different from 
the rest but did not identify which one. For this, we applied a post-hoc 
pairwise Wilcoxon test. We selected the three best woodlot mapping 
outputs based on the overall accuracies and the p-values of the pairwise 
Wilcoxon test. We compared the three best mapping outputs from 

Objective 1 to LandTrendr woodlot detection from Objective 2. 

2.2.3. Woodlot detection 
To analyze whether the time series analysis approach affected 

woodlot detection, we performed LandTrendr segmentation and 
compared results to the linear model approach from Objective 1. 
LandTrendr segmentation output contained: year of detection, duration 
of segment, magnitude of change, pre-value, rate of change, and 
change–signal-to-noise ratio. We validated the LandTrendr segments 
using the independent validation samples and TimeSync (Cohen et al., 
2010). In TimeSync, we checked the segmentation outcome from 
Landtrendr for each validation location. We recorded whether the seg-
ments correctly identified woodlots (i.e., pixels with gain) and the 
timing (year of detection) and duration (number of years) of woodlot 
gain. We compared TimeSync validation metrics to validation metrics 
from Objective 1. 

To analyze the effect of woodlot characteristics (i.e., age and size) on 
woodlot detection, we conducted agreement/disagreement evaluation. 
Our benchmark was the independent database of manually digitized 
woodlots in random locations. We calculated agreement/disagreement 
on woodlot presence between the database and in maps produced by the 
linear model approach and by the LandTrendr segmentation approach. 
We report woodlot detection rates as a function of the age of the woodlot 
and the size of the woodlot. 

3. Results 

3.1. Woodlot mapping 

We accurately mapped woodlots (up to 77.2 ± 6.7% accuracy) and 
estimated wide-spread woodlot coverage (36 ± 21%) in the study area. 
Our mapping results were robust to random forest parameterization and 
training sample size (Appendix C.1 – C.3). Spatially, more woodlots 
were in the higher elevation areas and near regions with large govern-
ment and private timber plantations (Fig. 5A). Visual assessment of the 
maps showed that we mapped “Mature” woodlots accurately even when 
the woodlots were mixed in with other land uses (Fig. 5, Loc 1 & Loc 2). 
However, we had high omission errors for “Young” woodlots. 

3.1.1. Time series length 
Woodlot mapping accuracy increased with the length of the time 

series of the input data. For two-class maps (“Woodlot” vs “Other”), 
there was no statistically significant difference in the accuracies of the 
maps produced with at least a 5-year time series if using Landsat-8 im-
ages alone, or least a 4-year time series if using combined Landsat-8, 7, 
and 5 images (Table 3). However, peak accuracies were attained with a 
7-year time series. In other words, woodlots were adequately distin-
guished from other land covers with a time series of 4–5 years, but 
additional years further improved mapping accuracies. These results 
were robust to different training sample sizes (Appendix C, Fig. 1C). 

When we classified woodlots by age (“Young”, “Intermediate”, 
“Mature”, and “Harvested”), the errors also generally decreased with 
time series length. Omission and commission errors generally decreased 
with longer time series particularly for the “Intermediate”, “Mature”, 
and “Harvested” woodlots (Fig. 4). Furthermore, when mis-classified, 
“Young” woodlots were mis-classified as “Other”; while the rest of the 
woodlot classes tended to be mis-classified as a woodlot of a different 
age. “Young” woodlots had highest omission errors, and these errors 
were not improved by time series length (Fig. 4). “Mature” woodlot 
class, on the other hand, had the lowest commission and omission errors 
even in very short time series (Fig. 4). Omission and commission errors 
for “Harvested” woodlots sharply declined with longer time series, for 
up to 7 years (Fig. 4). 

