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A B S T R A C T

Wildfire maintains boreal forest health by catalyzing nutrient cycling and forest succession. However, increased 
annual burned area due to climate warming may facilitate forest loss and soil carbon release, which makes it 
important to monitor circumboreal burned area. Our goal was to characterize regional changes in circumboreal 
burned area from 1983 to 2020 using Advanced Very High Resolution Radiometer (AVHRR) data, and to identify 
the ecoregions where increases in burned area represent significant trends. We accomplished this by developing 
and applying a new burned area mapping algorithm that is based on an autoregressive analysis of the AVHRR 
and MODIS MOD09CMGv061 time series. Our algorithm worked well, and resulting burned area totals were 
similar to those of the MODIS MCD64A1v61 burned area product for years where both were available 
(2001− 2020); however, the advantage of our AVHRR burned area dataset is that it extends back to 1983. Based 
on the resulting burned area maps, we evaluated circumboreal burned area changes and tested for significant 
trends. Net changes were substantial: while only 5.37 % of the circumboreal biome burned in the 1980s, 8.22 % 
did during the 2010s, an increase of 2.85 % (= 8.22–5.37 %) that corresponds to a proportional increase in area 
burned of 0.53 (= 2.85/5.37). In one ecoregion, Muskwa Slave Lake Forests, burned area more than quadrupled 
from the 1980s to the 2010s, and in three it more than tripled (Northern Canadian Shield Taiga, Yukon Interior 
Dry Forests, and Northeast Siberian Taiga). Furthermore, despite interannual variability in burned area typically 
being high, we found statistically significant increasing trends in burned area in seven of the twenty-three boreal 
ecoregions, corresponding to 19.6 % of boreal forests (35 % of North American and 11 % of Eurasian boreal 
forests), while only one ecoregion (Eastern Canadian Shield Taiga) had a decreasing trend. By analyzing the long- 
term AVHRR record, we were able to capture much larger increases in burned area than from the shorter MODIS 
record, allowing us to quantify how widespread and substantial these increases have been. By analyzing ecor
egions, we found that north-eastern Siberian, north-western Canadian, and Alaskan boreal forests have experi
enced the most increases in burned area. These increases in burned area may have implications for future forest 
persistence and carbon storage within Eurasian and North American boreal forests.

1. Introduction

Wildfire, either of natural, accidental, or intentional origin, is a 
disturbance process of global significance (Krawchuk et al., 2009), 
affecting 500 million hectares (Mha) in 2019 alone (Lizundia-Loiola 
et al., 2022). Wildfires are a major source of disturbance in many eco
systems including boreal, temperate, and neotropical forests, wood
lands, grasslands, and savannas (Liu et al., 2010). Wildfires can benefit 
wildfire-adapted forested ecosystems by facilitating succession, nutrient 

cycling, reducing fuel loads, and thereby minimizing the intensity and 
severity of subsequent wildfires (Pausas and Keeley, 2021). However, 
wildfire can also negatively affect plant communities when it occurs 
outside of its natural range of variation, threaten human health through 
smoke, and contribute to climate warming through greenhouse gas 
emissions (Bowman et al., 2020; Phillips et al., 2022).

Among global biomes, the circumboreal biome is warming and 
drying more rapidly than any other (Pithan and Mauritsen, 2014; IPCC, 
2021), which is why the extent and frequency of wildfires is predicted to 
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increase there (Mhawej et al., 2015). The boreal forests of North 
America and Eurasia, or the circumboreal region, encompass approxi
mately 1135 Mha, contain two-thirds of global forest (Pan et al., 2011; 
Bradshaw and Warkentin, 2015), and are wildfire-adapted (Bond- 
Lamberty et al., 2007; Talucci et al., 2022). Increases in circumboreal 
burned area is a major concern due to the potential for increased 
greenhouse gas emissions (Walker et al., 2019; Dieleman et al., 2020), 
permafrost degradation (Holloway et al., 2020), black carbon produc
tion (Kang et al., 2020; Ohata et al., 2021), and conversion of forests to 
grasslands (Whitman et al., 2019; Barrett et al., 2020). As such, we 
focused on the long-term changes and trends in circumboreal burned 
area and their variation among ecoregions within the circumboreal 
region.

Satellite observations can systematically map wildfires across the 
circumboreal region (Petropoulos et al., 2010; Giglio et al., 2015; Giglio 
et al., 2018), which is important because in situ mapping is infeasible 
due to the large number of fires in remote areas (Soja et al., 2006; 
Garcia-Lazaro et al., 2018). Remotely sensed burned area products such 
as the MODIS-derived monthly 500-m resolution MCD64A1v61 burned 
area product (Giglio et al., 2015) provide valuable information on cir
cumboreal burned area extent, seasonality and trends, but are only 
available since 2000 (Kurbanov et al., 2022). This short time series 
makes it difficult to detect trends in circumboreal wildfire due to the 
region’s long wildfire-return intervals (Baltzer et al., 2021; Burrell et al., 
2022) and high interannual variability in burned area (Jones et al., 
2022).

An attempt has been made to extend circumboreal burned area 
products into the pre-MODIS era using observations from the Advanced 
Very High Resolution Radiometer (AVHRR) sensor flown on the NOAA 
POES satellites (1979–2022) (Oton et al., 2019, Oton et al. 2021a). 
However, the accuracy of that AVHRR burned area dataset, termed 
FireCCILT11, has been questioned (Giglio and Roy, 2020; Giglio et al., 
2022), and it ends in 2018 due to the drift of NOAA-19’s orbit (Roger 
et al., 2023). That drift greatly changes the sensor solar zenith angle of 
observation (SZA) due to changes in sensor overpass times (Dech et al., 
2021), likely resulting in the creation of spurious burned area trends 
(Giglio and Roy, 2022). However, whether trends in the FireCCILT11 
dataset are spurious may depend on geographic and temporal extent of 
analysis (Giglio and Roy, 2022), and some studies report robust results 
(Pullabhotla et al., 2023; Descals et al., 2022) while others report 
problems (Giglio and Roy, 2023).

We opted to develop, apply, and evaluate a new burned area algo
rithm designed for AVHRR data that is based on statistical time-series 
analysis. Statistical time-series analysis is an established and effective 
tool for disturbance detection using remotely sensed datasets, with the 
LandTrendr (Kennedy et al., 2010), Continuous Change Detection and 
Classification (CCDC) (Zhu et al., 2012), and Breaks for Additive Season 
and Trend (BFAST) (Verbesselt et al., 2010) algorithms used to track 
environmental disturbance the world over (Watts and Laffan, 2014; 
Pasquarella et al., 2022; Zhu, 2017). An advantage of statistical time- 
series models is the ability to explicitly account for known sources of 
variation, such as trends in SZA, within remotely sensed time series (Ives 
et al., 2021). This makes statistical time-series analysis an effective tool 
for remotely sensed change detection (Kennedy et al., 2010; Zhu and 
Woodcock, 2014) and thus a potentially effective method for burned- 
area mapping with AVHRR data.

We used our 1983–2020 burned area maps to (a) determine the net 
changes in burning over time, and (b) test if there were statistically 
significant trends. By definition, all significant trends are also changes, 
but not all changes are significant trends. That is especially true for 
boreal forests due to their large interannual variability in burned area 
(Jain et al., 2017; Jones et al., 2022) which can mean that even fairly 
large changes, if they occur only in a few extreme years, may not 
constitute statistically significant trends. That does not mean that 
changes caused by extreme years are not real or not biologically 
important, which is why reporting changes is important. However, it is 

also important to test for the statistical significance of trends because 
significance suggests that similar increases are likely to continue in the 
future. Changes and statistically significant trends thus provide com
plementary information (Ratajczak et al., 2018).

Here, we map circumboreal burned area annually from 1983 to 2020 
and analyze changes and trends in burned area. Our objectives were to: 

1. Develop a new burned area algorithm for AVHRR data that accounts 
for known problems related to SZA and sensor differences

2. Assess the accuracy of our algorithm by testing it with MODIS data, 
and to compare our burned area maps with other datasets

3. Summarize net change in burned area between the 1980s and the 
2010s across the circumboreal region and within ecoregions

4. Test for significance of trends of annual burned area totals

2. Methods

2.1. Methodological Overview

Our burned area algorithm is based on autoregressive time-series 
analysis and accounts for both the differences in observations among 
sensors and change in solar zenith angle due to satellite drift in the 
AVHRR Long Term Data Record (LTDR) archive. We mapped a pixel as 
burned in a given year where there was a significant time-series residual, 
and both burn and greenness indices surpassed pre-defined thresholds. 
For burned pixels, we estimated subpixel burned area using models 
relating time-series residuals to subpixel burn fractions from reference 
datasets. To examine how sensor and spectral index affected algorithm 
performance, we also applied our burned area mapping algorithm to the 
5-km MODIS MOD09CMGv061 dataset and analyzed the Burned Area 
Index (Chuvieco et al., 2002), Normalized Burn Ratio (Key and Benson, 
2006), Global Environmental Monitoring Index (Pinty and Verstraete, 
1992), and Enhanced Vegetation Index (Didan, 2015) spectral indices. 
We evaluated the accuracy of our burned area algorithm by comparing it 
to the MODIS MCD64A1v61 burned area dataset, AVHRR-based Fire
CCILT11 burned area dataset, joint US Forest Service and Department of 
Interior Monitoring Trends in Burn Severity (MTBS) fire perimeters for 
Alaska, and National Research Council (NRC) fire perimeters for Can
ada. Finally, we summarized changes and tested for significant trends in 
burned area using a second autoregressive time series analysis (Sup
plement 1).

