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mator is proven to be consistent, and the rate of convergence
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Our method can handle well large data set owing to the stochas-
tic gradient descent optimization algorithm. Simulation studies
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method is capable of picking up the intricate relationship be-
tween response and covariates. Finally, a real data analysis is
provided to demonstrate the validity and effectiveness of the
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1. Introduction

With recent advances in remote sensing technology and geographical sciences, there has been
considerable interest in modeling spatially referenced data. The purpose of this paper is to
evelop new methodology that captures complex structures in such data via deep neural networks
nd Gaussian random fields. In addition, we provide a theoretical understanding of deep neural
etworks for spatially dependent data.
In recent years, deep neural network (DNN) has made a great breakthrough in many fields,

uch as computer vision (He et al., 2016), dynamics system (Li et al., 2021), natural language
rocessing (Bahdanau et al., 2014), drug discovery and toxicology (Jiménez-Luna et al., 2020), and
ariable selection (Li et al., 2022; Li, 2022). Besides its successful applications, there has also been
reat progress on theoretical development of deep learning. Liu et al. (2020) and Schmidt-Hieber
2020) proved that the neural network estimator achieves the optimal (up to a logarithmic factor)
inimax rate of convergence. Liu et al. (2022) further removed the logarithmic term and achieved

he exact optimal nonparametric convergence rate. One of the appealing features of deep neural
etwork is that it can circumvent the curse of dimensionality under some mild conditions.
Owing to the superior performance and theoretical guarantees of deep learning, applying deep

earning to spatial data has also drawn much attention. For example, Zammit-Mangion and Wikle
2020) fitted the integro-difference equation through convolutional neural networks and obtained
robabilistic spatio-temporal forecasting. Zammit-Mangion et al. (2021) constructed a deep prob-
bilistic architecture to model nonstationary spatial processes using warping approach. Mateu
nd Jalilian (2022) used variational autoencoder generative neural networks to analyze spatio-
emporal point processes. Kirkwood et al. (2022) applied Bayesian deep neural network to spatial
nterpolation. However, there is a lack of theoretical understanding of the aforementioned work,
hich we will address in this paper.
In addition, we model spatial dependence by Gaussian random fields and develop model estima-

ion with computational efficiency. Due to technological advances in data collecting process, the size
f spatial datasets are massive and traditional statistical methods encounter two challenges. One
hallenge is the aggravated computational burden. To reduce computation cost, various methods
ave been developed, such as covariance tapering, fixed rank kriging, and Gaussian Markov random
ields (see Sun et al. (2012) for a comprehensive review). The other challenge is data storage and
ata collection. Many spatial datasets are not only big, but are also generated by different sources
r in an online fashion such that the observations are generated one-by-one. In both cases, we
annot process entire datasets at once. To overcome these two challenges, Robbins and Monro
1951) proposed a computationally scalable algorithm called stochastic gradient descent (SGD) and
chieved great success in many areas. Instead of evaluating the actual gradient based on an entire
ataset, SGD estimates the gradient using only one observation which makes it computationally
easible with large scale data and streaming data. Its statistical inferential properties have also been
tudied by many researchers (Su and Zhu, 2018; Liu et al., 2021).
Before proceeding, it is essential to provide a brief overview of the classical approaches for

ormulating spatial dependence in a spatial process. For a spatial process, various approaches
ave been proposed to formulate the spatial dependence. In spatially varying coefficient (SVC)
odels, covariates may have different effect along with locations, which are referred to as ‘‘spatial
on-stationarity’’. Thus, SVC models allows the coefficients of the covariates to change with the
ocations. In other words, the spatial dependence is entirely explained by the regressors, while the
isturbances are independent (see e.g. Hastie and Tibshirani (1993), Fan and Zhang (1999), Mu et al.
2018) and Kim and Wang (2021)). Another class of models are based on the spatial autoregressive
SAR) models of Cliff and Ord (1981), where the information about spatial dependence is contained
n the spatial weight matrix, and the response variable at each location is assumed to be affected
y a weighted average of the dependent variables from other sampled units (see Lee (2002, 2004).
n SAR models, the spatial weight matrix is assumed to be known, which is infeasible in practice,
specially in large dataset. Obviously, both SVC and SAR models have some limitations. First, they
ssume the relationship between the response and the independent variable is linear and ignore

omplex interaction and nonlinear structure. Second, they both involve computing the inverse of an
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n×nmatrix, where n is the number of observations, which requires O(n3) time complexity and O(n2)
emory complexity. Thus, the computational burden for both SVC and SAR model is substantial.
To meet these challenges, here we develop deep learning-based semiparametric regression

or spatial data. Specifically, we use a sparsely connected feedforward neural network to fit the
egression model, where the spatial dependence is captured by Gaussian random fields. By assuming
compositional structure on the regression function, the consistency of the neural network

stimator is guaranteed. The advantages of the proposed method are fourfold. First, we do not
ssume any parametric functional form for the regression function, allowing the true mean function
o be nonlinear or with complex interactions. This is an improvement over many of the existing
arametric, semiparametric, or nonparametric approaches (Hastie and Tibshirani, 1993; Fan and
hang, 1999; Mu et al., 2018; Kim and Wang, 2021; Lee, 2002; Robinson, 2011; Jenish, 2012; Li,
016; Lu and Tjøstheim, 2014; Kurisu, 2019, 2022). Second, under some mild technical conditions,
e show that the estimator is consistent. To the best of our knowledge, this is the first theoretical
esult in deep neural network for spatially dependent data. Third, the convergence rate is free of
he input dimension, which means our estimator does not suffer from the curse of dimensionality.
inally, owing to the appealing properties of SGD, our method is feasible for large scale dataset and
treaming data.
The remainder of the paper is organized as follows. Section 2 formulates the statistical problem

nd presents the deep neural network estimator. The computational aspects and theoretical prop-
rties of the estimator are given in Section 3. Section 4 evaluates the finite-sample performance
f the proposed estimator by a simulation study. We apply our method to a real-world dataset in
ection 5 and some concluding remarks are provided in Section 6. Technical details are provided in
ppendix.

. Model and estimator

In this section, we first formulate the problem and then present the proposed estimator under
deep learning framework.

.1. Model setup

For a spatial domain of interest S , we consider the following semiparametric spatial regression
odel:

y(s) = f0(x(s)) + e1(s) + e2(s), s ∈ S (1)

here f0 : [0, 1]d → R is an unknown mean function of interest, x(s) = (x1(s), . . . , xd(s))⊤
epresents a d-dimensional vector of covariates at location s with xi(s) ∈ [0, 1], e1(s) is a mean zero
aussian random field with covariance function γ (s, s′), s, s′

∈ S , and e2(s) is a spatial Gaussian
hite noise process with mean 0 and variance σ 2. Furthermore, we assume that e1(s), e2(s),
nd x(s) are independent of each other. Thus the observation y(s) comprises three components:
arge-scale trend f0(x(s)), small-scale spatial variation e1(s), and measurement error e2(s); see, for
nstance, Cressie and Johannesson (2008).

In the spatial statistics literature, it is popular to focus on predicting the hidden spatial process
(s)∗ = f0(x(s)) + e1(s) using the observed information (Cressie and Johannesson, 2008). However,
he primary interest of this paper is to estimate the large-scale trend f0(x(s)), where the relationship
etween the hidden spatial process and the covariates could be complex in nature. To capture such
complex relationship, we assume that f0 is a composition of several functions inspired by neural
etworks characteristics (Schmidt-Hieber, 2020). Hölder smoothness (see Definition 1 in Appendix)
s a commonly used smoothness assumption for regression function in nonparametric and semi-
arametric literature. Thus it is natural to assume the true mean function f0 is a composition of

ölder smooth functions, which is formally stated in the following assumption.
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Fig. 1. Illustration of the compositional structure for the generalized additive model in Example 1.

ssumption 1. The function f0 : Rd
→ R has a compositional structure with parameters

L∗, r, r̃, β, a, b, C ) where L∗ ∈ Z+, r = (r0, . . . , rL∗+1)⊤ ∈ ZL∗+2
+ with r0 = d and rL∗+1 = 1, r̃ =

(r̃0, . . . , r̃L∗ )
⊤

∈ ZL∗+1
+ , β = (β0, . . . , βL∗ )

⊤
∈ RL∗+1

+ , a = (a0, . . . , aL∗+1)⊤, b = (b0, . . . , bL∗+1)⊤ ∈

RL∗+2, and C = (C0, . . . , CL∗ )
⊤

∈ RL∗+1
+ ; that is,

f0(z) = g L∗ ◦ . . . ◦ g1 ◦ g0(z), for z ∈ [a0, b0]r0

where Z+,R+ denote the sets of positive integers and positive real numbers, respectively, g i =

(gi,1, . . . , gi,ri+1 )
⊤

: [ai, bi]ri → [ai+1, bi+1]
ri+1 for some |ai|, |bi| ≤ Ci and the functions gi,j :

[ai, bi]r̃i → [ai+1, bi+1] are (βi, Ci)-Hölder smooth only relying on r̃i variables and r̃i ≤ ri.