3.1.2. Frequency of observations 
Woodlots were mapped more accurately when input data combined 
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multiple sensors, thus increasing the frequency of observations. Two- 
class output maps (“Woodlot” vs “Other”) that reached highest overall 
accuracies resulted from time series inputs that combined Landsat-8, 7, 
and 5 (77%, 7-yr time series). Woodlots mapped from only Landsat-8 
time series of the same length had lower overall accuracies, but this 
difference was not statistically significant (71%, p-value 0.30; Table 3). 
For time series longer than 7 years, the overall accuracy of the combined 
Landsat-8, 7, and 5 started to decline, but most of these maps are not 
statistically significantly different from each other (7-year: 77%; 8-year: 

73%; 9-year: 69%; 10-year: 70% Table 3). 

3.1.3. Spatial resolution 
Sentinel-2’s higher spatial resolution had the lowest overall accu-

racies for the two-class output maps (“Woodlot” vs “Other”). For the 
shortest time series of 3 years, woodlots were mapped more accurately 
with Sentinel-2’s 10-m images compared to Landsat-8’s 30 m input 
images (3-year time series: Sentinel-2: 57% vs Landsat-8: 54%; p-value 
0.97). For the 4-year time series, Landsat-8 had higher accuracy (4-year 

Table 3 
Overall accuracies and p-values for the pairwise comparisons using Wilcoxon sign test for all mapping outputs. The maps had two classes: “Woodlots” versus 
“Other”. They differed by sensor and length of the time series (columns/rows 1–3). The overall accuracies and margins of error are shown in column 4 and row 4. 
The bolded cells indicate comparisons that are statistically significantly different at p = 0.05. For similar comparison with all woodlot classes see Appendix D. 

Fig. 4. Commission and omission errors and overall accuracy given input image characteristics. For each sensor, the input images varied by time series length, 
ranging from a 3- to a 10-year time series. For Sentinel-2, the maximum time series length used was 4 years, and for Landsat-8, the maximum length used was 7 years. 
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time series: Sentinel-2: 59% vs Landsat-8: 66%; p-value 0.06). These 
differences in accuracy were not statistically significantly different 
though (Table 3). However, the higher spatial resolution of Sentinel-2 
images resulted in the lowest commission errors, especially for the 
“Mature” woodlot class (20% and 19% for 3-year and 4-year time series 
respectively, Fig. 4). 

3.2. Woodlot detection 

3.2.1. Time series analysis approach 
All LandTrendr time series segmentation based on the different 

indices (EVI, TCB, TCW, NDVI) accurately identified woodlots. For maps 
with two land cover classes (“Woodlot” and “Other”), the overall 

Fig. 5. A) Woodlots of different ages detected in our study area. Loc 1 and Loc 2 show differences in woodlot sizes as well as differences in detection for different 
spatial resolutions (Landsat-8 30-m versus Sentinel-2 10-m resolution). Lower spatial resolution resulted in more confusion among woodlot age classes, while higher 
spatial resolution minimized commission errors especially for mature woodlots. Labeled areas are large pine and eucalyptus plantations. 
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accuracy was 81.4–83.6%. The best index for woodlot identification was 
TCW. However, there was no statistically significant difference in 
woodlot detection accuracy between the LandTrendr segments and our 
time series linear model approach (see Appendix D Table D2 for pairwise 
comparison). 

LandTrendr temporal segments were less accurate in characterizing 
woodlot age via generation of a breakpoint year and calculation of 
segment length. LandTrendr segments generated from different indices 
placed the breakpoint for year of woodlot establishment (i.e., breakpoint 
preceding any gain segment) correctly in only 34–38% of the samples 
when compared to the independent validation sample. The proportion 
increased 55.7–63.6% if the tolerance was ±2 years. Similarly, Land-
Trendr segments generated from different indices correctly estimated 
the age of the woodlot based on the length of the gain segment in only 
15.9–24.8% of the validation samples. The proportion of accurately 
aged woodlots increased to 44.3% if the tolerance was ±2 years. 