2.2. Study area

Our study area included all of the boreal forests of North America 
and Eurasia, which span 23 of the World Wildlife Fund global terrestrial 
ecoregions Olson et al., 2001. Eurasia’s boreal forests are primarily 
composed of larch (Larix gmelinii, L. cajanderi, L. sibirica) and Scots pine 
(Pinus sylvestris), which are adapted to frequent low-severity ground 
fires (Kharuk et al., 2021). North American boreal forests are mainly 
composed of Jack pine (Pinus banksiana), white spruce (Picea glauca) and 
black spruce (Picea marina), which are adapted to infrequent, high- 
severity crown fire (Wirth, 2005).

2.3. Data

2.3.1. AVHRR and MODIS satellite data
The Advanced Very High Resolution Radiometer Long Term Data 

Record provides the longest record of global, daily, multispectral sat
ellite observations (1982-Present) (Dech et al., 2021) and are available 
with atmospheric and BRDF corrections (Vermote et al., 2022). Begin
ning in 2022, the LTDR project replaced post-2013 observations made 
by NOAA-19 with those made by the European Space Agency’s MetOp-B 
satellite, extending the LTDR archive to the present day (Roger et al., 
2023; LAADS, 2022). The September 1994 failure of NOAA-11’s AVHRR 
sensor means that only a partial record of observations exists for that 
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year, so we did not report burned area for 1994. The MODIS sensors 
aboard NASA’s Terra and Aqua satellite constellation provide two de
cades (2000 – present) of daily, global, multispectral observations. The 
MOD09CMGv061 surface reflectance product and the AVHRR LTDR 
dataset have identical resolution and projections, allowing direct com
parison of resulting burned area maps

Effective cloud masking is needed for accurate burned area mapping 
(Lizundia-Loiola et al., 2020). The AVHRR LTDR and MOD09CMGv061 
each have quality assurance (QA) flags indicating cloud, water, snow, 
and invalid observations. While the MOD09CMGv061 QA bitmasks are 
of sufficient quality for burned area mapping (Giglio et al., 2015), 
additional preprocessing of the AVHRR LTDR is required (Oton et al. 
2021a), and so we implemented the cloud masking procedure outlined 
in Oton et al. (2021a) along with a NIR band threshold (Table S2).

2.3.2. Growing Season Burn Index Composites
Multispectral satellite observations can detect charcoal (Martin 

et al., 2006), enabling burned area mapping (Giglio et al., 2015, Oton 
et al. 2021a). AVHRR LTDR data can map burned area via the Burned 
Area Index (BAI) (Chuvieco et al., 2002, Oton et al. 2021a): 

BAI =
1

(0.1 − pred)
2
+ (0.06 − pNIR)

2 (1) 

where pNIR and pred are near-infrared and red surface reflectance, 
respectively.

MODIS’s additional shortwave infrared (SWIR) bands allows calcu
lating the Normalized Burn Ratio (NBR) (Key and Benson, 2006): 

NBR =
(pNIR − pSWIR)

(pNIR + pSWIR)
(2) 

where pSWIR is shortwave-infrared surface reflectance.
We mapped circumboreal burned area using annual growing-season 

BAI and NBR composites created from daily AVHRR LTDR (1982–2021) 
and MODIS MOD09CMGv061 (2000− 2021) data. The BAI has a positive 
non-linear relationship with burned area, so differencing post and pre 
burn observations identifies burned area occurrence. We created annual 
BAI composites by differencing annual 90th and 10th percentile BAI 
values to capture post and pre burn conditions. We then implemented a 
log10(x + 1) transformation on annual differenced BAI values to account 
of the BAI’s non-linear response to burning. In contrast, NBR exhibits an 
inverse relationship with burned area, and so we selected the annual 
10th percentile NBR values to highlight burned areas. We chose to use 
the annual 10th percentile daily NBR value instead of seasonally dif
ferenced daily index values because this method reduced omission er
rors in burned area mapping observed in initial tests.

2.3.3. Growing season vegetation index composites
Vegetation indices created from multispectral imagery are useful for 

assessing vegetation health and disturbance (Fensholt and Proud, 2012; 
Baumann et al., 2014; Cortes et al., 2021), and can complement burned 
area indices. The Global Environmental Monitoring Index (GEMI) (Eq. 
3) was developed to reduce the influence of atmospheric contamination 
and high solar zenith angles in AVHRR data (Pinty and Verstraete, 
1992): 

GEMI = η*(1 − 0.25*η) −
(

pred − 0.125
1 − pred

)

(3) 

η =

(
2*

(
p2

NIR − p2
red

)
+ 1.5*pNIR + 0.5*pred

)

pNIR + pred + 0.5 

Valid GEMI values range from 0 to 1 with higher values indicating 
more vegetation.

The MODIS sensor’s higher spectral resolution enables calculation of 
the Enhanced Vegetation Index (EVI) (Eq. 4) (Didan, 2015), which re
duces effects of soil brightness and saturation (Sobrino and Julien, 

2013): 

EVI = 2.5*
pNIR − pred

pNIR + 6*pred − 7.5*pblue + 1
(4) 

Where pblue is blue reflectance. Valid EVI values range from − 0.2 to 1 
with higher values representing more vegetation.

To track changes in vegetation condition caused by burning, we 
calculated daily GEMI and EVI from daily AVHRR LTDR (1982–2021) 
and MODIS MOD09CMGv061 (2000–2021) surface reflectance data, 
respectively. We then aggregated these to annual growing season 
“greenness” composites by selecting the 90th percentile greenness value 
to reduce noise (Li et al., 2019). We detected burned areas by tracking 
standardized interannual change in annual 90th percentile AVHRR 
GEMI and MODIS EVI data (see below).

The compositing method of selecting the 90th percentile greenness 
pixel value for each year leads to a potential artifact: because burning 
reduces greenness, selecting the 90th percentile greenness pixel value 
typically excludes burn signatures from the year that burning occurs. 
Due to this lagged response, we calculated annual change for year t − 1 
to year t by subtracting the value for year t + 1 from year t. However, if 
burning occurs prior to a given year’s first available observations, then 
this method of calculation would cause the burn signature to appear 
between years t – 1 and t, thus preventing burning from being detected. 
Therefore, to account for this variability in burn signature occurrence, 
we applied a moving window operation (Supplement 3) to select the 
greatest standardized decrease in 90th percentile vegetation index value 
between the intervals of t − 1 to t and t to t+ 1, and used this value for 
both intervals in the final product. Due to this moving window opera
tion, we could not map burned area for the last year (2021) of the 
AVHRR and MODIS time series used in our analysis.

2.4. Geographic standardization of datasets

The AVHRR LTDR archive is an aggregate of observations recorded 
by eight different sensors over four decades (Vermote et al., 2022). 
Changes in sensor calibration and design can cause systematic differ
ences in observations (Dech et al., 2021). Standardizing pixel values 
controls for these systematic differences (Oton et al., 2019, Oton et al. 
2021a). Therefore, we standardized all datasets by year and continental 
region (Eq. 5): 

z =
X − μ

σ (5) 

where μ and σ represent the mean and standard deviation of pixel 
values for a given year and geographic region, X represents the pixel 
value, and z represents the pixel value’s z-score. For consistency, we 
applied this procedure also to our MODIS datasets even though there 
were no changes among sensors over time.

2.5. Burned pixel detection with autoregressive time series analysis

Our burned area algorithm examines full time series of annual BAI 
and NBR index values, and decides if the residual of a given year is so 
great that it likely represents a burned area. Satellite image time series 
exhibit temporal autocorrelation (Box et al., 1994; Ives et al., 2021), and 
therefore we developed our burned area detection method based on 
autoregressive time-series analysis. Our burned area algorithm includes 
three steps: (i) fit an AR(1) linear model to our annual burn index time 
series and conduct binary detection of burned versus non-burned pixels 
using a studentized residuals test; (ii) spatially filter burned area de
tections to mitigate commission errors due to geolocation errors; and 
(iii) estimate subpixel burned area using a model relating time series 
analysis residuals to reference burned pixel fractions. Because autore
gressive models use prior observations as a predictor variable, burned 
area cannot be mapped for the first year of either the AVHRR (1982) or 
MODIS (2000) archives.
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The orbital drift of the NOAA POES satellites that carried the AVHRR 
sensors requires accounting for the influence of changing solar zenith 
angle of observation (SZA) on BAI. To our knowledge, no relationship 
between BAI and SZA has been published. However, because the BAI 
measures the similarity of red and near-infrared (NIR) observations to 
the spectral signature of charcoal (a dark surface), progressive dark
ening of these bands by increasing SZA increases BAI values. To correct 
for SZA, we selected a 3rd order polynomial model (Eq. 6) based on an 
initial analysis and model rankings by the Bayesian Information Criteria 
(BIC) (Fig. 1). Thus, our pixel-based polynomial AR(1) temporal autor
egressive model accounts for (a) temporal autocorrelation, (b) solar 
zenith angle, (c) time trends in annualized burn index time series which 
may occur due wildfire effects (Chuvieco et al., 2002), and (d) sensor- 
based differences in observations by standardizing inputs: 

yt = β0 + β1(yt− 1)+ β2(ct)+ β3(SZAt)+ β4
(
SZA2

t
)
+ β5

(
SZA3

t
)
+ ϵt

(6) 

where yt represents the burn index value at time t, β0 the fitted intercept, 
β1 the AR(1) autoregressive correlation between current and prior year’s 
burn index values, β2 the fitted burn index time trend, ct the current year 
t, β3, β4, and β5 the coefficients for the 3rd-order polynomial relation
ship between current burn index value and solar zenith angle, SZAt the 
solar zenith angle of the observation corresponding to the 90th 
percentile burn index values, and ϵt ∼ N

(
0,σ2) random error. We did 

not include SZA in our MODIS burned area detection algorthm because 
MODIS is not afflicted by substantial orbital drift (Chander et al., 2010).