Without loss of generality, we assume Ci > 1 in Assumption 1. The parameter L∗ refers to the
otal number of layers, i.e., the number of composite functions, r is the whole number of variables in
ach layer, whereas r̃ is the number of ‘‘active’’ variables in each layer. The two parameter vectors
and C pertain to the Hölder smoothness in each layer, while a and b define the domain of g i

n the ith layer. For the rest of the paper, we will use CS(L∗, r, r̃, β, a, b, C ) to denote the class
of functions that have a compositional structure as specified in Assumption 1 with parameters
(L∗, r, r̃, β, a, b, C ).

It is worth mentioning that Assumption 1 is commonly adopted in deep learning literature;
ee Bauer and Kohler (2019), Schmidt-Hieber (2020), Kohler and Langer (2021), Liu et al. (2020)
nd Li et al. (2021), among others. This compositional structure covers a wide range of function
lasses including the generalized additive model. In Example 1 and Fig. 1, we present an illustrative
xample to help readers understand the concept of compositional structure within the context of
he generalized additive model.

xample 1. The generalized additive model is a generalized linear model with a linear predictor
nvolving a sum of smooth functions of covariates (Hastie and Tibshirani, 1986). Suppose f (z) =

(
∑d

i=1 hi(zi)), where ϕ(·) is (βϕ, Cϕ)-Hölder smooth and hi(·) are (βh, Ch)-Hölder smooth, for some
βϕ, Cϕ) and (βh, Ch). Clearly, f (z) can be written as a composition of three functions f (z) =

2◦g1◦g0(z) with g0(z1, . . . , zd) = (h1(z1), . . . , hd(zd))⊤, g1(z1, . . . , zd) =
∑d

i=1 zi, and g2(z) = ϕ(z).
ere, L∗ = 2, r = (d, d, 1, 1)⊤, r̃ = (d, d, 1)⊤, and β = (βh, ∞, βϕ)⊤.

.2. Deep Neural Network (DNN) estimator

In this paper, we consider estimating the unknown function f0 via a deep neural network owing
o the complexity of f0 and the flexibility of neural networks. So before presenting our main results,
e first briefly review the neural network terminologies pertaining to this work.
An activation function is a nonlinear function used to learn the complex pattern from data. In

his paper, we focus on the Rectified Linear Unit (ReLU) shifted activation function which is defined
s σv(z) = (σ (z1 − v1), . . . , σ (zd − vd))⊤, where σ (s) = max{0, s} and z = (z1, . . . , zd)⊤ ∈ Rd. ReLU
ctivation function enjoys both theoretical and computational advantages. The projection property
4
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σ ◦ σ = σ can facilitate the proof of consistency, while ReLU activation function can help avoid
anishing gradient problem. The ReLU feedforward neural network f (z,W , v) is given by

f (z,W , v) = WLσvL . . .W1σv1W0z, z ∈ Rp0 , (2)

where {(W0, . . . ,WL) : Wl ∈ Rpl+1×pl , 0 ≤ l ≤ L} is the collection of weight matrices, {(v1, . . . , vL) :

vl ∈ Rpl , 1 ≤ l ≤ L} is the collection of so-called biases (in the neural network literature), and σvl (·),
1 ≤ l ≤ L, are the ReLU shifted activation functions. Here, L measures the number of hidden layers,
i.e., the length of the network, while pj is the number of units in each layer, i.e., the depth of the
network. When using a ReLU feedforward neural network to estimate the regression problem (1),
we need to have p0 = d and pL+1 = 1; and the parameters that need to be estimated are the weight
matrices (Wj)j=0,...,L and the biases (vj)j=1,...,L.

By definition, a ReLU feedforward neural network can be written as a composition of simple
nonlinear functions; that is,

f (z,W , v) = g L ◦ . . . ◦ g1 ◦ g0(z), z ∈ Rp0 ,

where g i(z) = Wiσvi (z), z ∈ Rpi , i = 1, . . . , L, and g0(z) = W0z, z ∈ Rp0 . Unlike traditional
function approximation theory where a complex function is considered as an infinite sum of
simpler functions (such as Tayler series, Fourier Series, Chebyshev approximation, etc.), deep neural
networks approximate a complex function via compositions, i.e., approximating the function by
compositing simpler functions (Lu et al., 2020; Farrell et al., 2021; Yarotsky, 2017). Thus, a composite
function can be well approximated by a feedforward neural network. That is why we assume the
true mean function f0 has a compositional structure.

In practice, the length and depth of the networks can be extremely large, thereby easily causing
overfitting. To overcome this problem, a common practice in deep learning is to randomly set some
neurons to zero, which is called dropout. Therefore, it is natural to assume the network space is
sparse and all the parameters are bounded by one, where the latter can be achieved by dividing
all the weights by the maximum weight (Bauer and Kohler, 2019; Schmidt-Hieber, 2020; Kohler
and Langer, 2021). As such, we consider the following sparse neural network class with bounded
weights

F(L, p, τ , F )

=

⎧⎨⎩f is of form (2) : max
j=0,...,L

∥Wj∥∞ + |vj|∞ ≤ 1,
L∑

j=0

(∥Wj∥0 + |vj|0) ≤ τ , ∥f ∥∞ ≤ F

⎫⎬⎭ , (3)

here p = (p0, . . . , pL+1) with p0 = d and pL+1 = 1, and v0 is a vector of zeros. This class of neural
networks is also adopted in Schmidt-Hieber (2020), Liu et al. (2020), and Li et al. (2021).

Suppose that the process y(·) is observed at a finite number of spatial locations {s1, . . . , sn} in
. The desired DNN estimator of f0 in Model (1) is a sparse neural network in F(L, p, τ , F ) with the
mallest empirical risk; that is,

f̂global(Ŵ , v̂) = argmin
f∈F(L,p,τ ,F )

n−1
n∑

i=1

(y(si) − f (x(si)))2. (4)

or simplicity, we sometimes write f̂global for f̂global(Ŵ , v̂) if no confusion arises.

. Computation and theoretical results

In this section, we describe the computational procedure used to optimize the objective function
4) and present the main theoretical results.
5
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3.1. Computational aspects

Because (4) does not have an exact solution, we use a stochastic gradient descent (SGD)-based
lgorithm to optimize (4). In contrast to a gradient descent algorithm which requires a full dataset
o estimate gradients in each iteration, SGD or mini-batch gradient descent only needs an access
o a subset of observations during each update, which is capable of training relatively complex
odels for large datasets and computationally feasible with streaming data. Albeit successful
pplications in machine learning and deep learning, SGD still suffers from some potential problems.
or example, the rate of convergence to the minima is slow; the performance is very sensitive to
uning parameters. To circumvent these problems, various methods have been proposed, such as
MSprop and Adam (Kingma and Ba, 2014). In this paper, we use Adam optimizer to solve (4).
During the training process, there are many hyper-parameters to tune in our approach: the

umber of layers L, the number of neurons in each layer p, the sparse parameter τ , and the
earning rate. These hyper-parameters play an important role in the learning process. However,
t is challenging to determine the values of hyper-parameters without domain knowledge. In
articular, it is challenging to control the sparse parameter τ directly in the training process. Thus,
e add an ℓ1-regularization penalty to control the number of inactive neurons in the network.
he idea of adding a sparse regularization to hidden layers in deep learning is very common; see,
or instance, Scardapane et al. (2017) and Lemhadri et al. (2021). In this paper, we use a 5-fold
ross-validation to select tuning parameters.

