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Abstract
1.	 Migratory species depend on ephemeral environmental conditions; thus, 

species distribution modelling (SDM) must incorporate phenological changes 
along migratory routes. Our overarching goal was to model habitats for three 
waterfowl species migrating through Eurasian grasslands (red-breasted goose 
[Branta ruficollis], taiga bean goose [Anser fabalis fabalis] and Bewick's swan 
[Cygnus columbianus bewickii]) while accounting for ephemeral environmental 
conditions. Our objectives were (a) to develop a workflow of mapping ephemeral 
environmental conditions, (b) model habitats for the three species and (c) 
evaluate the protection status of habitats in natural and agricultural landscapes. 
We expected water availability, particularly ephemeral spring waterbodies, to 
strongly influence these species' distributions.

2.	 We utilized MODIS data for phenological synchronization of Landsat images 
to create species- and season-specific metrics and land cover maps. We used 
Landsat-derived environmental variables, elevation and bird GPS locations in 
Maxent SDM. We compared locations of modelled habitats, protected areas and 
Ramsar sites.

3.	 Our land cover maps had an overall accuracy of 0.92–0.95 and captured ephemeral 
water extent during these species' migrations. All models had AUC scores of 
0.89–0.94; distance to water, land cover and elevation were the most important 
variables. Modelled habitats were distributed unevenly and occurred in both 
natural and agricultural landscapes; 40%–76% fell within croplands. Although 
most croplands provide a rich food supply, their value as waterfowl habitat 
critically depended on water availability. Approximately 22% of potential habitat 
in the natural landscape, but only 3% in croplands, had some level of protection.
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1  |  INTRODUC TION

Agricultural land use plays a dominant role in landscape simplifica-
tion (Ramankutty et al., 2002) reducing the areal extent of the most 
productive natural habitats, although agriculture provides wildlife 
with new food (Fox & Abraham, 2017; Randin et al., 2020). Spilled 
grains not only surpass natural food in nutrient content but also re-
main available far longer in fall and much earlier in spring (Fox & 
Abraham,  2017). Agriculture is especially important for migratory 
birds as they pass several months every year between breeding 
and wintering grounds, spending this time mostly at stopover sites 
(Grishchenko et  al.,  2019). The habitat quality at stopovers deter-
mines survival during migration as well as birds' body condition 
upon arrival in their breeding areas, hence, reproductive success (Lei 
et al., 2019; Newton, 2006). Birds can also adjust their arrival time 
to nesting sites by changing the time they spend at stopover sites, 
adapting to climate warming in polar regions (Lameris et al., 2017). 
Human-modified resource availability can affect species distribu-
tions as strongly as natural factors (Fox & Abraham, 2017). Resource 
availability appears especially important for species whose migra-
tory routes cross vast human-modified areas, since they must adapt 
to land cover changes (Davis et al., 2014; Reynolds et al., 2018).

Species distribution modelling (SDM) is a widely used tool for 
biodiversity conservation, management and risk assessment under 
climate change; however, many studies still rely on easily acquired 
predictors, such as WorldClim BIO climate data or global land cover 
maps (Randin et al., 2020), though more ecologically specific predic-
tors substantially enhance model performance (Andrew & Fox, 2020; 
Nagy et al., 2022; Oeser et al., 2020). Remote sensing technologies 
offer a variety of data on environmental conditions, while cloud 
computing platforms, such as Google Earth Engine accelerate data 
set generation and reveal fine-scale spatial and temporal changes 
(Gorelick et al., 2017; He et al., 2015; Randin et al., 2020). The freely 
available imagery of Landsat, Sentinel, MODIS and radar satellites 
provides a wide selection of data for mapping environmental con-
ditions tailored to reveal species ecological preferences at different 
stages of annual cycles and track long-term changes. Particularly, ac-
curate cropland mapping can identify areas of available food (spilled 
grain etc.), while spectral indices, such as the Normalized Difference 
Vegetation Index (NDVI) indicate the presence of green vegetation. 

Using advanced remote sensing techniques to characterize environ-
mental conditions, while potentially complicated, could contribute 
substantially to SDMs—the basis of biodiversity conservation and 
management (He et al., 2015; Randin et al., 2020).

Developing SDMs for migratory species is challenging because 
the models must account for species-specific migration timing 
and rapid environmental changes across large areas (Andrew & 
Fox,  2020). Habitat availability varies greatly due to intra-annual 
differences in weather conditions, making it necessary to estimate 
which parts of habitat are available for a given year. Dynamic SDMs 
of migratory animals often utilize regular time intervals (such as 
monthly periods) or divide a study area by latitude gradients (Andrew 
& Fox, 2020; Gschweng et al., 2012; Li et al., 2017). Although gen-
erally sufficient, these methods may fail to account for intra-annual 
variability and can be difficult to implement with multidirectional mi-
gration routes (e.g. when animals travel east before turning north). 
Another issue of dynamic SDMs is the availability of fine-scale envi-
ronmental data within short timeframes. Landsat/Sentinel data are 
rarely included in dynamic SDMs as cloud-free image coverage is 
insufficient for large areas within short migration periods (Huseby 
et  al.,  2005; Lewińska et  al., 2024), while frequently used MODIS 
images (Andrew & Fox, 2020; Gschweng et al., 2012; Li et al., 2017) 
lack spatial resolution (Mertes & Jetz, 2018).