3.2.2. Woodlot age and size 
There was a strong correspondence regarding presence vs. absence of 

woodlots between the best woodlot maps from both time series ap-
proaches, and the independent database of woodlots characteristics 
generated from manual digitization. 50–80% of the woodlots in the 
database were correctly identified as woodlots in the two-class maps 
(“Other” and “Woodlot”). 4–10% of the woodlots in the maps were false 
positives, meaning they showed up on the woodlot maps but were absent 
in the digitized woodlot database. 

Woodlot size had a strong effect on woodlot detection. Woodlots <1 

ha had higher omission errors than larger ones. On average, only 50% of 
woodlots <0.4 ha present in the digitized woodlot database were 
detected in woodlot maps. The proportion increased to 60% for wood-
lots measuring 0.4–1 ha. Highest detection (75–80%) was of woodlots 
>1 ha. Essentially, a woodlot >1 ha had an approximately 1.5 times 
higher likelihood of being detected compared to a woodlot <1 ha 
(Fig. 6). 

Woodlot age also limited detectability. “Mature” woodlots were 
more readily detected than “Young” woodlots (Fig. 6). Furthermore, 
only ca. 50% of “Young” woodlots that were in the digitized woodlot 
database were detected in woodlot maps, and this was true for all 
woodlot sizes <1 ha. For woodlot sizes >1 ha, even the “Young” 
woodlots in database were detected in woodlot maps at a high propor-
tion (~75%). However, detectability varied more strongly by woodlot 
size rather than age (Fig. 6). 

Detected woodlots had commission errors across age classes, mean-
ing the different ages were confused with each other. “Mature” woodlots 
were most consistently correctly identified. “Young” woodlots, when 
detected, were often confused with “Intermediate” woodlots. Similarly, 
when “Mature” woodlots were misclassified, they were most frequently 
identified as “Intermediate” woodlots (Fig. 6). “Harvested” woodlots 
were less likely to be identified as “Young”, while “Young” woodlots 
were less likely to be identified as “Mature” (Fig. 6). 

4. Discussion 

We compared different time series approaches to detect and map 

Fig. 6. Accurate woodlot detection depends on the age and size characteristics of the woodlot. Top: woodlots <0.4 ha, Middle: woodlots 0.4–1 ha, Bottom: woodlots 
>1 ha. The columns distinguish woodlots by their age. The woodlots with highest omission errors are those that are both “Young” and small (top-left). The charts also 
show misclassification within the woodlot class, with “Young”, >1 Ha woodlots often misclassified as “Intermediate”-aged woodlots. 
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smallholder woodlots in a highly heterogeneous East African landscape. 
When the time series had sufficient duration and observation frequency, 
we found comparable performance in woodlot detection between our 
linear model of woodlots’ spectral time series and LandTrendr temporal 
segmentation. Woodlot size and age limited accurate detection espe-
cially when a woodlot was both small and young. Our results are 
encouraging, because they indicate that spectral time series derived 
from a pixel-level linear model can be used to map woodlots accurately. 
However, omission errors were high, especially for very small woodlots. 

4.1. Mapping woodlots accurately 

The overall accuracy of the woodlot maps generally improved with a 
longer time series (5–7 years). Our finding differs from previous studies 
that suggested focusing on a single cloud-free and dry-season image for 
mapping woodlots (Indufor, 2011; Mankinen et al., 2017). We found 
that time series can capture woodlot’s greening as the canopy fills in 
(Fig. 1), thereby capturing woodlots that are still establishing (i.e., 
“Young” and “Intermediate” woodlots). If woodlots are mapped with a 
single-date image, only the fully established woodlots (i.e., “Mature”) 
are spectrally distinct enough to capture accurately (Fassnacht et al., 
2016). The nascent (i.e., “Young” age class) are likely mis-classified as 
grassland or cropland in single-date image classifications. “Harvested” 
woodlots require time series information to be correctly identified as 
woodlots. 