.2. Theoretical results

Recall that the minimizer of (4), f̂global, is practically unattainable and we use an SGD-based
lgorithm to minimize the objective function (4), which may converge to a local minimum. The
ctual estimator obtained by minimizing (4) is denoted by f̂local ∈ F(L, p, τ , F ). We define the
ifference between the expected empirical risks of f̂global and f̂local as

∆n (̂flocal)
.
= E f0

[
1
n

n∑
i=1

(y(si) − f̂local(x(si)))2 − inf
f̃∈F(L,p,τ ,F )

1
n

n∑
i=1

(y(si) − f̃ (x(si)))2
]

= E f0

[
1
n

n∑
i=1

(y(si) − f̂local(x(si)))2 −
1
n

n∑
i=1

(y(si) − f̂global(x(si)))2
]

, (5)

here E f0 stands for the expectation with respect to the true regression function f0. For any
∈ F(L, p, τ , F ), we consider the following estimation error:

Rn (̂f , f0)
.
= E f0

[
1
n

n∑
i=1

(̂
f (x(si)) − f0(x(si))

)2]
. (6)

The oracle-type theorem below gives an upper bound for the estimation error.

heorem 1. Suppose that the unknown true mean function f0 in (1) satisfies ∥f0∥∞ ≤ F for some
≥ 1. For any δ, ϵ ∈ (0, 1] and f̂ ∈ F(L, p, τ , F ), the following oracle inequality holds:

Rn (̂f , f0) ≲ (1 + ε)
(

inf
f̃∈F(L,p,τ ,F )

∥f̃ − f0∥2
∞

+ ζn,ε,δ + ∆n (̂f )
)

,

here

ζn,ε,δ ≍
1
ε

[
δ

(
n−1 tr(Γn) + 2

√
n−1 tr(Γ 2

n ) + 3σ
)

+
τ

n
(log(L/δ) + L log τ) (n−1 tr(Γ 2

n ) + σ 2
+ 1)

]
,

′ )] ′
nd Γn = [γ (si, si 1≤i,i ≤n.

6
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The convergence rate in Theorem 1 is determined by three components. The first component
nff̃∈F(L,p,τ ,F ) ∥f̃ − f0∥2

∞
measures the distance between the neural network class F(L, p, τ , F ) and

0, i.e., the approximation error. The second term ζn,ε,δ pertains to the estimation error, and ∆n (̂f )
is owing to the difference between f̂ and the oracle neural network estimator f̂global. It is worth
noting that the upper bound in Theorem 1 does not depend on the network architecture parameter
p, i.e., the width of the network, in that the network is sparse and its ‘‘actual’’ width is controlled by
the sparsity parameter τ . To see this, after removing all the inactive neurons, it is straightforward
to show that F(L, p, τ , F ) = F(L, (p0, p1 ∧ τ , . . . , pL ∧ τ , pL+1), τ , F ) (Schmidt-Hieber, 2020).

Next, we turn to the consistency of the DNN estimator f̂local for f0 ∈ CS(L∗, r, r̃, β, a, b, C ). In non-
arametric regression, the estimation convergence rate is heavily affected by the smoothness of the
unction. Consider the class of composite functions CS(L∗, r, r̃, β, a, b, C ). Let β∗

i = βi
∏L∗

s=i+1(βs∧1)
or i = 0, . . . , L∗ and i∗ = argmin0≤i≤L∗ β∗

i /r̃i, with the convention
∏L∗

s=L∗+1(βs ∧ 1) = 1.
hen β∗

= β∗

i∗ and r∗
= r̃i∗ are known as the intrinsic smoothness and intrinsic dimension of

∈ CS(L∗, r, r̃, β, a, b, C ). Similar definitions could be found in literature (Kurisu, 2019; Nakada
nd Imaizumi, 2020; Cloninger and Klock, 2021; Kohler et al., 2022; Wang et al., 2023). These
uantities play an important role in controlling the convergence rate of the estimator. To better
nderstand β∗

i and i∗, think about the composite function from the ith to the last layer, i.e., hi(z) =

L∗ ◦ . . . ◦ g i+1 ◦ g i(z) : [ai, bi]ri → R; then β∗

i can be viewed as the smoothness of hi and i∗ is
he layer of the least smoothness after rescaled by the respective number of ‘‘active’’ variables r̃i,
= 0, . . . , L∗. The following theorem establishes the consistency of f̂local as an estimator of f0 and
ts convergence rate in the presence of spatial dependence.

heorem 2. Suppose Assumption 1 is satisfied, i.e., f0 ∈ CS(L∗, r, r̃, β, a, b, C ). Let f̂local ∈

(L, p, τ , F ) be an estimator of f0. Further assume that F ≥ maxi=0,...,L∗ (Ci, 1), N
.
= mini=1,...,L pi ≥

ηmaxi=0,...,L∗ (βi +1)r̃i ∨ (C̃i +1)er̃i where η = maxi=0,...,L∗ (ri+1(r̃i +⌈βi⌉)), and τ ≲ LN. Then we have

Rn (̂flocal, f0) ≲ ςn,

here

ςn ≍ (N2−L)2
∏L∗

l=1 βl∧1
+ N−

2β∗

r∗ +
(tr(Γ 2

n ) + n)(LN log(Ln2) + L2N log(LN))
n2 + ∆n (̂flocal),

nd C̃i are constants only depending on C , a, b, and Γn = [γ (si, si′ )]1≤i,i′≤n.

The consistency of f̂local can be achieved by, for instance, letting L ≍ log(n),N ≍ n
r∗

2β∗+r∗ , tr(Γ 2
n ) =

(n
4β∗

+r∗
2β∗+r∗ (log n)−3), and ∆n (̂flocal) = o(1), as a result of which ςn ≍ n−

2β∗

2β∗+r∗ (log n)3 + ∆n (̂flocal) =

(1). As expected, the rate of convergence is affected by the intrinsic smoothness and intrinsic
imension of CS(L∗, r, r̃, β, a, b, C ), the architecture of the neural network F(L, p, τ , F ), and the
agnitude of the spatial dependence.

. Simulation study

In this section, we evaluate the finite sample performance of the proposed DNN estimator
hrough a set of simulation studies. Two different simulation designs are considered, and for each
esign, we generate 100 independent data sets. In both settings, we use the same neural network
rchitecture with length L = 3 and width N = 30. Additionally, to prevent overfitting and control
he sparsity of the network, we applied dropout with a probability of 0.2.

In the first design, the spatial domain of interest S is in R. To be specific, we generate data from
he following model

y(si) = f0(x(si)) + e1(si) + e2(si), si ∈ [0,D], i = 1, 2, . . . , n,

nd
⊤

( 2 −1)⊤ 5
x(si) = (x1(si), . . . , x5(si)) = si/D, sin(10si/D), (si/D) , exp(3si/D), (si/D + 1) ∈ R ,

7
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with the true mean function f0(x(si)) =
∑5

j=1 xj(si). The small-scale spatial variation e1(·) is a zero-
mean stationary and isotropic Gaussian process with an exponential covariance function γ (si, sj) =

exp(−|si − sj|/ρ) and the range parameter ρ = 0.1, 0.5, 1. The measurement error e2(·) is standard
normal distributed and independent of e1(·). It is worth mentioning that the covariates are location
dependent.

We consider two different spatial domains: fixed domain and expanding domain. For the fixed
domain, S = [0, 1] is a fixed interval, i.e., D = 1, whereas for the expanding domain, the spatial
domain S = [0,D] increases with the sample size n. The n observations are equally spaced over
the region. In both scenarios, we let n = 100, 200, 300, and accordingly, D = 10, 20, 30 in the
expanding domain case.

In the second design, the mean function is defined on R2, given by

f0(x(si)) =β1x1(si)x2(si) + β2x2(si)2 sin(x3(si)) + β3 exp(x4(si))max(x5(si), 0)

+
β4

signx4(si)(10 + x5(si))
+ β5 tanh(x1(si)), si ∈ [0,D]

2, i = 1, . . . , n, (7)

where the coefficients βj, j = 1, . . . , 5, are drawn from U(1, 2). The covariates at each location
are generated from standard normal distributions with a cross-covariate correlation of 0.5 and
the covariates at different locations are assumed to be independent. We further normalize each
covariate to have zero mean and unit variance. The mean function f0 is nonlinear, featuring
nteractions among the covariates. We simulate y(si) according to (1) with e1(si) and e2(si) similar
o those in Design 1. That is, e1(si) is a zero-mean stationary and isotropic Gaussian process on
2 with an exponential covariance function γ (si, sj) = exp(−|si − sj|/ρ) and ρ = 0.1, 0.5, 1, and
2(si) ∼ N(0, 1).
Similar to the first design, we consider two types of spatial domain: fixed domain, i.e., D = 1

nd expanding domain, i.e., D = 10, 20, 30. In both cases, we have n = 100, 400, 900, and all the
ocations are equally spaced over [0,D]

2.