Phenological synchronization of Landsat/Sentinel data using 
dense MODIS time series (Isaacson et  al.,  2012) can account for 
within- and between-year variability and overcomes the scar-
city of Landsat/Sentinel data. However, this approach is not com-
monly integrated into SDM. The main idea of the phenological 
synchronization is that frequent MODIS observations provide phe-
nological references, such as snowmelt dates, and enable the de-
lineation of zones with similar phenological stages for each study 
year. Combining Landsat/Sentinel data from different years with 
reference to phenological zones can provide enough fine-scale im-
ages covering large areas and representing similar environmental 
conditions, independent of actual calendar dates. Since migratory 
birds track major phenological changes (Wang et al., 2019), Landsat/
Sentinel data combined in this way accurately reflect environmental 
conditions exactly at the time of migratory bird presence.

Eurasian grasslands provide a great opportunity to implement 
phenological synchronization for capturing ephemeral conditions 

4.	 Synthesis and applications. We demonstrated the potential of phenological 
synchronization to estimate fine-scale ephemeral environmental conditions 
crucial for migratory species. Modelled habitats revealed key stopover sites in 
both natural and agricultural landscapes. The maps showed gaps in the protected 
area network of Eurasian grasslands, especially in agriculture. Our workflow could 
be easily adapted for other species and is broadly relevant for conservation.

K E Y W O R D S
Bewick's swan, ephemeral habitat, Landsat, Maxent, MODIS, phenology, red-breasted goose, 
taiga bean goose
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    |  3ROGOVA et al.

during migration, thanks to their highly diverse landscape with con-
siderable interannual variability, season-dependent, often ephem-
eral, resource availability and extensive but unevenly distributed 
cereal-dominated croplands (Medeu, 2010, Rosstat, annual reports, 
n.d.). Several migratory flyways cross Eurasian grasslands, including 
Mediterranean/Black Sea, East Asia/East Africa, Central Asian and 
East Asia/Australasia (Boere & Stroud, 2006).

We studied migratory stopover habitats of three waterfowl spe-
cies of conservation concern (Environment European Commission; 
Directorate-General for Environment,  2022): red-breasted goose 
(Branta ruficollis), taiga bean goose (Anser fabalis fabalis) and Bewick's 
swan (Cygnus columbianus bewickii). The red-breasted goose is classi-
fied as ‘Vulnerable’ on the IUCN Red List, with a declining population 
trend (BirdLife International, 2017). The taiga bean goose is declin-
ing and was recently included in the Russian Red List (RDBRF, 2020), 
while the population status of swans migrating through Central 
Asia is unknown (Environment European Commission; Directorate-
General for Environment,  2022; Nagy et  al.,  2012). All the spe-
cies nest in the Arctic and migrate through northern Kazakhstan 
and European Russia to wintering grounds in China, Southern 
Europe, Central Asia and the Caspian Sea (Boere & Stroud, 2006). 
Understanding what areas are used as stopover sites and the main 
factors associated with these areas is crucial for the conservation 
of these species, especially because migratory bird habitats appear 
underprotected in Central Asia (Runge et al., 2015).

Our main goal was to model habitats for the three waterfowl spe-
cies during their migration across northern Kazakhstan and European 
Russia, accounting for species-specific ecological preferences. 

Specifically, we (a) tested Landsat image phenological synchroniza-
tion to create species-relevant and season-specific environmental 
variables for SDM, (b) modelled potential habitats for each species 
during spring and fall migration, and (c) evaluated the protection 
status of the potential habitats. We expected agriculture to provide 
important habitat for migratory waterfowl because it occupies the 
most water-rich parts of the otherwise arid landscapes and offers 
spilled grain as abundant food resources. Although the croplands 
produce cereals nearly everywhere (Medeu, 2010, Rosstat, annual 
reports, n.d.), and thus provide similar food resources, we expected 
to find strongly uneven species distributions within agriculture, 
depending on fine-scale seasonal variations in water availability. 
Furthermore, we expected that variables associated with the spatial 
distribution of water and croplands would contribute most to model 
performance.