We also found that combining Landsat-8, 7, and 5 images improved 
woodlot detection, and that was the case for time series of any length. In 
fact, with more images, a shorter time series of only 4 years can 
adequately separate woodlots from other land covers, but longer time 
series minimize commission and omission errors across woodlot ages. 
Other plantation detection studies with different mapping approaches 
have similarly recognized the advantage of more frequent observations 
(Hurni et al., 2017; Qiao et al., 2016; Gao et al., 2015). Unfortunately, 
most of Africa has limited image availability prior to Landsat 8 due to a 
sparse network of ground-receiving stations and image acquisition 
strategies (Goward et al., 2006). However, number of images available 
for analysis almost doubled for some months when we combined all 
Landsat sensors (Appendix E). More frequent observations may improve 
classification accuracy by providing additional information about class 
separability to a classifier (Carrão et al., 2008; Carrasco et al., 2019). In 
our linear model approach, more frequent observations may have 
minimized errors in the linear model and in the estimates of the mean 
monthly index value. 

Despite the accuracy gains from combining Landsat-8, 7, and 5, 
Landsat-8 was the most important data source in the spectral time series. 
This is likely why lengthening the time series beyond 7 years resulted in 
lower accuracies, simply because Landsat-8 images were not available 
for the earlier years. In analyses where the time series is long enough, 
woodlot detection could be performed with a time series that favor 
Landsat-8 as suggested in other land cover mapping studies with multi- 
date image composites (Azzari and Lobell, 2017; Griffiths et al., 2013). 

Increasing the spatial resolution from Landsat’s 30-m to Sentinel-2’s 
10-m resolution had limited effect on overall classification accuracy. 
This surprised us, given that a median-sized woodlot of 0.45 ha would be 
comprised of 45 Sentinel-2 pixels compared to five Landsat-8 pixels. In 
heterogeneous landscapes, the higher spatial resolution reduces mixed 
pixels, which improves class separability (Ozdogan and Woodcock, 
2006; Li et al., 2014; Xie et al., 2008). Furthermore, Sentinel-2 images 
are equipped with additional red edge bands, which we incorporated in 
our analysis, and are known to be helpful in tree cover mapping 
(Grabska et al., 2019). However, none of this significantly improved the 
overall classification accuracy. 

Despite the lack of overall accuracy improvements, Sentinel-2 maps 
had the lowest commission errors particularly for the “Mature” woodlot 
class. An increase in spatial resolution improved “Mature” woodlots 
class separability likely by reducing mixed pixels. Furthermore, 

“Mature” woodlots benefited the least from time series length, likely due 
to their sufficient spectral distinctness from other land cover classes 
(Fassnacht et al., 2016). For other woodlot classes, the gains in spatial 
resolution could not make up for the short time series. As the Sentinel-2 
mission accrues more years of observation, its higher spatial resolution, 
coupled with longer time series, may improve woodlot and other land 
cover mapping (Carrasco et al., 2019). 

4.2. Woodlot detection with time series analysis 

We found that the two different time series analysis approaches 
(linear model of spectral time series versus temporal segmentation al-
gorithm, LandTrendr) were equivalent in their woodlot detection. 
LandTrendr segmentation can be advantageous because the segments 
contain information about timing and duration of change that could be 
used to determine a woodlot’s age (Cohen et al., 2010). However, while 
LandTrendr segments could accurately identify woodlots based on 
whether the pixel had any greenness gain, the accuracies for charac-
terizing woodlots’ age were low. 