.1. Estimating f0 via other methods

We also compare the proposed DNN estimator with various estimators in the literature. The first
stimator of f0 is based on the Gaussian process-based spatially varying coefficient model (GP-SVC)
hich is given by

y(s) = β1(s)x1(s) + · · · , +βp(s)xp(s) + ϵ, ϵ ∼ N (0, τ 2), s ∈ S,

and the spatially varying coefficient βj(·) is the sum of a fixed effect and a random effect. That is,
βj(s) = µj + ηj(s), where µj is a non-random fixed effect and ηj(·) is a zero-mean Gaussian process
ith an isotropic covariance function c(·; θj). In this work, we use the popular Matérn covariance

function defined as

c
(
r; ρ, ν, σ 2)

= σ 2 2
1−ν

Γ (ν)

(
√
2ν

r
ρ

)ν

Kν

(
√
2ν

r
ρ

)
,

here ρ > 0 is the range parameter, ν > 0 is the smoothness parameter, and Kν(·) is the modified
essel function of second kind with order ν.
The second estimator is the Nadaraya–Watson (N-W) kernel estimator for spatially dependent

ata discussed in Robinson (2011), which considers the following spatial regression model

y(si) = f0(x(si)) + σ (x(si))Vi, Vi =

∞∑
j=1

aijϵj, i = 1, . . . , n,

here f0(x) : [0, 1]d → R and σ (x) : [0, 1]d → [0, ∞) are the mean and variance functions,
espectively, ϵj are independent random variables with zero mean and unit variance, and

∑
∞

j=1 a
2
ij =

. Robinson (2011) introduces the following Nadaraya–Watson kernel estimator for f0:

f̂ (x) =
ν̂(x)

,

ĝ(x)

8
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Table 1
Results of simulation design 1 with fixed domain: the averaged MSEE and MSPE over 100 replicates (with its standard
deviation in parentheses) of various methods with different n and ρ.
Fixed domain ρ = 0.1 ρ = 0.5 ρ = 1

n MSEE MSPE MSEE MSPE MSEE MSPE

GAM 0.92 (0.58) 1.40 (0.69) 0.98 (0.78) 1.19 (0.40) 1.05 (0.87) 1.17 (0.38)
n = 100 GP-SVC 0.87 (0.49) 1.37 (0.67) 0.92 (0.75) 1.15 (0.35) 1.01 (0.82) 1.13 (0.36)

N-W 0.89 (0.52) 1.38 (0.67) 0.94 (0.76) 1.16 (0.38) 1.03 (0.85) 1.15 (0.37)
LR 0.93 (0.59) 1.40 (0.69) 0.99 (0.80) 1.20 (0.39) 1.06 (0.86) 1.18 (0.38)
DNN 0.78 (0.41) 1.32 (0.64) 0.82 (0.71) 1.13 (0.35) 0.94 (0.79) 1.10 (0.33)

GAM 0.87 (0.50) 1.26 (0.30) 0.93 (0.72) 1.12 (0.27) 0.99 (0.77) 1.08 (0.24)
n = 200 GP-SVC 0.81 (0.42) 1.34 (0.37) 0.88 (0.74) 1.09 (0.29) 0.95 (0.77) 1.09 (0.28)

N-W 0.84 (0.38) 1.33 (0.41) 0.91 (0.73) 1.10 (0.28) 0.93 (0.75) 1.06 (0.25)
LR 0.86 (0.50) 1.28 (0.32) 0.95 (0.74) 1.14 (0.28) 0.98 (0.76) 1.07 (0.24)
DNN 0.69 (0.32) 1.27 (0.39) 0.71 (0.66) 1.06 (0.26) 0.78 (0.68) 1.04 (0.29)

GAM 0.83 (0.47) 1.19 (0.44) 0.88 (0.68) 1.09 (0.20) 0.96 (0.66) 1.05 (0.19)
n = 300 GP-SVC 0.77 (0.38) 1.15 (0.37) 0.86 (0.71) 1.06 (0.21) 0.91 (0.64) 1.05 (0.18)

N-W 0.80 (0.36) 1.13 (0.40) 0.88 (0.70) 1.07 (0.24) 0.92 (0.66) 1.06 (0.21)
LR 0.82 (0.46) 1.17 (0.42) 0.87 (0.67) 1.10 (0.22) 0.98 (0.69) 1.06 (0.20)
DNN 0.58 (0.27) 1.07 (0.34) 0.63 (0.55) 1.01 (0.22) 0.69 (0.55) 1.01 (0.25)

where

ĝ(x) =
1

nhd
n

n∑
i=1

Ki(x), ν̂(x) =
1

nhd
h

n∑
i=1

yiKi(x),

with

Ki(x) = K
(
x − x(si)

hn

)
,

and hn is a scalar, positive bandwidth sequence satisfying hn → 0 as n → ∞.
The third estimator of f0 is based on the generalized additive model (GAM) mentioned in

xample 1. That is, we assume that

f0(x(s)) = Ψ

⎛⎝ d∑
j=1

gj(xj(s))

⎞⎠ ,

where gj(·) : [0, 1] → R and Ψ (·) : R → R are some smooth functions. In this model, spatial
dependence is not assumed. The fourth estimator we consider is the linear regression (LR) model
which assumes a linear relationship between the response variable and the predictor variables,
without incorporating spatial dependence explicitly.

4.2. Simulation results

To evaluate the performance of each method, we generate additional m = n/10 observations at
new locations, treated as a test set. Similar to Chu et al. (2014), we adopt mean squared estimation
error (MSEE) and mean squared prediction error (MSPE) to evaluate the estimation and prediction
performance, where MSEE and MSPE are defined as

MSEE = m−1
m∑
i=1

(̂f (x(si)) − f0(x(si)))2, MSPE = m−1
m∑
i=1

(̂f (x(si)) − y(si))2,

nd f̂ (x(si)) is an estimator of f0(x(si)). The mean and standard deviation of MSEE and MSPE over

he 100 independent replicates are summarized in Tables 1–4.

9
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Table 2
Results of simulation design 1 with expanding domain (i.e., D = 10, 20, 30): the averaged MSEE and MSPE over 100
replicates (with its standard deviation in parentheses) of various methods with different n and ρ.
Expanding domain ρ = 0.1 ρ = 0.5 ρ = 1

n MSEE MSPE MSEE MSPE MSEE MSPE

GAM 0.35 (0.23) 2.06 (0.67) 0.82 (0.38) 1.60 (0.59) 0.98 (0.59) 1.42 (0.31)
n = 100,D = 10 GP-SVC 0.33 (0.22) 2.01 (0.61) 0.78 (0.36) 1.53 (0.55) 0.94 (0.54) 1.37 (0.29)

N-W 0.38 (0.26) 2.03 (0.65) 0.81 (0.40) 1.57 (0.58) 0.96 (0.57) 1.39 (0.29)
LR 0.34(0.22) 2.05 (0.66) 0.81 (0.36) 1.58 (0.58) 0.97 (0.58) 1.41 (0.30)
DNN 0.26 (0.19) 1.93 (0.55) 0.64 (0.37) 1.44 (0.55) 0.76 (0.44) 1.22 (0.26)

GAM 0.21 (0.14) 1.91 (0.58) 0.66 (0.34) 1.51 (0.36) 0.85 (0.44) 1.39 (0.39)
n = 200,D = 20 GP-SVC 0.18 (0.14) 1.89 (0.54) 0.61 (0.33) 1.48 (0.39) 0.81 (0.40) 1.36 (0.41)

N-W 0.20 (0.17) 1.93 (0.61) 0.63 (0.36) 1.47 (0.37) 0.88 (0.48) 1.40 (0.43)
LR 0.20 (0.13) 1.90 (0.56) 0.67 (0.35) 1.52 (0.35) 0.86 (0.45) 1.39 (0.40)
DNN 0.14 (0.11) 1.82 (0.55) 0.43 (0.28) 1.33 (0.32) 0.61 (0.37) 1.29 (0.38)