We created annual binary burned area maps by applying a studen
tized residuals test to the fitted burn index (e.g. BAI, NBR) time-series 
models. Specifically, pixels were classified as burned if (a) their burn 
index time-series residual was significant (α = 0.1), and (b) they 
exceeded a 1/3rd pixel burn threshold in standardized burn index, 
standardized Δ burn index, and standardized Δ in vegetative index (e.g. 
GEMI, EVI) values (Fig. 2). We defined these 1/3rd pixel burn thresholds 
by extracting each index value to its corresponding reference pixel burn 
fraction value, excluding pixels where no burning occurred. We then 
aggregated these extracted index values into burn fraction quartiles and 
averaged each index’s values within the 0.25–0.5 burn fraction quartile. 
We selected this conservative threshold to reduce false detections of 
burned areas. Additionally, by requiring burning to have a persistent 
effect on greenness for multiple years, we reduced the likelihood of 
commission errors due to ephemeral changes such as cloud shadow, 
observation error, or short-term flooding (Liu et al., 2023). We selected 
different pixel burn thresholds for AVHRR and MODIS datasets, and also 
for North American and Eurasian continental regions, to account for 
sensor differences and regional geographic standardization of datasets.

2.6. Spatial Filtering

Georegistration errors of approximately one pixel are common in 
AVHRR LTDR data (Key et al., 2019a), causing errors especially in pixels 
adjacent to waterbodies and other dark surfaces (White et al., 2018). To 
reduce commission errors in our burned area data caused by georegis
tration errors, we excluded binary burned pixel detections which did not 
have additional burned pixel detection within a 3 × 3 pixel window. 
Additionally, we removed burned pixel detections that contained water 
bodies within a 3 × 3 pixel window as indicated by the QA mask.

2.7. Subpixel burned area estimation

The coarse spatial resolution of AVHRR LTDR observations means 
many pixels are only partially burned (Oton et al., 2019), which is why 
we estimated subpixel burned area. We accomplished this by estimating 
subpixel burned area based on the magnitude of time-series residuals. 
We created subpixel burned area models by aggregating reference pixel 
burn fraction datasets into 5 % bins and regressing bin centers against 
corresponding averaged burn index time-series residuals (Fig. 3). The 
subsampling method used to create AVHRR LTDR observations (Franch 
et al., 2017) means that subpixel burning may only be partially detected 
(Giglio and Roy, 2020). As such, we selected for burned area signatures 
within time-series residuals by using only the top 50 % of positive re
siduals in each 5 % bin for BAI time series, and bottom 50 % of negative 
residuals for NBR time series. We then predicted subpixel burned area 
for both pixels flagged as burned and pixels within their surrounding 3 
× 3 pixel window to capture partially burned pixels along fire perime
ters. We estimated subpixel burned area in the same way for both 
AVHRR and MODIS data, but parameterized separate models for each 
continent and dataset.

2.8. Reference burned area datasets and burned area dataset validation

The combined MTBS and NRC Landsat-based burned area archive 
(MTBS, 2022; NRC, 2024) provide multidecadal (1984–2020) medium- 
resolution maps of burned area for North American boreal forests. No 
equivalent Landsat-based dataset exists for Eurasia, but the 500-m 
MODIS-based burned area data (MCD64A1v61, 2001–2020) (Giglio 
et al., 2015) is available in both continents. Accordingly, we validated 
our 5-km resolution AVHRR and MODIS burned area data with the 30-m 
Landsat burned area data for North American boreal forests, and the 
500-m MODIS burned area data for both North America and Eurasia. 
The coarser resolution of MODIS data means that the MCD64A1v61 
exhibits greater burned area mapping errors than Landsat-derived 
datasets (Boschetti et al., 2004; Boschetti et al., 2019). To evaluate the 

Fig. 1. Trends in solar zenith angle of observation over the lifetime of each NOAA POES and ESA MetOp satellite used to collected AVHRR data (A). Progressive 
orbital drift of each satellite results in increasing average solar zenith angle of observation, which can positively bias burned area index values (B). The positive 
relationship between solar zenith angle of observation and burned area index can be approximated using a third order polynomial relationship between standardized 
log10 (90th – 10th percentile) burned area index and the 90th percentile burned area index solar zenith angle of observation.
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effects of the MCD64A1v61 mapping errors on the validation of our 
burned area datasets, we compared validation metrics found with 
MTBS/NRC and MCD64A1v61 datasets for those years where both were 
available (North America, 2001–2020). We resampled those data to 
annual 5-km resolution pixel burn fractions (0–100 %) to match 
AVHRR’s resolution.

We validated our AVHRR and MODIS burned area datasets using four 
metrics: (a) burned pixel detection rate, (b) User’s and Producer’s ac
curacies (c) subpixel burn fraction estimate versus reference burned area 
data, and (d) annual mapped burned area Pearson’s correlation with 
reference annual burned area datasets. We determined the burned pixel 
detection rate by reclassifying reference pixel burn fraction datasets into 
five classes: Unburned, 1–25 %, 26–50 %, 51–75 %, and 76–100 % 
Burned. We then converted our subpixel burned area dataset to a binary 
burned area mask and calculated detection rates for each class and 
burned area dataset. We also used these binary burned area masks to 
calculate User’s and Producer’s accuracies relative to reference burned 
area datasets, and implemented corresponding area estimate corrections 
based on these metrics (Olofsson et al., 2014). Specifically, we imple
mented area estimate corrections for our North American and Eurasian 
burned area datasets based on User’s and Producer’s accuracies relative 
to the Landsat-based MTBS/NRC (1984–2020) and MCD64A1v61 
(2001–2020) datasets respectively, because they are the best validated 
datasets for each region.

We evaluated subpixel burn fraction estimate accuracy by aggre
gating reference pixel burn fraction datasets into 5 % bins and extracting 
corresponding subpixel burn fraction estimates from each of our burned 
area dataset. We then averaged each dataset’s subpixel burned area 
estimates within each bin. We used the resulting curves to estimate 
subpixel burn fraction accuracy by calculating each curve’s mean ab
solute percent error (MAPE) with reference burned area fraction. 
Finally, we used Pearson’s correlation to quantify agreement in trends of 
total mapped annual burned area for each continental region compared 
to Landsat-based MTBS/NRC and MCD64A1v61 reference burned area 
datasets.

2.9. Analysis of net decadal change in burned area

A topic of major interest in climate science is whether climate change 
is increasing circumboreal burning (Reich et al., 2022; Gauthier et al., 
2015; Astrup et al., 2018). However, due to high interannual variability 
in wildfire activity, substantial absolute changes in burned area can 
occur even when there is no statistically significant trend. To quantify 
the net change in burned area for each time series, we summed the total 
burned area for the first ten years of our data (1983–1992, hereafter the 
1980s) and for the last ten years (2011–2020, the 2010s) and calculated 
the resulting change both in percentage points (i.e., how much more or 
less area of a given ecoregion burned) and as a percent change (akin to a 
growth rate).

2.10. Analysis of significant trends in burned area

After mapping burned area for each year using both AVHRR and 
MODIS data, we examined if there were trends in total burned area in (a) 
the total boreal biome in each of the two continents, and (b) each boreal 
ecoregion. We chose to test for ecoregion-scale burned area trends to 
both aid with comparison between our burned area datasets and refer
ence burned area datasets, and to enable comparison of our observed 
burned area trends with previously published regional studies. For this 
second trend analysis, we parameterized different models for biome 
scale and ecoregion scale analyses. To test for biome-scale trends in 
annual burned area, we parameterized a second order (AR(2)) Phylo
genetic Generalized Linear Mixed Model (PGLMM) (Ives and Helmus, 
2011; Bosch and Ives, 2023) which treats ecoregion of wildfire occur
rence as a random effect while also incorporating their geographic 
correlations in place of phylogenetic correlations (Eq. 7). We used the 
PGLMM for biome-scale analyses because it both incorporates 
ecoregion-scale information on and accounts for spatial correlation in 
location of burning, thus retaining greater information on burned area 
change than an analysis of regional summaries (Ives and Helmus, 2011, 
Bosch and Ives, 2023).

In addition to affecting our burn indices directly, an increasing SZA is 
also related to a progressive loss of sensitivity to burning exhibited by 
the AVHRR sensor over its operational lifetime (Giglio and Roy, 2020). 

Fig. 2. Burned area mapping procedure (A-F) demonstrated for an example 2010 North American burned pixel mapped using AVHRR LTDR (G, purple outline) and 
MODIS CMG (H, purple outline) daily observations. Extracted time series of AVHRR (A) and MODIS (B) daily spectral indices demonstrate the response of each index 
to burning the year of wildfire occurrence. These daily AVHRR (C) and MODIS (D) spectral indices are then annualized to highlight the occurrence of burning, 
enabling burned area detection. These composites are then standardized by year and continental region to account for sensor-based interannual biases and used for 
autoregressive time series analysis (E). Finally, the resulting time series analysis residuals (F) are used for both burned area detection and subpixel burn fraction 
estimation, resulting in AVHRR (G) and MODIS (H) based burned area fraction maps. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 3. Relationship between time series analysis residuals and subpixel burned area fraction corresponding to each geographic region, sensor, and burn index used 
in analysis (A) used to create models used for subpixel burned area estimation (B). The absolute value of NBR time series analysis residuals is displayed for direct 
comparison between models.
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This is because average SZA of observation increases with satellite age 
(Dech et al., 2021), which is correlated to reduced sensor performance 
due to progressive mechanical degradation. That is why we included the 
SZA of 90th percentile BAI observation averaged by geographic region 
of analysis as a model covariate in both our biome and ecoregion scale 
models. 