2  |  METHODS

2.1  |  Study area

Our study area encompassed the western Eurasian grasslands, in-
cluding northern Kazakhstan and adjacent parts of Russia (Figure 1). 
It is a 3-million km2 plain bordered by the Volga, Don and Manych 
rivers on the west and by the Altai mountains to the east. There is a 
northwest to southeast gradient in vegetation and agriculture. In the 
western and northern parts, natural vegetation is largely converted 
into croplands (hereafter ‘the agricultural belt’), while in central and 

F I G U R E  1  (a) Main directions of fall 
migrations of Bewick's swan (BS), red-
breasted goose (RBG) and taiga bean 
goose (TBG), based on GPS tracks and 
literature data. Spring migrations follow 
the same routes in the opposite direction. 
(b) Land cover.
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southern regions, natural grasslands persist and are used as pastures 
Water resources include the Caspian and Aral seas, five major rivers, 
and multiple lakes and ponds. Northern lakes are mostly permanent 
and freshwater; southern are often temporary and saline (Kotlyakov 
& Kravchenko, 2007; Medeu, 2010).

Crossed by four Palearctic flyways, the study area hosts over 
100 Important Bird and Biodiversity Areas. Millions of waterfowl 
nesting in the Arctic and Siberia migrate through the West-Siberian 
Plain to Kazakhstan and Altai Province in Russia (Zuban et al., 2020). 
The Kazakh Uplands naturally divide one route into two trajectories; 
the western route continues to Eastern Europe and southern Central 
Asia, while the eastern route traverses Mongolia towards China 
(Boere & Stroud,  2006). We used the watersheds of the Kazakh 
Uplands to define specific areas for modelling the distribution of 
each species.

2.2  |  GPS tracker data

In 2015–2022, we tracked migrations of 6 taiga bean geese, 30 red-
breasted geese and 42 Bewick's swans with various models of GPS-
GSM solar-powered trackers from different manufacturers, with a 
mean accuracy of 12.3 ± 7.1 m. All required permits were obtained 
from the proper Russian, Kazakh and Bulgarian authorities (Severtsov 
Institute of Ecology and Evolution, the Russian Academy of Sciences, 
Russia; the Ministry of Environment and Water, Bulgaria; and the 
Forestry and Wildlife Committee, Ministry of Ecology, Geology and 
Natural Resources of the Republic of Kazakhstan; Appendix S1). We 
extracted all GPS points within the study area and estimated core 
areas for each bird with the R package ‘track2KBA’ (Beal et al., 2021). 
The package calculates the utilization distribution of animals based 
on kernel density estimation from the ‘adehabitatHR’ R-package 
(Calenge,  2006). We used core areas to separate locations during 
flights from those acquired during foraging and resting time because 
only the latter represent habitat choice (Li et al., 2017). From each 
core area, we randomly selected subsets of points lying at least 
5000 m and 1 day apart and separated from other bird locations by a 
minimum of 5000 m (Table S1.2, Appendix S1.2). We created spring 
and fall migration point sets for red-breasted geese and Bewick's 
swans, but only spring sets for taiga bean geese, which had no long 
fall stops within the study area (Appendix S1). For each species, we 
divided the tracks by year into two subsets, using one for training 
and the other for validation (Tables S1.3–S1.7).

2.3  |  Environmental variables

We employed a combination of static, species-specific dynamic 
and hybrid environmental variables as SDM input. Static variables 
were the same for all species, and dynamic variables were specific 
to each species and migration season. Hybrid variables consisted of 
land cover maps with static and dynamic land cover classes (Table 1). 
Creating fine-scale dynamic variables required (a) evaluating which 

part of habitats within a migratory corridor is available at each 
migration step in a given year; (b) a sufficient number of satellite 
images, covering areas available to birds. Due to the limited avail-
ability of Landsat imagery, we utilized phenological synchronization 
(Isaacson et al., 2012) to combine images from different years (Oeser 
et al., 2020) while accounting for phenological variability. First, we 
mapped phenological zones across the entire study area for each 
study year. Specifically, we identified the first day without snow 
cover (‘snowmelt’) for spring migration (Wang et al., 2019) and the 
first day with a surface temperature of 0°C (‘frost’) for fall migration 
(Xu & Si,  2019) as the ‘reference phenology’ To delineate pheno-
logical zones, we used MODIS snow cover and land surface tem-
perature data (Riggs et al., 2019; Wan, 2013), assigning each pixel a 
value referring to ‘snowmelt’ or ‘frost’ day of the year. We applied 
X-means clustering (Pelleg & Moore, 2000) to determine the num-
ber of phenological zones for each year and Jenks Natural Breaks 
(de Smith et  al.,  2018) to delineate phenologically similar zones. 
Second, we determined the period, from first to last day, when 
each species was within each phenological zone. For each zone in 
each year, we selected Landsat8 images that matched each species' 
presence time. Then, for each species and season, we combined all 
selected images and calculated mean, median, 20 and 80 percen-
tiles, and standard deviation for a set of spectral indices commonly 
used in remote sensing and SDM. We used Normalized Difference 
Vegetation Index (NDVI) as a proxy of vegetation, vegetation water 
content (Normalized Difference Moisture Index [NDMI]), amount 
of bare ground (Bare Soil Index [BSI]), and brightness, greenness, 
and wetness from the Tasseled Cap Transformation (representing 
ground and vegetation reflectance, and soil moisture, respectively) 
(Oeser et al., 2020). Since all remote sensing indices were derived 

TA B L E  1  Variables used for SDM.