GAM 0.11 (0.07) 1.72 (0.39) 0.51 (0.29) 1.40 (0.31) 0.70 (0.31) 1.30 (0.26)
n = 300,D = 30 GP-SVC 0.13 (0.10) 1.76 (0.41) 0.56 (0.33) 1.43 (0.36) 0.74 (0.37) 1.34 (0.30)

N-W 0.13 (0.07) 1.77 (0.44) 0.53 (0.30) 1.44 (0.39) 0.69 (0.33) 1.29 (0.27)
LR 0.12 (0.07) 1.74 (0.40) 0.52 (0.31) 1.42 (0.33) 0.72 (0.33) 1.32 (0.28)
DNN 0.07 (0.09) 1.63 (0.38) 0.31 (0.23) 1.22 (0.23) 0.43 (0.31) 1.10 (0.19)

Tables 1 and 2 pertain to Simulation Design 1, for fixed and expanding domains, respectively.
or each combination of the sample size n and the spatial dependence ρ, we highlight the estimator
n boldface that yields the smallest MSEE and MSPE. Overall, GAM, GP-SVC, N-W, and LR methods
erform similar to each other. The proposed DNN estimator produces a smaller estimation error and
rediction error than the others in all cases except when n = 200 and ρ = 0.1 in the fixed-domain
ase, GAM yields the smallest MSPE of 1.26. But the MSPE produced by DNN is close. Despite that
patial dependence has an adverse impact on the performance, when n increases (and D increases
or the expanding-domain case), both estimation error and prediction error decrease as expected.

We depict in Fig. 2 the estimated mean functions f̂ (x(s)) via our method with n = 100 and
= 0.5 from the 100 replications along with the 95% pointwise confidence intervals for both fixed
nd expanding domains. Here, the 95% pointwise intervals are defined as(

2−1 (̂f(2)(x(si)) + f̂(3)(x(si))), 2−1 (̂f(97)(x(si)) + f̂(98)(x(si)))
)
, i = 1, 2, . . . , n,

here f̂(k)(x(si)) is the kth smallest value of {̂f[j](x(si)) : j = 1, . . . , 100}, and f̂[j](x(si)) is the estimator
f f0(x(si)) from the jth replicate.
Tables 3 and 4 report the results for Simulation Design 2. For both fixed and expanding domains,

ur method performs the best among the five methods and N-W comes next. This is mainly because
R, GAM and GP-SVC treat f0 to be linear and cannot handle complex interactions and nonlinear
tructures in f0.

. Data example

In this section, we use the proposed DNN method to analyze California Housing data
hat are publicly available from the website https://www.dcc.fc.up.pt/∼ltorgo/Regression/cal_hou
ing.html. After removing missing values, the dataset contains housing price information from

= 20433 block groups in California from the 1990 census, where a block group on average
ncludes 1425.5 individuals living in a geographically compact area. To be specific, the dataset
omprises median house values and six covariates of interest: the median age of a house, the total
umber of rooms, the total number of bedrooms, population, the total number of households, and
he median income for households. Fig. 3 displays the histograms of the six covariates, from which
ne can observe that the covariates are all right skewed except for the median age of a house. Thus,
e first apply the logarithm transform to the five covariates and then use min–max normalization

o rescale all the six covariates so that the data are within the range [0, 1].
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Table 3
Results of simulation design 2 with fixed domain: the averaged MSEE and MSPE over 100 replicates (with its standard
deviation in parentheses) of various methods with different n and ρ.
Fixed-domain ρ = 0.1 ρ = 0.5 ρ = 1

n MSEE MSPE MSEE MSPE MSEE MSPE

GAM 0.87 (0.92) 2.81 (1.19) 1.10 (2.40) 2.40 (1.53) 1.23 (1.06) 2.16 (1.10)
n = 100 GP-SVC 0.93 (0.99) 2.93 (1.23) 1.23 (2.54) 2.59 (1.67) 1.53 (1.33) 2.37 (1.26)

N-W 0.73 (0.81) 2.70 (1.15) 1.01 (2.16) 2.30 (1.38) 1.09 (1.01) 2.09 (0.98)
LR 1.16 (0.99) 3.02 (1.25) 1.46 (2.62) 2.82 (1.76) 1.88 (1.44) 2.66 (1.39)
DNN 0.51 (0.60) 2.27 (1.09) 0.74 (1.11) 1.90 (1.02) 0.83 (1.19) 1.99 (1.17)

GAM 0.44 (0.52) 2.38 (0.58) 0.75 (0.65) 1.89 (0.42) 0.92 (0.92) 1.69 (0.47)
n = 400 GP-SVC 0.50 (0.59) 2.43 (0.66) 0.82 (0.77) 1.94 (0.47) 1.00 (0.96) 1.80 (0.53)

N-W 0.39 (0.44) 1.99 (0.58) 0.68 (0.70) 1.73 (0.41) 0.83 (0.84) 1.56 (0.41)
LR 0.66 (0.52) 2.67 (0.71) 0.95 (0.79) 2.05 (0.55) 1.11 (0.97) 1.88 (0.57)
DNN 0.22 (0.39) 1.87 (0.49) 0.54 (0.61) 1.57 (0.37) 0.68 (0.71) 1.41 (0.37)

GAM 0.31 (0.40) 2.25 (0.53) 0.59 (0.53) 1.81 (0.36) 0.80 (0.79) 1.65 (0.36)
n = 900 GP-SVC 0.38 (0.44) 2.29 (0.58) 0.66 (0.60) 1.88 (0.39) 0.88 (0.83) 1.73 (0.40)

N-W 0.25 (0.34) 1.86 (0.49) 0.51 (0.46) 1.70 (0.31) 0.71 (0.72) 1.52 (0.34)
LR 0.49 (0.48) 2.33 (0.66) 0.88 (0.73) 1.95 (0.44) 0.98 (0.86) 1.85 (0.42)
DNN 0.19 (0.27) 1.70 (0.42) 0.28 (0.33) 1.49 (0.29) 0.57 (0.59) 1.33 (0.34)

Fig. 2. The estimated mean function and 95% pointwise simulation intervals using our method in Simulation Design 1
ith n = 100, ρ = 0.5. In both plots, the solid line is the true mean function, and the two dashed lines are the 95%
ointwise simulation intervals. The gray lines are the estimated mean functions from each replication.

Fig. 4 shows the spatial distribution of the five log transformed covariates (i.e., the total number
f rooms, the total number of bedrooms, population, the total number of households, and the
edian income for households) and the median age of a house. We also depict in Fig. 5 (the top
anel) the map of the median house values in California. The data exhibit a clear geographical
attern. Home values in the coastal region, especially the San Francisco Bay Area and South Coast,
re higher than the other regions. Areas of high home values are always associated with high
ousehold income, dense population, large home size, and large household, which are clustered in
he coastal region and Central Valley. Our objective is to explore the intricate relationship between
he median house value and the six covariates by taking into account their spatial autocorrelation.

Same as the simulation study, we estimate the mean function f0(·) via four methods: DNN,
AM, GP-SVC, and N-W. We use the same neural network architecture as the simulation study,
.e., the length and width equal L = 3, N = 30, respectively, and dropout rate is set as 0.2 to avoid
verfitting. To assess their performance, we compute the out-of-sample prediction error measured
11
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Table 4
Results of simulation design 2 with expanding domain (D = 10, 20, 30): the averaged MSEE and MSPE over 100 replicates
with its standard deviation in parentheses) of various methods with different n and ρ.
Fixed-domain ρ = 0.1 ρ = 0.5 ρ = 1

n MSEE MSPE MSEE MSPE MSEE MSPE

GAM 0.75 (0.81) 2.88 (1.04) 0.81 (0.65) 2.72 (0.94) 0.90 (0.76) 2.65 (0.88)
n = 100,D = 10 GP-SVC 0.84 (0.88) 2.93 (1.11) 0.89 (0.90) 2.80 (0.97) 0.96 (0.83) 2.71 (0.91)

N-W 0.66 (0.70) 2.71 (1.00) 0.71 (0.62) 2.66 (0.90) 0.82 (0.71) 2.59 (0.81)
LR 0.97 (0.91) 2.95 (1.14) 1.06 (0.92) 2.92 (0.98) 1.15 (0.86) 2.75 (0.95)
DNN 0.44 (0.49) 2.15 (1.02) 0.60 (1.03) 1.81 (0.99) 0.69 (1.07) 1.76 (0.94)