BAi,t = β0 + β1
(
BAi,t− 1

)
+ β2

(
BAi,t− 2

)
+ β3

(
SZAi,t

)
+ β4(ct)+ ηi + ϵi,t

(7) 

where BAt represents total burned area in ecoregion i in year t, β0 the 
fitted intercept, β1 the AR(1) autoregressive correlation between years t 
and t − 1 annual burned area, β2 the AR(2) autoregressive correlation 
between years t and t − 2 annual burned area, β3 the relationship be
tween current year t burned area and solar zenith angle of observation, 
SZAt the solar zenith angle of observation for 90th percentile BAI values 
for year t averaged by geographic region of analysis, β4 the fitted annual 
burned area time trend, ct the current year t, ηi represents the random 
effect of ecoregion i which follows a multivariate normal distribution 
N
(
0,Vgeo + G

)
where Vgeo represents the spatial covariance matrix be

tween ecoregions and G represents the random effects covariance ma
trix, and ϵi,t ∼ N(0,σ2) represents random error.

For ecoregion-scale analyses, we parameterized a second order (AR 
(2)) linear model (Eq. 8). We selected second order autoregressive 
models for both biome and ecoregion scale analyses to account for the 
influence of temporal autocorrelation and cyclic atmospheric processes 
such as the Arctic Oscillation and Pacific-North American pattern on 
burned area (Justino et al., 2022; Bonsal et al., 2017). Boreal forests 
experience intermittent years of high wildfire activity (Coops et al., 
2018), that may appear as outliers in burned area time series, necessi
tating that annual burned area is normalized (Grillakis et al., 2022). 
Accordingly, we applied a log10(x + 1) transformation to annual burned 
area datasets prior to time-series analyses. 

BAt = β0 + β1(BAt− 1)+ β2(BAt− 2)+ β3(SZAt)+ β4(ct)+ ϵt (8) 

where BAt represents total burned area in a given ecoregion in year t, 
β0 the fitted intercept, β1 the AR(1) autoregressive correlation between 
years t and t − 1 annual burned area, β2 the AR(2) autoregressive cor
relation between years t and t − 2 annual burned area, β3 the relation
ship between current year t burned area and solar zenith angle of 
observation, SZAt the solar zenith angle of observation for 90th 
percentile BAI values for year t averaged by geographic region of 
analysis, β4 the fitted annual burned area time trend, ct the current year 

t, and ϵt ∼ N(0,σ2) random error.

3. Results

3.1. Burned area mapping algorithm performance

Our burned area mapping algorithm worked well, with both our 
AVHRR and MODIS-based burned area datasets showing high burned 
pixel detection rate, Pearson’s correlation, subpixel burned area accu
racy, and satisfactory User’s and Producer’s accuracies when compared 
with reference burned area datasets (Table 1, Supplement 4). While in 
all cases our MODIS-based burned area datasets exhibited higher 
agreement with reference burned area datasets than our AVHRR-based 
ones, this is to be expected given the spatial and spectral limitations of 
AVHRR data (Giglio and Roy, 2020). Within North American boreal 
forests, our AVHRR-based burned area dataset detected 73 % of heavily 
burned pixels (>75 % burned), achieved User’s and Producer’s accu
racies of 42.5 % and 54.2 %, and exhibited a Pearson’s correlation of 
0.85 with the 36-year MTBS/NRC archive. Agreement between our 
AVHRR-based burned area dataset and the MCD64A1v61 archive was 
similarly high (71.1 %, User’s Accuracy = 37.4 %, Producer’s Accuracy 
= 55.5 %, cor. = 0.75), and increased for our MODIS-based BAI (83 %, 
User’s Accuracy = 66.1 %, Producer’s Accuracy = 66.2 %, cor. = 0.84) 
and NBR burned area datasets (91.6 %, User’s Accuracy = 61.0 %, 
Producer’s Accuracy = 76.1 %, cor. = 0.94). Within Eurasian boreal 
forests, our AVHRR-based burned area dataset detected 51.1 % of 
heavily burned pixels, achieved User’s and Producer’s accuracies of 
44.9 % and 33.6 %, and exhibited a Pearson’s correlation of 0.77 with 
the MCD64A1v61 archive. As with our North American burned area 
datasets, agreement increased for our MODIS-based BAI (62.3 %, User’s 
Accuracy = 66.0 %, Producer’s Accuracy = 42.1 %, cor. = 0.77) and 
NBR burned area datasets (58.9 %, User’s Accuracy = 57.3 %, Pro
ducer’s Accuracy = 38.7 %, cor. = 0.78). These results show that while 
the AVHRR-based BAI datasets are suitable for burned area mapping 
using our algorithm, MODIS-based BAI and NBR datasets generally 
perform better, which is to be expected (Guo et al., 2024; Giglio and Roy, 
2020).

Comparison of North American boreal forests burned pixel detection 
rates calculated using MTBS/NRC and MCD64A1v61 validation datasets 
for overlapping years (2001–2020) highlights the impact of 
MCD64A1v61 mapping errors (Boschetti et al., 2019) on the validation 
of our burned area datasets. While the difference between MTBS/NRC 

Table 1 
Burned area dataset accuracy assessment metrics representing burned pixel detection rate by subpixel burn fraction quantile (1–100 %), BA ratio (ratio of average 
annual mapped burned area to average annual reference burned area), Pearson’s correlation between total annual mapped burned area and reference burned area 
datasets, and Producer and User accuracies for Eurasian and North American continental regions.

Dataset Region 1–25 % 26–50 % 51–75 % 76–100 % Reference Dataset BA Ratio Pearson Correlation Producer’s Accuracy User’s Accuracy

AVHRR BAI N.A. 11.0 29.4 51.3 73.0 MTBS/NRC 
(1984–2020)

0.66 0.85 54.2 % 42.5 %

AVHRR BAI N.A. 10.5 28.6 49.5 72.0 MTBS/NRC 
(2001–2020)

0.64 0.72 54.3 % 42.3 %

MODIS BAI N.A. 13.0 39.3 65.0 81.1 MTBS/NRC 
(2001–2020)

0.67 0.87 65.1 % 75.5 %

MODIS NBR N.A. 14.4 49.6 79.2 92.0 MTBS/NRC 
(2001–2020)

0.63 0.92 76.2 % 68.9 %

AVHRR BAI N.A. 18.7 38 52.5 71.1 MCD64A1v61 
(2001–2020)

0.79 0.75 55.5 % 37.4 %

MODIS BAI N.A. 23.4 48.9 66.1 83 MCD64A1v61 
(2001–2020)

0.83 0.84 66.2 % 66.1 %

MODIS NBR N.A. 28.8 58.6 78.5 91.6 MCD64A1v61 
(2001–2020)

0.78 0.94 76.1 % 61.0 %

AVHRR BAI Eurasia 7.6 17.8 28.8 51 MCD64A1v61 
(2001–2020)

0.85 0.77 33.6 % 44.9 %

MODIS BAI Eurasia 8.4 23.1 38.4 62.3 MCD64A1v61 
(2001–2020)

0.80 0.77 42.1 % 66.0 %

MODIS NBR Eurasia 8.4 20.5 33.4 58.9 MCD64A1v61 
(2001–2020)

0.76 0.78 38.7 % 57.3 %
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and MCD64A1v61derived burned pixel detection rates was between − 3 
% to 1 % for moderately (51–75 %) and heavily (76–100 %) burned 
pixels, MTBS/NRC had 9–14 % fewer lightly burned (1–25 %, 26–50 %) 
pixels than the MCD64A1v61. This suggests that the MCD64A1v61 is 
omitting smaller fires and therefore positively biasing MCD64A1v61- 
based validation of our burned area datasets in both North American 
and Eurasian boreal forests.

Estimating subpixel burn fraction with AVHRR LTDR data is chal
lenging due to the subsampling method used to create AVHRR LTDR 
observations which results in only 33 % of a pixel being observed 
(Vermote et al., 2022; Dech et al., 2021). Given this limitation, our 
AVHRR-based burned area datasets estimated subpixel burned area 
effectively, with our North American burned area dataset exhibiting a 
mean absolute percent error (MAPE) of 68.91 % with the 36-year MTBS/ 
NRC burned area reference dataset. MAPE was greater (90.65 %) when 
compared to the MCD64A1v61 archive and decreased for our MODIS- 
based BAI (56.68 %) and NBR (57.79 %) burned area datasets. Within 
Eurasian boreal forests, our AVHRR-based burned area dataset exhibited 
a MAPE of 122.45 % with the MCD64A1v61 archive which likewise 
decreased for our MODIS-based BAI (79.67 %) and NBR (68.6 %) burned 
area datasets. These results show that while our method of estimating 
subpixel burned area does so effectively and that our AVHRR-based 
burned area datasets provide valuable information on subpixel burned 
area, our MODIS-based burned area datasets generally do so more 
accurately, which is to be expected.