Methods that take advantage of time series analysis are needed for 
mapping land cover trajectories, such as newly planted woodlots in sub- 
Saharan Africa (Bey and Meyfroidt, 2021). LandTrendr is a 
well-established approach with a user-ready tool implemented in Google 
Earth Engine (Kennedy et al., 2018). However, LandTrendr segmenta-
tion produces more accurate segments when available input images are 
well-timed, cloud-free, and of sufficient observation frequency for the 
time window of interest (Kennedy et al., 2010). LandTrendr analysis can 
better detect land cover change when the disturbance is at a scale 
appropriate to the image resolution (e.g., forest clearing as opposed to 
selective logging (Rodman et al., 2021; Nguyen et al., 2020)). Taking full 
advantage of the LandTrendr algorithm proved challenging in our study 
area. Similar to other parts of sub-Saharan Africa, our study area had few 
high-quality images available, especially for earlier Landsat missions (Ju 
and Roy, 2008; Yu et al., 2015). Therefore, even with careful parame-
terization (Appendix B), LandTrendr did not outperform the linear 
model with supervised classification approach (Appendix D). 

Despite LandTrendr’s limitations in our study, its segments can 
substantially improve disturbance detection when used as inputs to a 
secondary classifier (Cohen et al., 2018, 2020). A supplemental analysis 
of an ensemble of segments from multiple indices as inputs showed that 
the approach reduced commission errors (Appendix D, Table D2). Our 
analysis corroborates previous findings for how ensemble approaches 
can improve forest disturbance detection (Cohen et al., 2020; Hislop 
et al., 2019). 

Woodlot characteristics (i.e., age and size) also affected detectability. 
We found that about half of the small woodlots were missed, and that 
raises the question if previous woodlot presence/absence studies 
underestimated woodlot extent (Koskinen et al., 2019). This is a 
cautionary finding because the presence/absence studies are viewed as a 
way to meet national timber assessment needs (Mankinen et al., 2017; 
Mauya et al., 2019). We suggest that woodlot mapping via remote 
sensing need to be paired with field inventories targeting woodlots 
smaller than 0.4 ha. Alternatively, studies can be supplemented with 
wall-to-wall manual digitization of sample areas in order to estimate 
margins of error. 

Overall, we found that woodlots could be detected, but determining 
their age posed a challenge. Smallholders tend to plant woodlots in 
neighboring plots of land (Fig. 1), thereby placing woodlots of various 
ages and sizes next to each other. As the effective size of a tree planted 
area increases due to spatial contiguity, woodlot presence/absence 
detection improves. Essentially, the spatial pattern of a target land cover 
interacts with the resolution of the input image in determining the ac-
curacy of the final map (Ozdogan and Woodcock, 2006; Wu, 2004). 
Whereas contiguous planting of woodlots may have improved overall 
detection, it caused confusion when mapping woodlot age class by 
mixing pixels whose woodlots were of different ages. The most common 
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misclassification was inclusion of other age categories in the “Interme-
diate” woodlot age category, especially for smaller woodlots. Addi-
tionally, “Young” woodlots are challenging to detect because of their 
confusion with surrounding landscape (Dong et al., 2013), while “Har-
vested” woodlots require a time series in order to capture the transition 
from trees to no trees. 

4.3. Methods transfer to map fine-scale tree gain 

Our woodlot mapping approach was successful because we analyzed 
time series which improved both training sample generation and 
woodlot age separability. Previous woodlot detection analyses gener-
ated training data from visual interpretation of high-resolution Google 
Earth Pro images (Koskinen et al., 2019; Mankinen et al., 2017). How-
ever, Google Earth Pro images do not have consistent image coverage 
over time, thus some training samples could be out of date relative to the 
classification image. We minimized this challenge by collecting training 
samples via simultaneous visual interpretation in Google Earth Pro and 
in a spectral time series viewer tool (Yin, 2019) (Appendix A). This 
combined approach improved the quality of the training samples and 
enabled assignment of woodlot age classes. However, our overall ac-
curacies were lower compared to mapping of large-scale plantations in 
sub-Saharan Africa (Bey and Meyfroidt, 2021) or in South Asia (Torbick 
et al., 2016; Deng et al., 2020; Hurni et al., 2017). Those difference are 
to be expected given the small size of woodlots and the heterogeneity of 
smallholder landscapes. 