GAM 0.32 (0.25) 2.49 (0.44) 0.35 (0.24) 2.39 (0.46) 0.40 (0.33) 2.32 (0.51)
n = 400,D = 20 GP-SVC 0.40 (0.31) 2.55 (0.48) 0.49 (0.29) 2.44 (0.50) 0.54 (0.37) 2.40 (0.55)

N-W 0.28 (0.23) 2.35 (0.41) 0.31 (0.20) 2.33 (0.41) 0.35 (0.30) 2.27 (0.47)
LR 0.56 (0.35) 2.60 (0.54) 0.63 (0.33) 2.49 (0.49) 0.71 (0.41) 2.46 (0.53)
DNN 0.18 (0.20) 2.20 (0.38) 0.24 (0.21) 2.29 (0.38) 0.29 (0.24) 2.20 (0.41)

GAM 0.24 (0.29) 2.28 (0.33) 0.27 (0.16) 2.25 (0.27) 0.31 (0.17) 2.26 (0.25)
n = 900,D = 30 GP-SVC 0.31 (0.32) 2.31 (0.35) 0.37 (0.21) 2.17 (0.25) 0.41 (0.20) 2.29 (0.28)

N-W 0.21 (0.30) 1.82 (0.46) 0.26 (0.21) 1.61 (0.28) 0.29 (0.16) 1.50 (0.30)
LR 0.42 (0.35) 2.37 (0.38) 0.53 (0.24) 2.33 (0.29) 0.62 (0.23) 2.30 (0.31)
DNN 0.16 (0.22) 1.71 (0.30) 0.19 (0.20) 1.58 (0.25) 0.23 (0.15) 1.45 (0.28)

Fig. 3. Histograms of six covariates in California housing data example.

by MSPE based on 10-fold cross-validation, and the results are summarized in Table 5. Consistent
with the observations in the simulation study, the proposed DNN method yields a much more
accurate prediction than the others. The bottom panel of Fig. 5 shows the estimated median house
value using the DNN estimator, which exhibits a similar geographical pattern to the observations.

6. Conclusion

In this study, we have ventured into the realm of regression analysis for spatially dependent
data utilizing deep learning. Through meticulous consideration of the intricate interplay of spatial
12
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Fig. 4. The map of six covariates in California housing data example.

Table 5
Summary of the mean squared prediction error in California housing data
example.
Methods GAM GP-SVC N-W LR DNN

MSPE (×104) 4.74 4.23 4.05 5.32 3.41

autocorrelation, our estimator has demonstrated its consistency. An intriguing path for future explo-
ration unfolds in the domain of large-scale datasets. While the present study adeptly showcases the
effectiveness of our approach via rigorous simulations, its true potential unfurls when confronted
with the intricacies of real-world data. An illustrative instance is illuminated by the remote sensing
data expounded in Ma et al.’s work (Ma et al., 2022). This dataset weaves together a tapestry
of spatially referenced variables, collectively contributing to the intricate fabric of underlying
relationships. The deployment of our model upon such expansive and diverse datasets holds the
pledge of unveiling concealed patterns and amplifying comprehension of underlying processes.

Furthermore, our methodology’s scope extends beyond predictive modeling, revealing a mul-
itude of versatile applications. As expounded earlier, scenarios entailing interpolation challenges
nd gap-filling predicaments in remote sensing, alongside endeavors aimed at assessing the relative
ignificance of covariates in ecological investigations, stand to derive substantial benefits from our
odel’s nuanced capabilities. The vista of extending our framework to encompass spatiotemporal
rediction broadens even further, beckoning exploration into more intricate, dynamic, and tempo-
ally evolving phenomena. For a more comprehensive review, refer to Wikle et al.’s comprehensive
ork (Wikle et al., 2019).
In conclusion, the journey into the domain of regression analysis for spatially dependent data

ndures as a continuous and captivating odyssey. As we confront the unique intricacies presented by
xpansive datasets and diverse problem domains, our proposed methodology emerges as a steadfast
ompanion. Its role extends beyond mere contribution, shaping the advancement of statistical
ethodologies for spatial analysis.
13
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d

Fig. 5. The top panel is the map of 20433 observations and the corresponding median house value in California housing
ata example. The bottom panel is the estimated median house value.
14
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Appendix

A.1. Notation and definition

In this paper all vectors are column vectors, unless otherwise stated. Let ∥v∥2
2 = v⊤v for any

ector v, and ∥f ∥2 =

√∫
f (x)2dx be the L2 norm of a real-valued function f (x). For two positive

sequences an and bn, we write an ≲ bn if there exists a positive constant c such that an ≤ cbn for
ll n, and an ≍ bn if c−1an ≤ bn ≤ can for some constant c > 1 and a sufficiently large n. Suppose
hat x = (x1, . . . , xd)⊤ is a d-dimensional vector. Let |x| = (|x1|, . . . , |xd|)⊤, |x|∞ = maxi=1,...,d |xi|,
nd |x|0 =

∑d
i=1 1(xi ̸= 0). For two d−dimensional vectors x and y, we write x ≲ y if xi ≲ yi for

= 1, . . . , d. Let ⌊x⌋ be the largest number less than x and ⌈x⌉ be the smallest number greater than
. For a matrix A = (aij), let ∥A∥∞ = maxij |aij| the max norm of A, ∥A∥0 be the number of non-zero
ntries of A. Define ∥f ∥∞ as the sup-norm of a real-valued function f . We use a ∧ b to represent
he minimum of two numbers a and b, while a ∨ b is the maximum of a and b.

efinition 1 (Hölder Smoothness). A function g : Rr0 → R is said to be (β, C)-Hölder smooth for
ome positive constants β and C , if for every γ = (γ1, . . . , γr0 ) ∈ Nr0 , the following two conditions
hold:

sup
x∈Rr0

⏐⏐⏐⏐ ∂κg

∂xγ1
1 . . . ∂x

γr0
r0

(x)
⏐⏐⏐⏐ ≤ C, for κ ≤ ⌊β⌋,

and ⏐⏐⏐⏐ ∂κg

∂xγ1
1 . . . ∂x

γr0
r0

(x) −
∂κg

∂xγ1
1 . . . ∂x

γr0
r0

(̃x)
⏐⏐⏐⏐ ≤ C∥x − x̃∥β−⌊β⌋

2 , for κ = ⌊β⌋, x, x̃ ∈ Rr0 ,

where κ =
∑r0

i=1 γi. Moreover, we say g is (∞, C)-Hölder smooth if g is (β, C)-Hölder smooth for
all β > 0.

A.2. Proof of Theorem 1

The proof of Theorem 1 requires a preliminary lemma. First, we define the δ-cover of a function
pace F as a set F̃ ⊂ F satisfying that following property: for any f ∈ F , there exists a f̃ ∈ F̃ such
hat ∥̃f − f ∥∞ ≤ δ. Next, we define the δ-covering number of F as

N (δ,F, ∥ · ∥∞) .
= min{|F̃| : F̃ is a δ-cover of F},

here |A| means the number of distinct elements in set A. In other words, N (δ,F, ∥ · ∥∞) is the
minimal number of ∥ · ∥∞-balls with radius δ that covers F .

Lemma 1. Suppose that f0 is the unknown true mean function in (1). Let F be a function class such
that {f0} ∪ F ⊂ {f : [0, 1]d → [−F , F ]} for some F ≥ 1. Then for all δ, ϵ ∈ (0, 1] and f̂ ∈ F , the
ollowing inequality holds:

Rn (̂f , f0) ≤(1 + ε)
(
inf
f̃∈F

Rn(f̃ , f0) + ∆n (̂f ) + 2δ
(
n−1 tr(Γn) + 2

√
n−1 tr(Γ 2

n ) + 3σ
))

+ (1 + ε)
2F 2

nε
(3 logN + 1)(n−1 tr(Γ 2

n ) + σ 2
+ 1),

here N = N (δ,F, ∥ · ∥∞).

roof. Let ∆n = ∆n (̂f ). For any fixed f ∈ F , we have E f0

[
n−1 ∑n

i=1(y(si) − f (x(si)))2 −

nff̃∈F n−1 ∑n
i=1(y(si) − f̃ (x(si)))2

]
≥ 0. Therefore,

E f0

[1
n

n∑
(y(si) − f̂ (x(si)))2

]

i=1

15
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L

1
0

I
{

f
F

≤E f0

[1
n

n∑
i=1

(y(si) − f̂ (x(si)))2 +
1
n

n∑
i=1

(y(si) − f (x(si)))2 − inf
f̃∈F

1
n

n∑
i=1

(y(si) − f̃ (x(si)))2
]