3.2. Influence of solar zenith angle of observation on AVHRR burned area 
datasets

Increasing solar zenith angle of observation caused by the drifting 
orbits of the NOAA POES satellites can result in burned area mapping 
artifacts (Giglio and Roy, 2022), which makes it important to check for 
these artifacts (Giglio and Roy, 2020). Within North American boreal 
forests, MTBS/NRC derived annual (1984–2020) heavily burned (>75 % 
burned) pixel detection rate exhibited a mildly significant (p = 0.07) 
negative relationship with averaged annual SZA of 90th percentile BAI 
observations, meaning that heavily burned pixels were less likely to be 
detected during high SZA-years. However, we observed no relationship 
within North American or Eurasian boreal forests when compared to 
MCD64A1v61 (2001–2020) derived reference products (Supplement 5). 
Inclusion of the polynomial relationship between SZA and 90th 

percentile BAI observation as covariates in BAI time series analysis 
reduced overclassification of burned area. This in turn increased Pear
son’s correlation between our North American AVHRR burned area 
dataset and the MTBS/NRC reference datasets by from 0.81 to 0.85 for 
the full time series (1984–2020), and from 0.87 to 0.93 for the pre- 
MODIS era (1984–2000) when high-SZA observations are more com
mon (Dech et al., 2021). A corresponding analysis for Eurasia was un
fortunately not possible due to the absence of pre-2000 reference 
datasets.

In additional tests we found that datasets excluding SZA as time se
ries model covariates mapped a greater amount of burned area during 
high-SZA years (Supplement 5). Correspondingly, the magnitude of 
difference in mapped burned area was positively correlated with aver
aged SZA of the 90th percentile BAI observation for both North Amer
ican (r = 0.46, p < 0.01) and Eurasian (r = 0.59, p < 0.01) burned area 
datasets. Finally, we found no significant relationship between average 
estimated AVHRR subpixel burned fraction and SZA of the 90th 
percentile BAI observation (Supplement 5).

3.3. Net change in burned area between the 1980s and 2010s

Based on our AVHRR datasets we mapped an average of 2.76 and 
5.68 Mha⋅yr− 1 of burned area for the full time series (1983–2020) within 
North American and Eurasian boreal forests, respectively (Figs. 4, 5). For 
the MODIS era alone, we mapped based on our AVHRR, MODIS BAI, and 
MODIS NBR datasets averages of 3.02, 3.10, 2.91 and 6.68, 6.27, and 
5.97 Mha⋅yr− 1 of burned area within North American and Eurasian 
boreal forests, respectively (Fig. 6). Wildfire burned 5.37 % of the cir
cumboreal biome during the 1980s and 8.22 % during the 2010s, a 
percentage point increase of 2.85 % that corresponds to a proportional 
increase of 0.53, and represents 0.48 and 0.54 increases within North 
America and Eurasia, respectively (Table 2). Across circumboreal 
ecoregions, 18 ecoregions experienced a net increase and five experi
enced a net decrease in burned area over this timespan (Figs. 7). 
Furthermore, burning doubled within three ecoregions (Canadian Aspen 
Forests and Parkland Forests, Northern Cordillera Forests, Eastern Ca
nadian Forests), tripled within three ecoregions (Yukon Interior Dry 
Forests, Northeast Siberian Taiga, Northern Canadian Shield Taiga), and 
quadrupled within one ecoregion (Muskwa Slave Lake Forests) in the 
2010s compared to the 1980s (Table 2, Fig. 8). Finally, of the five 
ecoregions which experienced the greatest increases in burning in the 

Fig. 4. Pixel burn year (1983–2020) mapped by our AVHRR burned area dataset for North American boreal region. The majority of mapped burned area is present 
within central and western North American boreal forests.

C.W. Stephens et al.                                                                                                                                                                                                                            Remote Sensing of Environment 325 (2025) 114789 

8 



2010s relative to the 1980s, four were located in North America and one 
in Eurasia.

3.4. Burned Area Trends

Across our 20 and 37-year AVHRR burned area datasets, respec
tively, we found a significant (p = 0.09) decreasing trend of − 0.59 % 
yr− 1 and suggested (p = 0.12) increasing trend of 0.24 %yr− 1 in burned 
area across the North American boreal region (Table 3). Preliminary 
analyses also found a decreasing second-order trend (p < 0.01) across 
our 37-year AVHRR burned area dataset, which ends in 2020. We found 

the same second-order trend when analyzing the NRC annual burned 
area summaries (NRC, 2024) for the same 37 years as the AVHRR 
dataset. However, that second-order trend was no longer significant (p 
> 0.1) when analyzing NRC data up to 2023 that included the major fire 
year of 2023, which is why we did not investigate non-linear trends any 
further. These results align with those found across our 20-year MODIS- 
based BAI and NBR burned area datasets which showed non-significant 
decreases of − 0.02 %yr− 1 and -0.05 %yr− 1 respectively. Within the 
Eurasian boreal region, we found a non-significant (p = 0.72) decrease 
of − 0.39 %yr− 1 and significant (p = 0.10) increasing trend of 0.56 % 
yr− 1 in burned area across the same 20 and 36-year timespans 

Fig. 5. Pixel burn year (1983–2020) mapped by our AVHRR burned area dataset Eurasian boreal region. The majority of mapped burned area is present within East 
Eurasian boreal forests.

Fig. 6. Time series of annual AVHRR, MODIS, and reference burned area datasets for North American (A) and four east Siberian ecoregions (East Siberian Taiga, 
Northeast Siberian Taiga, Trans-Baikal Conifer Forests, and Okhotsk-Manchurian Taiga) comprising 90 % of burned area mapped in the MCD64A1v61 (2001–2020) 
reference dataset (B). Both time series exhibit high interannual variability in mapped annual burned area characteristic of boreal wildfire regimes.
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respectively. Conversely however, this non-significant decrease in 
burned area across our 20-year AVHRR dataset did not agree with the 
non-significant (p > 0.3) increases in burned area of 1.13 %yr− 1 and 
1.14 %yr− 1 found across our MODIS-based BAI, NBR burned area 
datasets respectively.

Among circumboreal ecoregions, we found that annual burned area 
significantly increased by 0.17 %yr− 1 (p = 0.02), 0.13 %yr− 1 (p = 0.04), 
0.12 %yr− 1 (p = 0.09), 1.07 %yr− 1 (p = 0.07), 0.44 %yr− 1 (p = 0.1), and 
0.78 %yr− 1 (p = 0.05) within the Canadian Aspen Forests and Parklands, 
Northern Cordillera Forests, Alberta British Columbia Foothills, Interior 
Alaska Lowland Taiga, Mid Continental Canadian Forests, and Northern 
Cordillera Forests ecoregions, respectively across our 37-year AVHRR 
burned area dataset (Fig. 9, Supplement 6). Additionally, annual burned 
area was suggested (p = 0.13) to have increased by 1.37 %yr− 1 within 
the Northeast Siberian Taiga ecoregion over the same interval. Finally, 
we found annual burned area to have significantly (p = 0.06) decreased 
by 0.56 %yr− 1 within the Eastern Canadian Shield Taiga ecoregion.

Comparison of ecoregion-level trends observed across our 20-year 
AVHRR, MODIS-based BAI and NBR datasets found good agreement. 
Across our 20-year AVHRR burned area dataset we found a significant 
(α = 0.1) increasing trend of 0.29 %yr− 1 within the Alberta British 
Columbia Foothills ecoregion that was also present within our MODIS 
BAI (0.15 %yr− 1) and NBR (0.28 %yr− 1) based burned area datasets. 
Additionally, we found a significant increasing trend of 0.34 %yr− 1 

within the Canadian Aspen Forests and Parkland Forests ecoregion 
across our 20-year AVHRR dataset that as omitted in our MODIS-BAI 
dataset (0.16 %yr− 1, p = 0.34) but present within our MODIS-NBR 
dataset (0.38 %yr− 1, p = 0.03). We found a significant decreasing 
trend in burned area within the Scandinavian and Russian Taiga ecor
egion across our 20-year AVHRR dataset (− 2.76 %yr− 1) that was also 
present in both our MODIS-BAI (− 0.49 %yr− 1) and MODIS-NBR (− 0.29 
%yr− 1) datasets. Finally, we found a significant increasing trend in 
burned area within the Eastern Siberian Taiga ecoregion of 4.31 %yr− 1 

and 5.71 %yr− 1 across our MODIS-BAI and MODIS-NBR datasets that 
was not present within our 20-year AVHRR dataset (3.70 %yr− 1, p =
0.29). This overall agreement in trends observed across our 20-year 
AVHRR and MODIS-based burned area datasets suggests that our 
AVHRR-based area burned area dataset, while constrained by the limi
tations of AVHRR data (Giglio and Roy, 2020), is consistent with those 
produced using better-validated sensors (MODIS) and provides useful 
information on burned area trends.

Comparison of ecoregion-scale burned area trends observed across 
our 20-year and 37-year burned area datasets yielded interesting results. 
Of the seven boreal ecoregions which experienced significant (α = 0.1) 
(Alberta British Columbia Foothills, Canadian Aspen Forests and Park
lands Forests, Interior Alaska Yukon Lowland Taiga, Mid Continental 
Canadian Forests, Northern Canadian Shield Taiga, Northern Cordillera 
Forests) or suggested (Northeast Siberian Taiga, p = 0.13) increasing 
trends in burned area over our 37-year AVHRR burned area dataset, only 
one (Alberta British Columbia Foothills) was also present in our 20-year 
AVHRR, MODIS-BAI, and MODIS-NBR dataset. This discrepancy high
lights the challenge that high interannual variability in boreal burning 
poses to testing for significant trends with shorter-term (20 year) time 
series, and why developing multidecadal datasets is necessary.