Our analysis is timely because we assessed methods for quantifying 
woodlots amidst the documented trend of tree cover gain in sub-Saharan 
Africa’s drylands and farmland (Brandt et al., 2018; Miller et al., 2017). 
Some studies have observed tree gain by mapping new large plantations 
(Torbick et al., 2016; Bey and Meyfroidt, 2021). Plantation mapping 
may systematically miss smallholder woodlots (Koskinen et al., 2019; 
Mankinen et al., 2017). Though there is evidence for emergence of 
smallholder woodlots in Southern Highlands of Tanzania (Held et al., 
2017; Etongo et al., 2015; Friis-Hansen and Pedersen, 2016), western 
Uganda (L’Roe and Naughton-Treves, 2016; Bailey et al., 2021), and 
Ethiopian highlands (Jenbere et al., 2012; Telila et al., 2015), most of 
the evidence is not based on remote sensing. Our time series mapping 
approach can be used to fill this knowledge gap by quantify smallholder 
woodlots more routinely in these regions. 

There is renewed impetus and funding for the use of tree planting for 
landscape restoration, habitat improvement, and carbon sequestration 
(Hess, 2021). New initiatives like the Bonn Challenge (Fagan et al., 
2020) increase the need for scalable approaches for monitoring 
fine-scale tree cover gain. Remote sensing could be a solution, but new 
approaches are needed for monitoring restoration when trees are newly 
planted and where restoration is undertaken by many distributed actors 
in small land areas. Our study highlights how time series approaches can 
be used to map and monitor activities of many distributed tree planters. 
By implementing a mapping approach like ours, restoration monitors 
can provide a more accurate assessment of how stakeholders are 
meeting their restoration pledges. 

Finally, there is a need for accurate and up-to-date woodlot maps in 
order to resolve some accounting challenges in restoration imple-
mentation. Woodlot establishment is a core restoration approach and 
reported as such (Dave et al., 2017; FLR, 2015). Unfortunately, woodlots 
are counted as landscape restoration even when they are established for 
non-restoration purposes. In landscape restoration pledges, such as the 
Bonn Challenge, there is no clear distinction between woodlot estab-
lishment that occurred independent of restoration pledges and estab-
lishment that occurred because of it (Fagan et al., 2020; Dave et al., 
2017; Pistorius et al., 2017). Furthermore, short-rotation plantations 
may provide miniscule carbon benefits especially if they are used for 
biofuel (Kongsager et al., 2013; Johnston and Radeloff, 2019). As more 
smallholders undertake woodlot establishment independent of global 
pledges for restoration, their activities need to be distinguishable from 

restoration-driven fine-scale tree cover gain. Mapping approaches like 
ours provide tools for better characterization woodlots and consequently 
better attribution of the role of smallholders in global landscape resto-
ration pledges. 

5. Conclusion 

We used time series to map smallholder woodlots and characterize 
their age. Our results suggest that accurate detection and mapping of 
woodlots is possible by analyzing multi-year time series of Landsat and 
Sentinel-2 data. Though our approach was overall successful, there were 
widespread omission errors for small and young woodlots. Furthermore, 
time series analysis with our supervised classification outperformed 
automated temporal segmentation with LandTrendr particularly in 
assigning woodlot age. These findings are timely given the region’s 
woodlot boom and continued promotion of tree planting in global 
environmental policies. Accurate maps are needed to better quantify the 
contribution of woodlots and other fine-scale tree cover gain to carbon 
sequestration, livelihoods enhancement, and landscape management. 
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Straub, C., Ghosh, A., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L.T., 
Straub, C., Ghosh, A., Lati, H., Sterenczak, K., Modzelewska, A., Lefsky, M., Waser, L. 
T., Straub, C., Ghosh, A., 2016. Review of studies on tree species classification from 
remotely sensed data. Remote Sens. Environ. 186, 64–87. https://doi.org/10.1016/j. 
rse.2016.08.013. 