=E f0

[1
n

n∑
i=1

(y(si) − f (x(si)))2
]

+ ∆n.

et ϵi = e1(si) + e2(si). Furthermore, we have

Rn (̂f , f0) =
1
n

n∑
i=1

E f0

[(̂
f (x(si)) − f0(x(si))

)2]
=

1
n

n∑
i=1

E f0

[(̂
f (x(si)) − y(si) + y(si) − f0(x(si))

)2]
=

1
n

n∑
i=1

E f0

[(̂
f (x(si)) − y(si)

)2
+ ϵ2

i + 2
(̂
f (x(si)) − y(si)

)
ϵi
]

≤
1
n

n∑
i=1

E f0

[
(y(si) − f (x(si)))2 − ϵ2

i + 2̂f (x(si))ϵi
]

+ ∆n

=
1
n

n∑
i=1

E f0

[
(y(si) − f0(x(si)) + f0(x(si)) − f (x(si)))2 − ϵ2

i + 2̂f (x(si))ϵi
]
+ ∆n

=
1
n

n∑
i=1

E f0

[
(f0(x(si)) − f (x(si)))2 + 2̂f (x(si))ϵi

]
+ ∆n. (8)

Next, we will find an upper bound for E f0

[ 2
n

∑n
i=1 f̂ (x(si))ϵi

]
. By the definition of the δ-cover

of a function space F and the δ-covering number, we denote the centers of the balls by fj, j =

, 2, . . . ,N ; and there exists fj∗ such that ∥̂f − fj∗∥∞ ≤ δ. Together with the fact that E
[
f0(x(si))ϵi

]
=

, we have

E
[2
n

n∑
i=1

f̂ (x(si))ϵi
]

=E
[2
n

n∑
i=1

(̂
f (x(si)) − fj∗(x(si)) + fj∗(x(si)) − f0(x(si))

)
ϵi
]

≤E
⏐⏐⏐2
n

n∑
i=1

(̂
f (x(si)) − fj∗(x(si))

)
ϵi

⏐⏐⏐ + E
⏐⏐⏐2
n

n∑
i=1

(
fj∗(x(si)) − f0(x(si))

)
ϵi

⏐⏐⏐
≤
2δ
n
E
[ n∑

i=1

⏐⏐ϵi⏐⏐] +
2
n
E
⏐⏐⏐ n∑

i=1

(
fj∗(x(si)) − f0(x(si))

)
ϵi

⏐⏐⏐
.
=T1 + T2. (9)

t is easy to see that T1 ≤ 2δ(n−1 trΓn + σ ). For the second term T2, notice that, conditionally on
x(s1), . . . , x(sn)},

ηj
.
=

∑n
i=1

(
fj(x(si)) − f0(x(si))

)
ϵi√

a⊤

j Γnaj + nσ 2∥fj − f0∥2
n

ollows N (0, 1) where aj = (fj(x(s1))− f0(x(s1)), . . . , fj(x(sn))− f0(x(sn)))⊤, ∥f ∥2
n = n−1 ∑n

i=1 f (x(si))
2.

rom Lemma C.1 of Schmidt-Hieber (2020), E
[
max η2

|x(s ), . . . , x(s )
]

≤ 3 logN + 1.
f0 j=1,...,N j 1 n

16
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S
a

P

Consequently,

T2 =
2
n
E
⏐⏐⏐ηj∗

√
a⊤

j∗Γnaj∗ + nσ 2∥fj∗ − f0∥2
n

⏐⏐⏐
≤
2
n
E
(
|ηj∗|

√
(tr(Γ 2

n ) + nσ 2)∥fj∗ − f0∥2
n

)
≤
2
√
tr(Γ 2

n ) + nσ 2

n
E
(
|ηj∗|(∥f̂ − f0∥n + δ)

)
≤
2
√
tr(Γ 2

n ) + nσ 2

n

√
3 logN + 1

(√
Rn (̂f , f0) + δ

)
Together with (8) and (9), we have

Rn (̂f , f0) ≤ Rn(f , f0)+∆n +2δ(n−1 trΓn +σ )+
2
√
tr(Γ 2

n ) + nσ 2

n

√
3 logN + 1

(√
Rn (̂f , f0)+δ

)
.

If logN ≤ n, then

Rn (̂f , f0) ≤Rn(f , f0) + ∆n + 2δ
(
n−1 tr(Γn) + σ + 2

√
n−1 tr(Γ 2

n ) + σ 2
)

+
2
√
tr(Γ 2

n ) + nσ 2

n

√
3 logN + 1

√
Rn (̂f , f0).

Applying the inequality (43) in Schmidt-Hieber (2020), we have, for any 0 < ε ≤ 1,

Rn (̂f , f0) ≤(1 + ε)
(
Rn(f , f0) + ∆n + 2δ

(
n−1 tr(Γn) + σ + 2

√
n−1 tr(Γ 2

n ) + σ 2
))

+
(1 + ε)2

ε

1
n2 (3 logN + 1)(tr(Γ 2

n ) + nσ 2)

≤(1 + ε)
(
Rn(f , f0) + ∆n + 2δ

(
n−1 tr(Γn) + 2

√
n−1 tr(Γ 2

n ) + 3σ
))

+ (1 + ε)
2F 2

nε
(3 logN + 1)(n−1 tr(Γ 2

n ) + σ 2
+ 1).

For logN > n, Rn (̂f , f0) =
1
n

∑n
i=1 E f0

[(̂
f (x(si)) − f0(x(si))

)2]
≤ 4F 2 and

(1 + ε)
(
Rn(f , f0) + ∆n + 2δ

(
n−1 tr(Γn) + 2

√
n−1 tr(Γ 2

n ) + 3σ
))

+ (1 + ε)
2F 2

nε
(3 logN + 1)(n−1 tr(Γ 2

n ) + σ 2
+ 1)

>
2F 2

n
(3n + 1) > 6F 2.

Thus,

Rn (̂f , f0) ≤(1 + ε)
(
Rn(f , f0) + ∆n + 2δ

(
n−1 tr(Γn) + 2

√
n−1 tr(Γ 2

n ) + 3σ
))

+ (1 + ε)
2F 2

nε
(3 logN + 1)(n−1 tr(Γ 2

n ) + σ 2
+ 1).

ince the above inequality holds true for any f ∈ F , we can prove the result by letting f =

rginff̃∈FRn(f̃ , f0). □

roof of Theorem 1. It follows from Lemma 5 and Remark 1 of Schmidt-Hieber (2020) that

logN = logN (δ,F(L, p, τ , F ), ∥ · ∥ ) ≤ (1 + τ ) log(25+2Lδ−1(L + 1)τ 2Ld2).
∞
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Because F ≥ 1 and 0 < ε ≤ 1, we have

Rn (̂f , f0) ≲ (1 + ε)
(

inf
f̃∈F(L,p,τ ,F )

∥f̃ − f0∥2
∞

+ ∆n (̂f ) + ςn,ε,δ

)
,

here

ςn,ε,δ ≍
1
ε

[
δ

(
n−1 tr(Γn) + 2

√
n−1 tr(Γ 2

n ) + 3σ
)

+
τ

n
(log(L/δ) + L log τ) (n−1 tr(Γ 2

n ) + σ 2
+ 1)

]
. □

.3. Proof of Theorem 2

emma 2. For any f : Rd
→ R ∈ CS(L∗, r, r̃, β, a, b, C ), m ∈ Z+, and N ≥ maxi=0,...,L∗ (βi + 1)r̃i ∨

C̃i + 1)er̃i , there exists a neural network

f∗ ∈ F(L, (d, 6ηN, . . . , 6ηN, 1),
L∗∑
i=0

ri+1(τi + 4), ∞),

uch that

∥f∗ − f ∥∞ ≤ CL∗

L∗−1∏
l=0

(2Cl)βl+1

L∗∑
i=0

(
(2C̃i + 1)(1 + r̃2i + β2

i )6
r̃N2−m

+ C̃i3βiN
−

βi
r̃i

)∏L∗
l=i+1 βl∧1

,

here

C̃i =

i∑
k=0

Ck
bk − ak

bk+1 − ak+1
, i = 0, . . . , L∗ − 1, C̃L∗ =

L∗∑
k=0

Ck
bk − ak

bk+1 − ak+1
+ bL∗ − aL∗

L = 3L∗ +

L∗∑
i=0

Li, with Li = 8 + (m + 5)(1 + ⌈log2(r̃i ∨ βi)⌉),

τi ≤ 141(r̃i + βi + 1)3+r̃iN(m + 6), i = 0, . . . , L∗,

η = max
i=0,...,L∗

(ri+1(r̃i + ⌈βi⌉)).