While not all net changes in burning between the 1980s and 2010s 
resulted in significant (α = 0.1) trends, in no case did an ecoregion 
experience a significant trend in annual burned area that opposed its net 
change in burned area (Tables 2, 3). Of the five ecoregions that expe
rienced the greatest net change in burned area from the 1980s to the 
2010s, three (Northeastern Siberian Taiga, Northern Canadian Shield 
Taiga, and Canadian Aspen Forests and Parkland Forests) also experi
enced significant increasing trends in annual burned area. Of those 
ecoregions that experienced a negative net change in burned area from 
the 1980s to the 2010s, only one (Eastern Canadian Shield Taiga) also 
experienced a significant decreasing trend in annual burned area. Across 
the circumboreal region, the Northeast Siberian Taiga ecoregion 

Table 2 
AVHRR-based (1983–2020) circumboreal ecoregion level net change in annual 
burned area (BA).

Ecoregion 1983–1992 
Total BA

2011–2020 
Total BA

Percentage 
Point 
Change

Proportional 
Increase

(% 
Ecoregion)

(% 
Ecoregion)

(% 
Ecoregion)

(ΔBA / 
1983–1992 
BA)

Alaska St Elias 
Range Tundra

2.81 1.36 − 1.45 − 0.52

Alberta British 
Columbia 
Foothills

2.15 3.23 1.08 0.50

Canadian Aspen 
Forests and 
Parklands 
Forests

2.52 5.96 3.44 1.37

Central 
Canadian 
Shield Forests

2.97 5.31 2.34 0.79

Eastern 
Canadian 
Forests

0.89 2.63 1.74 1.96

Eastern 
Canadian 
Shield Taiga

9.13 3.37 − 5.76 − 0.63

Interior Alaska 
Yukon 
Lowland 
Taiga

4.91 6.24 1.33 0.27

Interior Yukon 
Alaska Alpine 
Tundra

1.92 2.01 0.09 0.05

Mid Continental 
Canadian 
Forests

3.67 6.43 2.76 0.75

Midwestern 
Canadian 
Shield Forests

6.28 6.17 − 0.11 − 0.02

Muskwa Slave 
Lake Forests

1.88 8.33 6.45 3.43

Northern 
Canadian 
Shield Taiga

2.58 9.04 6.46 2.50

Northern 
Cordillera 
Forests

0.95 2.28 1.33 1.40

Northwest 
Territories 
Taiga

4.60 8.25 3.65 0.79

Southern 
Hudson Bay 
Taiga

1.49 2.08 0.59 0.40

Yukon Interior 
Dry Forests

1.29 4.23 2.94 2.28

East Siberian 
Taiga

9.76 13.92 4.16 0.43

Northeast 
Siberian Taiga

7.04 23.35 16.31 2.32

Okhotsk 
Manchu Taiga

3.72 6.41 2.69 0.72

Scandinavian 
and Russian 
Taiga

2.25 1.21 − 1.04 − 0.46

Trans Baikal 
Conifer 
Forests

8.76 11.44 2.68 0.31

Ural Montane 
Forests and 
Tundra

0.94 1.73 0.79 0.84

Western 
Siberian Taiga

4.36 3.92 − 0.44 − 0.10

North American 
Boreal Region

3.51 5.20 1.69 0.48

Eurasian Boreal 
Region

6.41 9.90 3.49 0.54

Circumboreal 
Region

5.37 8.22 2.85 0.53
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experienced both the greatest increasing trend and third greatest change 
in annual burned area between the 1980s and 2010s (1.37 %yr− 1, p =
0.13 and 231.6 % net change), while the Eastern Canadian Shield Taiga 
experienced the greatest decreasing trend and change in annual burned 
area (− 0.56 %yr− 1, p = 0.06 and − 63.1 % net change).

3.5. Comparison of Burned Area Trends with MTBS, NRC, 
MCD64A1v61, and FireCCILT11 Burned Area Time Series

Comparison of our AVHRR and MODIS-based burned area datasets 
with reference burned area datasets showed general agreement in 
observed trends at the continental scale (Table 3). Across North Amer
ican boreal forests, we found non-significant increases in burned area of 
0.19 %yr− 1 (p = 0.24) and 0.15 %yr− 1 (p = 0.37) across our 37-year 
AVHRR dataset and the 36-year MTBS/NRC reference dataset when 
only overlapping years of observation were examined (1984–2020, no 
1994). Comparison of our 20-year AVHRR, MODIS-BAI, and MODIS- 
NBR burned area datasets with the 20-year MTBS/NRC and 
MCD64A1v61 reference burned area dataset found similar results. 
Whereas our 20-year AVHRR dataset showing a significant (p = 0.09) 
decreasing trend of − 0.59 %yr− 1, the MODIS-BAI, MODIS-NBR, 
MCD64A1v61, and 20-year MTBS/NRC datasets showed non-significant 
decreases in burning of − 0.02 %yr− 1, − 0.05 %yr− 1, − 0.35 %yr− 1, and 
− 0.31 %yr− 1 respectively. For Eurasia, we found that burned area 

significantly increased by 0.56 %yr− 1 (p = 0.09) across our 37-year 
AVHRR dataset. In contrast, we found a non-significant decrease in 
burned area of − 0.39 %yr− 1 across our 20-year AVHRR dataset, and 
non-significant increases in burning of 1.31 %yr− 1, 1.14 %yr− 1, and 
0.17 %yr− 1 across our MODIS BAI, NBR, and the MCD64A1v61 burned 
area datasets respectively.

We also found general agreement in burned area trends observed 
among North American boreal ecoregions between our 37-year AVHRR 
dataset and the 36-year MTBS/NRC reference burned area dataset when 
evaluated over shared years of observation. Burned area significantly (α 
= 0.1) increased across our 37-year AVHRR dataset within the Northern 
Cordillera Forests (0.15 %yr− 1), Northern Canadian Shield Taiga (0.70 
%yr− 1), Interior Alaska Yukon Lowland Taiga (0.97 %yr− 1), and Cana
dian Aspen Forests and Parkland Forests (0.17 %yr− 1) ecoregions. 
Likewise, burned area also significantly increased by 0.39 %yr− 1 within 
the Northern Cordillera Forests ecoregion, and was suggested to have 
increased in the Northern Canadian Shield Taiga (0.74 %yr− 1, p = 0.13), 
Interior Alaska Yukon Lowland Taiga (0.89 %yr− 1, p = 0.17), and Ca
nadian Aspen Forests and Parkland Forests (0.17 %yr− 1, p = 0.16) 
ecoregions across the MTBS/NRC reference dataset over this timespan. 
Finally, we found that burned area significantly decreased within the 
Eastern Canadian Shield Taiga ecoregion by (0.17 %yr− 1, p = 0.03) 
across our 37-year AVHRR dataset and was suggested to have (− 0.58 % 
yr− 1, p = 0.11) across the 36-year MTBS/NRC reference dataset. The 

Fig. 7. Net difference in total North American (A) and Eurasian (B) ecoregion level boreal forest burned area occurring between the years of 1983–1992 and 
2011–2020 expressed as a percentage point change in ecoregion area. Thirteen North American and five Eurasian boreal ecoregions experienced a greater amount of 
burning between 2011 and 2020 than they did between 1983 and 1992. Overall, 1.69 % and 3.49 % more of boreal forests burned within North America and Eurasia 
between 2011 and 2020 than between 1983 and 1992.
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omission of 1994, the third largest fire year within the MTBS/NRC 
reference dataset (1984–2020), due to the AVHRR data gap (Dech et al., 
2021) may bias analyses (Oton et al., 2021b). To evaluate whether this 
data gap influenced results, we compared trends in the MTBS/NRC 
reference dataset when including and excluding 1994. We found no 
change in the significance of observed trends in any ecoregion or the 
continent (Table 3, Table S7).

We found similar agreement between our burned area datasets and 
reference burned area products within Eurasian boreal ecoregions. The 
significant (α = 0.1) increase in burned area observed within the East 
Siberian Taiga ecoregion across our MODIS BAI (4.31 %yr− 1, p = 0.08) 
and NBR (5.71 %yr− 1, p = 0.03) time series was also present in the 
MCD64A1v61 (4.59 %yr− 1, p = 0.03) time series, though not significant 
across our 20-year AVHRR time series (3.70 %yr− 1, p = 0.29). Finally, 
the significant decrease in annual burned area within the Scandinavian 
and Russian Taiga ecoregion observed across our 20-year AVHRR 
(− 2.76 %yr− 1, p = 0.04), MODIS BAI (− 0.49 %yr− 1, p = 0.01) and NBR 
(− 0.29 %yr− 1, p = 0.07) time series was also present in the 
MCD64A1v61 (− 1.30 %yr− 1, p = 0.01) time series.