FDT, 2015. Baseline Tree Grower Survey Report. Forestry Development Trust, Iringa, 
Tanzania, pp. 1–65. 

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate 
surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/ 
10.1002/joc.5086. 

FLR, I.U.C.N., 2015. The Bonn Challenge: Restoration Options. http://www.bonnch 
allenge.org/content/restoration-options. (Accessed 10 November 2018). 

Foody, G.M., 2004. Thematic map comparison: evaluating the statistical significance of 
differences in classification accuracy. Photogramm. Eng. Rem. Sens. 70, 627–633. 
https://doi.org/10.14358/PERS.70.5.627. 

Frayer, J., Sun, Z., Müller, D., Munroe, D.K., Xu, J., 2014. Analyzing the drivers of tree 
planting in Yunnan, China, with Bayesian networks. Land Use Pol. 36, 248–258. 
https://doi.org/10.1016/j.landusepol.2013.08.005. 

Friis-Hansen, E., Pedersen, R.H., 2016. Timber Rush - Private Forestry on Village Land. 
https://www.diis.dk/en/projects/timber-rush-private-forestry-on-village-land. 
(Accessed 15 November 2018). 

Gao, T., Zhu, J., Zheng, X., Shang, G., Huang, L., Wu, S., 2015. Mapping Spatial 
Distribution of Larch Plantations from Multi-Seasonal Landsat-8 OLI Imagery and 

Multi-Scale Textures Using Random Forests, pp. 1702–1720. https://doi.org/ 
10.3390/rs70201702. 

Gao, T., Zhu, J., Deng, S., Zheng, X., Zhang, J., 2016. Timber production assessment of a 
plantation forest : an integrated framework with field-based inventory , multi-source 
remote sensing data and forest management history. Int. J. Appl. Earth Obs. Geoinf. 
52, 155–165. https://doi.org/10.1016/j.jag.2016.06.004. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. 
Google Earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. 
Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031. 

Goward, S., Arvidson, T., Williams, D., Faundeen, J., Irons, J., Franks, S., 2006. Historical 
record of landsat global coverage: mission operations, NSLRSDA, and international 
cooperator stations. Photogramm. Eng. Rem. Sens. 72, 1155–1169. https://doi.org/ 
10.14358/PERS.72.10.1155. 

Grabska, E., Hostert, P., Pflugmacher, D., Ostapowicz, K., 2019. Forest stand species 
mapping using the sentinel-2 time series. Rem. Sens. 11, 1–24. https://doi.org/ 
10.3390/rs11101197. 

Griffiths, P., van der Linden, S., Kuemmerle, T., Hostert, P., 2013. A pixel-based landsat 
compositing algorithm for large area land cover mapping. IEEE J. Sel. Top. Appl. 
Earth Obs. Rem. Sens. 6, 2088–2101. https://doi.org/10.1109/jstars.2012.2228167. 

Hansen, M.C., V Potapov, P., Moore, R., Hancher, M., a Turubanova, S., Tyukavina, a, 
Thau, D., V Stehman, S., Goetz, S.J., Loveland, T.R., Kommareddy, a, Egorov, a, 
Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 
21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/ 
science.1244693. 

Healey, S.P., Cohen, W.B., Zhiqiang, Y., Krankina, O.N., 2005. Comparison of Tasseled 
Cap-based Landsat data structures for use in forest disturbance detection. Remote 
Sens. Environ. 97, 301–310. https://doi.org/10.1016/j.rse.2005.05.009. 

Held, C., Jacovelli, P., Techel, G., Nutto, L., Wathum, G., Wittmann, N., 2017. Tanzanian 
Wood Product Market Study, p. 134. 

Hess, L., 2021. AFR100 initiative gets a boost as USD 2 billion funding goal before next 
COP set. Glob. Landsc. Forum. https://news.globallandscapesforum.org/55716/ 
afr100-initiative-gets-a-boost-as-usd-2-billion-funding-goal-before-next-cop-set/?ut 
m_campaign=GLF_at_COP26_Newsletter_3rd&utm_medium=email&utm_source 
=Mailchimp_Emailblast_November&utm_source=General+contacts&u. 