Proof. By definition, we write f (z) as

f (z) = g L∗ ◦ . . . ◦ g1 ◦ g0(z), for z ∈ [a0, b0]r0 ,

where g i = (gi,1, . . . , gi,ri+1 )
⊤

: [ai, bi]ri → [ai+1, bi+1]
ri+1 for some |ai|, |bi| ≤ Ci and the functions

gi,j : [ai, bi]r̃i → [ai+1, bi+1] are (βi, Ci)-Hölder smooth and rL∗+1 = 1. For i = 0, . . . , L∗ − 1, the
domain and range of g i are [ai, bi]ri and [ai+1, bi+1]

ri+1 , respectively. First of all, we will rewrite f as
the composition of the functions hi := (hi,1, . . . , hi,ri+1 )

⊤ whose domain and range are [0, 1]ri and
[0, 1]ri+1 which are constructed via linear transformation. That is, we define

hi(z) :=
g i((bi − ai)z − ai+1)

bi+1 − ai+1
, for z ∈ [0, 1]ri , i = 0, . . . , L∗ − 1,

hL∗ (z) := g L∗ ((bL∗ − aL∗ )z + aL∗ ), for z ∈ [0, 1]rL∗ .

Therefore the following equality holds

f (z) = g L∗ ◦ . . . ◦ g1 ◦ g0(z) = hL∗ ◦ . . . ◦ h1 ◦ h0(
z − a0
b0 − a0

), for z ∈ [a0, b0]r0 .

Since gi,j : [ai, bi]r̃i → [ai+1, bi+1] are all (βi, Ci)-Hölder smooth, it follows that hi,j : [0, 1]r̃i → [0, 1]
are all (βi, C̃i)-Hölder smooth as well, where C̃i is a constant only depending on a, b, and C ,
i.e., C̃ =

∑i C bk−ak for i = 0, . . . , L − 1, and C̃ =
∑L∗ C bk−ak + b − a .
i k=0 k bk+1−ak+1 ∗ L∗ k=0 k bk+1−ak+1 L∗ L∗
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By Theorem 5 of Schmidt-Hieber (2020), for any integer m ≥ 1 and N ≥ maxi=0,...,L∗ (βi + 1)r̃i ∨

(C̃i + 1)er̃i , there exists a network

h̃i,j ∈ F(Li, (r̃i, 6(r̃i + ⌈βi⌉)N, . . . , 6(r̃i + ⌈βi⌉)N, 1), τi, ∞),

with Li = 8 + (m + 5)(1 + ⌈log2(r̃i ∨ βi)⌉) and τi ≤ 141(r̃i + βi + 1)3+r̃iN(m + 6), such that

∥h̃i,j − hi,j∥∞ ≤ (2C̃i + 1)(1 + r̃2i + β2
i )6

r̃iN2−m
+ C̃i3βiN

−
βi
r̃i .

ote that the value of h̃i,j is (−∞, ∞). So we define h∗

i,j := σ (−σ (−h̃i,j + 1) + 1) by adding
wo more layers σ (1 − x) to restrict h∗

i,j into the interval [0, 1], where σ (x) = max(0, x). This
ntroduces two more layers and four more parameters. By the fact that hi,j ∈ [0, 1], we have
∗

i,j ∈ F(Li + 2, (r̃i, 6(r̃i + ⌈βi⌉)N, . . . , 6(r̃i + ⌈βi⌉)N, 1), τi + 4, ∞) and

∥h∗

i,j − hi,j∥∞ ≤ ∥h̃i,j − hi,j∥∞ ≤ (2C̃i + 1)(1 + r̃2i + β2
i )6

r̃iN2−m
+ C̃i3βiN

−
βi
r̃i .

e further parallelize all (h∗

i,j)j=1,...,ri+1 together, obtaining h∗

i := (h∗

i,1, . . . , h
∗

i,ri+1
)⊤ ∈ F(Li +

, (ri, 6ri+1(r̃i + ⌈βi⌉)N, . . . , 6ri+1(r̃i + ⌈βi⌉)N, ri+1), ri+1(τi + 4), ∞). Moreover, we construct the
omposite network f∗ := h∗

L∗ ◦ . . . ◦ h∗

1 ◦ h∗

0 ∈ F(3L∗ +
∑L∗

i=0 Li, (r0, 6ηN, . . . , 6ηN, 1),
∑L∗

i=0 ri+1(τi +
4), ∞), where η = maxi=0,...,L∗ (ri+1(r̃i + ⌈βi⌉)).

By Lemma 3 in Schmidt-Hieber (2020),

∥f − f∗∥∞ =∥hL∗ ◦ . . . ◦ h1 ◦ h0 − h∗

L∗ ◦ . . . ◦ h∗

1 ◦ h∗

0∥∞

≤CL∗

L∗−1∏
l=0

(2Cl)βl+1

L∗∑
i=0

∥|hi − h∗

i |∞∥

∏L∗
l=i+1 βl∧1

∞

≤CL∗

L∗−1∏
l=0

(2Cl)βl+1

L∗∑
i=0

(
(2C̃i + 1)(1 + r̃2i + β2

i )6
r̃N2−m

+ C̃i3βiN
−

βi
r̃i

)∏L∗
l=i+1 βl∧1

≤CL∗

L∗−1∏
l=0

(2Cl)βl+1

L∗∑
i=0

((2C̃i + 1)(1 + r̃2i + β2
i )6

r̃N2−m)
∏L∗

l=i+1 βl∧1

+ CL∗

L∗−1∏
l=0

(2Cl)βl+1

L∗∑
i=0

(C̃i3βiN
−

βi
r̃i )

∏L∗
l=i+1 βl∧1. □

roof of Theorem 2. By Theorem 1 with δ = n−2 and ε = 1, it follows that

Rn (̂flocal, f0) ≲ inf
f̃∈F(L,p,τ ,F )

∥f̃ − f0∥2
∞

+
(tr(Γ 2

n ) + n)τ (log(Ln2) + L log τ )
n2 + ∆n (̂flocal).

ext, we need to analyze the first term. Since f0 ∈ CS(L∗, r, r̃, β, a, b, C ), by Lemma 2, for any
> 0, there exists a neural network

f∗ ∈ F(L, (d,N, . . . ,N, 1), τ ,∞),

ith L ≍ m,N ≥ 6ηmaxi=0,...,L∗ (βi + 1)r̃i ∨ (C̃i + 1)er̃i , η = maxi=0,...,L∗ (ri+1(r̃i +⌈βi⌉)), τ ≲ mN , such
hat

∥f∗ − f0∥∞ ≲

L∗∑
i=0

(N2−m)
∏L∗

l=i+1 βl∧1
+ (N

−
βi
r̃i )

∏L∗
l=i+1 βl∧1

≲

L∗∑
i=0

(N2−m)
∏L∗

l=i+1 βl∧1
+ N

−
β∗
i
r̃i

≲ (N2−m)
∏L∗

l=1 βl∧1
+ N−

β∗

r∗ , (10)
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N
m

where recall that β∗
= β∗

i∗ and r∗
= r̃i∗ . For simplicity, we let p = (d,N, . . . ,N, 1). This means there

exists a sequence of networks (fn)n such that for all sufficiently large n, ∥fn−f0∥∞ ≲ (N2−m)
∏L∗

l=1 βl∧1
+

−
β∗

r∗ and fn ∈ F(L, p, τ ,∞). Next define f̀ := fn(∥f0∥∞/∥fn∥∞ ∧ 1) ∈ F(L, p, τ , F ), F ≥

ax∗

i=0,...,L(Ci, 1), and it is obvious that ∥f̀ − f0∥∞ ≲ (N2−m)
∏L∗

l=1 βl∧1
+ N−

β∗

r∗ . Then it follows that

inf
f̃∈F(L,p,τ ,F )

∥f̃ − f0∥∞ ≲ ∥f̀ − f0∥∞ ≲ (N2−m)
∏L∗

l=1 βl∧1
+ N−

β∗

r∗ . (11)

By combining (10) and the fact that τ ≲ LN , the proof is completed. □
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