When we compared trends in burned area between our AVHRR- 
based burned area dataset and the AVHRR-based FireCCILT11 across 
overlapping years of data (1983–2018, no 1994) we found rather 
inconsistent results (Table S7). For the two continents, our AVHRR- 
based burned area dataset showed a significant increase in annual 

burned area across the North American continental region (0.33 %yr− 1, 
p = 0.05), which was not present in the FireCCILT11 dataset. However, 
the FireCCILT11 showed a significant decrease in annual burned area 
across the Eurasian continental region (− 0.35 %yr− 1, p = 0.09), which 
was not present in our AVHRR-based burned area dataset. At the ecor
egion level, our AVHRR-based burned area dataset showed significant 
increases in seven ecoregions across the global circumboreal region. 
Among those seven, only the trends within the Interior Alaska Yukon 
Lowland Taiga and Northern Canadian Shield Taiga were also present 
within the FireCCILT11 dataset. However, the FireCCILT11 dataset 
showed significant trends within four ecoregions that were not present 
in our AVHRR-based burned area dataset. Potential explanations for 
these disagreements in burned area trends are the influence of SZA on 
the FireCCILT11 dataset (Giglio and Roy, 2022), and artifacts caused by 
the FireCCILT11’s method of subpixel burned area estimate (Giglio and 
Roy, 2023) which potentially afflict the pre-MODIS era (〈2001) (Sup
plment 8) through omission of large fires (Supplement 9).

4. Discussion

Tracking long-term change in circumboreal burned area is chal
lenging because Landsat data are sparse in Eurasia prior to 2000, and the 
AVHRR LTDR archive is the only remote sensing dataset available for 
Eurasia for the 1980s and ‘90s (Berner et al., 2020; Berner and Goetz, 

Fig. 8. Change in total North American (A) and Eurasian (B) ecoregion level boreal forest burned area occurring between the years of 1983–1992 and 2011–2020 
expressed as percentage increase in burned area. Overall burned area increased proportionally by 0.48, 0.54, and 0.53 across the North American, Eurasian, and 
Circumboreal region, respectively.

C.W. Stephens et al.                                                                                                                                                                                                                            Remote Sensing of Environment 325 (2025) 114789 

12 



2022; Garcia-Lazaro et al., 2018). However, limitations of the AVHRR 
LTDR archive (Dech et al., 2021) complicate its use for burned area 
mapping (Giglio and Roy, 2020; Giglio and Roy, 2022). Our new time- 
series analysis based burned area mapping method successfully 
addressed the major limitations of the AVHRR dataset, and provided 
accurate and consistent annual burned area maps starting in 1983 for 
the circumboreal region. However, our method’s focus on mapping large 
wildfires suggests that the influence of smaller, less severe wildfires on 
annual burned area estimates and observed trends may be under
estimated. This bias likely has the greatest impact on estimates of 
burning in Eurasian boreal forests where 30–50 % of fires are less than 
200 ha in size (de Groot et al., 2013), and our AVHRR-based burned area 
dataset had the lowest agreement with higher-resolution validation 
datasets (Table 1). Finally, our method requires that burned areas are 
visible for several years, and that probably limits the applicability of our 
method in regions with smaller fires and where vegetation recovery is 
rapid, such as grasslands (Wang et al., 2022; Morgan et al., 2014).

Our 37-year AVHRR burned area dataset found a mildly significant 
(p = 0.10) increasing trend in boreal forest annual burned area at the 
Eurasian continental-scale and a suggested (p = 0.12) increasing burned 

area trend at the North American continental-scale. At the ecoregion 
scale, we found that annual burned area likely increased between the 
years of 1983 and 2020 across seven ecoregions, which account for 19.6 
% of circumboreal forests (35 % of North American and 11 % of Eurasian 
boreal forests). These ecoregions alone equal approximately the size of 
India. These trends agree with the observed net change in total inter
decadal burned area, with no ecoregion exhibiting a significant annual 
burned area trend conflicting with its coincident interdecadal change in 
burned area.

Finally, when we compared our 37-year AVHRR burned area dataset 
to the MCD64A1v61 reference burned area dataset, we found that one 
out of the two significant increasing burned area trends detected in the 
MCD64A1v61 burned area dataset were also present within our 37-year 
AVHRR burned area dataset. This agreement in results suggests that 
observed increases in burned area are not an artifact of the 
MCD64A1v61 archive’s shorter time series (Mouillot et al., 2014) and 
indeed represent ongoing change experienced by this landscape. 
Conversely, the omission of increasing burned area trend observed 
within the Interior Alaska Lowland Taiga, Mid Continental Canadian 
Forests, Northern Canadian Shield Taiga, and Northern Cordillera Forest 

Table 3 
Circumboreal annual burned area trends for AVHRR and MODIS derived burned area datasets expressed as % per year (%yr− 1). Overlapping years (1984–2020, no 
1994) of AVHRR and MTBS/NRC Landsat observations are reported as “paired” time series.

Ecoregion AVHRR BAI 
(1983–2020)

MTBS/NRC 
(Paired)

AVHRR BAI 
(Paired)

AVHRR BAI 
(2001–2020)

MODIS BAI 
(2001–2020)

MODIS NBR 
(2001–2020)

MCD64A1v61 
(2001–2020)

MTBS/NRC 
(2001–2020)

Bold: Significant (α ¼
0.1)

Trend Sig. Trend Sig. Trend Sig. Trend Sig. Trend Sig. Trend Sig. Trend Sig. Trend Sig.

Alaska St Elias Range 
Tundra

− 0.07 0.45 0.03 0.52 − 0.09 0.44 − 0.21 0.49 − 0.02 0.79 − 0.02 0.82 0.02 0.81 0.01 0.94

Alberta British Columbia 
Foothills

0.12 0.09 0.09 0.28 0.11 0.13 0.29 0 0.15 0.05 0.28 0 0.14 0.13 0.24 0.03

Canadian Aspen Forests 
and Parklands Forests

0.17 0.02 0.17 0.16 0.17 0.02 0.34 0.03 0.16 0.34 0.38 0.03 0.58 0.03 0.60 0.04

Central Canadian Shield 
Forests

− 0.25 0.23 − 0.24 0.43 − 0.25 0.25 ¡0.86 0.03 − 0.16 0.67 − 0.40 0.31 ¡0.77 0.06 ¡0.72 0.05

Eastern Canadian Forests 0.23 0.24 0.13 0.55 0.21 0.29 − 0.36 0.52 0.06 0.92 − 0.28 0.63 − 0.63 0.28 − 0.73 0.20
Eastern Canadian Shield 

Taiga
¡0.56 0.06 − 0.58 0.11 ¡0.64 0.03 ¡0.86 0.04 − 0.02 0.96 − 0.27 0.49 ¡0.86 0.04 − 0.73 0.12

Interior Alaska Yukon 
Lowland Taiga

1.07 0.07 0.89 0.17 0.97 0.10 − 0.20 0.92 − 1.21 0.24 − 0.62 0.62 − 1.40 0.36 − 1.45 0.33

Interior Yukon Alaska 
Alpine Tundra

0.22 0.57 0.11 0.78 0.18 0.66 − 1.13 0.35 − 0.80 0.23 − 1.14 0.25 − 1.28 0.18 − 1.49 0.18

Mid Continental 
Canadian Forests

0.44 0.1 0.67 0.01 0.36 0.17 − 0.66 0.19 0.71 0.25 0.74 0.22 0.80 0.28 0.92 0.26

Midwestern Canadian 
Shield Forests

0.31 0.35 0.49 0.35 0.28 0.41 ¡1.50 0 − 0.21 0.81 − 0.21 0.81 − 0.80 0.34 − 0.60 0.46

Muskwa Slave Lake 
Forests

0.18 0.72 0.56 0.24 0.10 0.85 − 0.85 0.28 − 0.05 0.94 0.16 0.85 0.33 0.77 0.57 0.63

Northern Canadian 
Shield Taiga

0.78 0.05 0.74 0.13 0.70 0.09 0.30 0.76 1.22 0.22 0.77 0.48 0.68 0.46 0.64 0.59

Northern Cordillera 
Forests

0.13 0.04 0.39 0.01 0.15 0.03 − 0.04 0.8 0.21 0.3 0.24 0.22 − 0.07 0.79 0.33 0.23

Northwest Territories 
Taiga

− 0.10 0.77 − 0.32 0.45 − 0.21 0.52 0.38 0.42 0.77 0.25 0.82 0.27 0.89 0.29 0.91 0.37

Southern Hudson Bay 
Taiga

0.04 0.84 − 0.15 0.50 0.02 0.90 ¡0.95 0.04 − 0.14 0.7 − 0.24 0.54 − 0.54 0.28 − 0.57 0.27

Yukon Interior Dry 
Forests

− 0.01 0.98 0.02 0.86 − 0.01 0.92 − 0.05 0.63 − 0.09 0.42 − 0.02 0.91 0.01 0.97 0.02 0.90

East Siberian Taiga 1.36 0.24 – – – – 3.70 0.29 4.31 0.08 5.71 0.03 4.59 0.03 – –
Northeast Siberian Taiga 1.37 0.13 – – – – − 0.35 0.93 3.28 0.38 2.53 0.42 1.51 0.70 – –
Okhotsk Manchu Taiga 0.27 0.47 – – – – − 0.44 0.30 0.38 0.32 0.01 0.98 − 0.78 0.30 – –
Scandinavian and 

Russian Taiga
− 0.05 0.93 – – – – ¡2.76 0.04 ¡0.49 0.01 ¡0.29 0.07 ¡1.30 0.01 – –

Trans Baikal Conifer 
Forests

− 0.02 0.97 – – – – − 1.30 0.11 − 0.65 0.26 ¡1.05 0.06 − 1.45 0.15 – –

Ural Montane Forests 
and Tundra

0.06 0.47 – – – – − 0.21 0.34 − 0.04 0.48 − 0.07 0.36 − 0.06 0.41 – –

Western Siberian Taiga 0.12 0.81 – – – – − 0.43 0.78 0.93 0.38 0.57 0.08 − 1.10 0.51 – –
Entire North American 

Boreal Region
0.24 0.12 0.15 0.37 0.19 0.24 ¡0.59 0.09 − 0.02 0.95 − 0.05 0.86 − 0.35 0.35 − 0.31 0.41

Entire Eurasian Boreal 
Region

0.56 0.10 – – – – − 0.39 0.72 1.31 0.44 1.14 0.32 0.17 0.86 – –
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ecoregions across our 37-year AVHRR burned area dataset by both the 
MCD64A1v61 archive and our 20-year AVHRR dataset highlights the 
challenge of detecting long-term change in burned area using short time 
series. This challenge is particularly salient when studying boreal fire 
regimes, which exhibit large interannual variability (Jain et al., 2017, 
Tomshin and Solovyev) and have fire return intervals ranging from 
decades to centuries (Baltzer et al., 2021; Burrell et al., 2022). 
Addressing this challenge is an important contribution of our 37-year 
AHVRR time series.