Hislop, S., Jones, S., Soto-Berelov, M., Skidmore, A., Haywood, A., Nguyen, T.H., 2019. 
A fusion approach to forest disturbance mapping using time series ensemble 
techniques. Remote Sens. Environ. 221, 188–197. https://doi.org/10.1016/j. 
rse.2018.11.025. 

Hurni, K., Schneider, A., Heinimann, A., Nong, D., Fox, J., 2017. Mapping the expansion 
of boom crops in mainland southeast Asia using dense time stacks of landsat data. 
Rem. Sens. 9, 320. https://doi.org/10.3390/rs9040320. 

Indufor, 2011. Timber Market Dynamics in Tanzania and in Key Export Markets: A 
Market Study. Dar-es-Salaam, Tanzania.  

Jacovelli, P.A., 2009. Uganda’s sawlog production grant scheme: a success story from 
Africa. Int. For. Rev. 11, 119–125. https://doi.org/10.1505/ifor.11.1.119. 

Jacovelli, P.A., 2014. The future of plantations in Africa. Int. For. Rev. 16, 144–159. 
https://doi.org/10.1505/146554814811724748. 

Jenbere, D., Lemenih, M., Kassa, H., 2012. Expansion of eucalypt farm forestry and its 
determinants in Arsi Negelle District, south Central Ethiopia. Small-Scale For 11, 
389–405. https://doi.org/10.1007/s11842-011-9191-x. 

Johnston, C.M.T., Radeloff, V.C., 2019. Global mitigation potential of carbon stored in 
harvested wood products. Proc. Natl. Acad. Sci. U.S.A. 116, 14526–14531. https:// 
doi.org/10.1073/pnas.1904231116. 

Ju, J., Roy, D.P., 2008. The availability of cloud-free Landsat ETM+ data over the 
conterminous United States and globally. Remote Sens. Environ. 112, 1196–1211. 
https://doi.org/10.1016/j.rse.2007.08.011. 

Kennedy, R.E., Yang, Z., Cohen, W.B., 2010. Detecting trends in forest disturbance and 
recovery using yearly Landsat time series: 1. LandTrendr - temporal segmentation 
algorithms. Remote Sens. Environ. 114, 2897–2910. https://doi.org/10.1016/j. 
rse.2010.07.008. 

Kennedy, R.E., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W.B., Healey, S., 
2018. Implementation of the LandTrendr algorithm on Google Earth engine. Rem. 
Sens. 10, 1–10. https://doi.org/10.3390/rs10050691. 

Kimambo, N.E., Naughton-Treves, L., 2019. The role of woodlots in forest regeneration 
outside protected areas: lessons from Tanzania. Forests 10. https://doi.org/10.3390/ 
f10080621. 

Kimambo, N.E., L’Roe, J., Naughton-Treves, L., Radeloff, V.C., 2020. The role of 
smallholder woodlots in global restoration pledges – lessons from Tanzania. For. Pol. 
Econ. 115 https://doi.org/10.1016/j.forpol.2020.102144. 

Kongsager, R., Napier, J., Mertz, O., 2013. The carbon sequestration potential of tree 
crop plantations. Mitig. Adapt. Strategies Glob. Change 18, 1197–1213. https://doi. 
org/10.1007/s11027-012-9417-z. 

Kontgis, C., Schneider, A., Ozdogan, M., 2015. Mapping rice paddy extent and 
intensification in the Vietnamese Mekong River Delta with dense time stacks of 
Landsat data. Remote Sens. Environ. 169, 255–269. https://doi.org/10.1016/j. 
rse.2015.08.004. 

Koskinen, J., Leinonen, U., Vollrath, A., Ortmann, A., Lindquist, E., d’Annunzio, R., 
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