4.1. Comparison with existing studies on circumboreal burned area

One reason why circumboreal burned area changes and trends are 
important is because they may be caused by climate change (IPCC, 
2021) (Bedia et al., 2015; Forkel et al., 2019). The availability of a multi- 
decadal Landsat and high-quality federal fire management datasets have 
enabled extensive study of North American boreal burned area trends 
(Kasischke and Turetsky, 2006; Veraverbeke et al., 2017; Hanes et al., 
2019). However, no similar multidecadal resources exist for Eurasian 
boreal forests (Conard et al., 2002; Chen et al., 2014) necessitating the 
use of coarse resolution (Garcia-Lazaro et al., 2018) or short-time series 
datasets (Talucci et al., 2022; Tian et al., 2022). Analyses of multi- 
decadal North American boreal forest burned area extent have identi
fied increases, but no significant trends in burned area (Jones et al., 

2022). These results agree with the continental-scale analyses of our 37- 
year AVHRR burned area dataset and the 36-year MTBS/NRC reference 
dataset which reported nonsignificant increases in burning of 0.15 % 
yr− 1 (p = 0.37) and (0.19 %yr− 1, p = 0.24) in annual burned area across 
shared years of observation, respectively.

At regional scales, multi-decadal studies have found non-significant 
increases in annual Alaskan forest burned area (Veraverbeke et al., 
2017; Jones et al., 2022). These results again partially agree with our 
results for the three corresponding Alaskan ecoregions with two ecor
egions (Alaska St. Elias Range Tundra and Interior Yukon Alaska Alpine 
Tundra) exhibiting non-significant increase according to both our 37- 
year AVHRR dataset (p > 0.4) and the MTBS/NRC reference dataset 
(p > 0.5). However, our results differ for the Interior Alaska Yukon 
Lowland Taiga ecoregion with our 37-year AVHRR dataset showing a 
mildly significant (0.97 %yr− 1, p = 0.10) increasing trend and the 
MTBS/NRC reference dataset suggesting (0.89 %yr− 1, p = 0.17) an 
increasing trend in annual burned area across shared years of observa
tions. Documented multi-decadal burned area trends across Canadian 
boreal forests are more heterogenous than those observed in Alaska 
(Jones et al., 2022). Regional increases in burned area have occurred 
within western Canadian forests (Coops et al., 2018; Hanes et al., 2019). 
Interestingly, across the six ecoregions spanning western Canadian 
boreal forests, only three (Northern Cordillera Forests, Mid Continental 
Canadian Forests, and Canadian Aspen Forests and Parkland Forests) 

Fig. 9. Trends in burned area expressed as percent per year (%yr− 1) within North American (A) and Eurasian (B) boreal forests estimated across our AVHRR-derived 
(1983–2020) burned area dataset. Only trends observed in the Alberta British Columbia Foothills, Canadian Aspen Forests and Parklands Forests, Eastern Canadian 
Shield Taiga, Interior Alaska Yukon Lowland Taiga, Mid Continental Canadian Forests, Northern Canadian Shield Taiga, Northern Cordillera Forests ecoregions are 
statistically significant (p < 0.1). However, the trend observed within the Northeastern Siberian Taiga ecoregion is suggested (p = 0.13).

C.W. Stephens et al.                                                                                                                                                                                                                            Remote Sensing of Environment 325 (2025) 114789 

14 



exhibit or suggest increasing trends in both our 37-year AVHRR (0.15 % 
yr− 1 p = 0.03, 0.36 %yr− 1 p = 0.17, and 0.17 %yr− 1 p = 0.02, respec
tively) and MTBS/NRC reference dataset (0.39 %yr− 1 p = 0.01, 0.67 % 
yr− 1 p = 0.01, and 0.17 %yr− 1 p = 0.16, respectively) across shared 
years of observations.

The sparsity of pre-2000 Landsat images has impeded study of 
Eurasian boreal forest burned area (Shvidenko et al., 2011; Berner et al., 
2012; Ponomarev et al., 2016) and resulted in conflicting statements 
about trends (Tian et al., 2022). Analyses of Eurasian boreal forest 
burned area using short (<20 year) time series have reported non- 
significant increases in burned area at the continental scale (Soja 
et al., 2007; Krylov et al., 2014; Kukavskaya et al., 2016). These findings 
partially agree with continental scale analysis of our 37-year AVHRR 
burned area dataset which showed a mildly significant (p = 0.1) 
increasing trend in annual burned area 0.56 %yr− 1. At the regional 
scale, decreasing trends in burned area have been observed over the 
MODIS era (2001–2020) in western Siberia (Tomshin and Solovyev, 
2021), while increasing multi-decadal increasing trends have been 
observed in Eastern Siberia (Garcia-Lazaro et al., 2018).

Analysis of our MODIS and 37-year AVHRR burned area datasets 
within the two corresponding ecoregions shows mixed agreement with 
these findings. While we found suggested increasing burned area trends 
across our AVHRR 37-year burned area dataset within the Northeastern 
Siberian Taiga ecoregion (1.36 %yr− 1, p = 0.13), only our 20-year 
AVHRR, MODIS-BAI, and MODIS-NBR based datasets show significant 
decreasing trends in burned area within the Scandinavian and Russian 
Taiga ecoregion (− 2.76 %yr− 1 p = 0.04, − 0.49 %yr− 1, p = 0.01, and −
0.29 %yr− 1 p = 0.07, respectively). A potential explanation for this 
discrepancy could be that short-term declining trends in burned area are 
overridden by multidecadal (1983–2020) time series. Another reason 
for differences in our results from those previously reported is that all 
referenced studies on burned area trends employ either the Mann- 
Kendall test with Theil-Sen slope estimator or simple linear regression 
time series analysis to test for annual burned area trends. These methods 
do not account for temporal autocorrelation in time series values and 
therefore are susceptible to time-trend commission errors due to non- 
independence in observations (Ives et al., 2021). Therefore, the statis
tical significance of those reported trends should be viewed with 
caution.

4.2. Influence of solar zenith angle on AVHRR burned area dataset

Comparison of our AVHRR burned area datasets including and 
excluding SZA as BAI time series model covariates found that exclusion 
of SZA erroneously increased mapped burned area during high-SZA 
years (Supplement 5). Supporting this, we found that this difference in 
annual mapped burned area was positively correlated (p < 0.01) with 
annual average SZA of observation, and that this relationship accounted 
for 19 % and 33 % of variation in this difference for North American and 
Eurasian burned area datasets, respectively. These results suggest that 
burned area mapping accuracy can be substantially reduced due to 
commission errors during high SZA years. Moreover, these results also 
show that inclusion of SZA’s polynomial relationship with 90th 
percentile BAI as time series model covariates reduces but does not 
eliminate the influence of trends in SZA on burned area mapping ac
curacy. However, errors in burned area mapping during high-SZA years 
may result from coexisting drivers such as progressive sensor degrada
tion near sensor end of life (Ji and Brown, 2017) and thus represents a 
limitation of the AVHRR LTDR archive itself (Key et al., 2019b).

5. Conclusion

We successfully developed and applied a burned area mapping al
gorithm based on statistical time-series analysis which accounts for the 
effects of solar zenith angle of observation and sensor-based biases on 
AVHRR data. We used this algorithm to map annual circumboreal 

burned area with AVHRR data between the years of 1983 and 2020, and 
used these maps to both quantify decadal change and test for long term 
trends in burned area. We found that circumboreal burned area 
increased proportionally by 0.53 in the 2010s compared to the 1980s, 
and that burned area had at least doubled in seven boreal ecoregions 
over this period. Moreover, we found increasing, mildly significant 
multidecadal (1983–2020) trends in annual burned area extent across 
Eurasian boreal forests and suggested increasing burned area trends 
across North American boreal forests. At the regional scale, we found 
seven ecoregions comprising a region approximately the size of India to 
have experienced significant increases in annual burned area over the 
last four decades. Our results broadly agree with those found using the 
20-year (2001–2020) MCD64A1v61 archive, with most ecoregion-level 
increasing burned area trends identified in the MCD64A1v61 archive 
also present within our multidecadal AVHRR burned area time series.

However, burned area trends estimated with both the MCD64A1v61 
archive and our 20-year AVHRR burned area dataset did not detect the 
increasing burned area trends which we observed in four ecoregions 
using our 37-year AVHRR burned area dataset. This highlights the 
challenge of detecting burned area trends in boreal fire regimes with 
shorter times series because of longer fire return intervals, and why 
AVHRR-based burned area mapping, despite the limitations of the 
sensor and dataset is valuable and informative.
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