Variables Type Source

Elevation Static Copernicus 
DEM (30 m)

Distance from settlements Static Open Street 
Maps

NDVI Dynamic Landsat8

Bare Soil Index Dynamic Landsat8

Brightness Dynamic Landsat8

Distance from water Dynamic Land cover 
maps

Water area Dynamic Land cover 
maps

Land cover maps Hybrid

Land cover maps 
classes

Forest Static Landsat8

Grassland Static Landsat8

Cropland Static Landsat8

Bare ground Dynamic Landsat8

Water Dynamic Landsat8

Ice Dynamic MODIS

Wetland Dynamic Landsat8
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    |  5ROGOVA et al.

from Landsat8 bands, autocorrelation was a potential concern. We 
calculated Spearman correlation coefficients and from any pair of 
environmental variables with r > 0.75, we removed one of them 
(Appendix S2). The final set of predictors included brightness, BSI, 
NDVI, distance to the closest open water and settlements, wa-
terbody areas, elevation and land cover maps. We repeated these 
steps for each species and each season. Using these metrics, we cre-
ated the dynamic land cover classes and used median values as the 
species-specific dynamic environmental variables.

To generate the hybrid land cover maps, we first created a static 
land cover map and a set of dynamic maps for each species and sea-
son. We then merged the static land cover map with each dynamic 
map, prioritizing the values from the dynamic maps (Appendix S3). 
We used this approach because different land cover classes re-
quire different sets of satellite images for best results. For instance, 
grasslands and croplands have similar spectral reflectance, so their 
correct classification requires satellite images taken throughout 
the active vegetation growing season (Dara et al., 2018), making it 
impossible to identify seasonal changes. Our approach kept static 
classes well-separated while adding necessary season-dependent 
information. We created all maps in Google Earth Engine (Gorelick 
et al., 2017) using Random Forest classifications (Appendix S3). To 
evaluate the accuracy of the final hybrid maps, we created sets of 
100 random points for each land cover class on each map and vi-
sually interpreted Landsat images and high-resolution images from 
Google Earth to label the validation samples. Using these valida-
tion points, we calculated overall, user's, and producer's accuracy 
(Olofsson et al., 2014). Finally, we computed the distance from the 
closest open water and waterbody areas separately for each hybrid 
map. In the waterbody area layer, each pixel within a given water-
body was assigned the value of that waterbody's area, while all pixels 
outside the water class were assigned a value of 0.

2.4  |  Species distributions models

We used the Maxent algorithm (Phillips et  al.,  2006) because it 
requires presence data only, and provides accurate estimation of 
habitats even for a low number of tracked individuals (Gschweng 
et al., 2012). We created specific modelling areas for each species 
based on literature, field observations collected by the authors and 
shared by Russian and Kazakh ornithological societies, analyses 
of bird ring recoveries, and our GPS tracking data. A preliminary 
analysis of the GPS data showed that the maximum distance between 
stopover sites ranged 500 to 1200 km, while birds of our species can 
fly 1400 to 2300 km without stops longer than 1 day. This suggests 
that theoretically available areas are much larger than the areas 
used. Consequently, we restricted our modelling areas to those that: 
(1) were identified by experts or in literature as presence locations 
of our species, (2) fell within the western Eurasian grasslands, where 
both agricultural and natural habitats occur, and (3) encompassed 
our GPS tracking data. For each species-specific modelling area, 
we created 10,000 random background points (Merow et al., 2013) 

and then used all features in Maxent, including the threshold. We 
trained, tuned and validated our models in Maxent (version 3.4.4) 
using ‘samples with data’ format; however, we created habitat maps 
in Google Earth Engine (Gorelick et al., 2017) with the same settings 
(including default Maxent beta regularization parameters). We used 
the equal training sensitivity and specificity threshold to convert 
probability maps into binary ones and compare spring and fall 
stopover habitats. We evaluated models using the validation point 
sets as independent data. Furthermore, we used presence locations 
from literature (Appendix  S6) in empirical validation. Although 
the literature-based data do not represent the full extent of bird 
migration, and their availability differs among species, they helped 
us to assess whether modelled habitats reflected empirical patterns 
of the species distributions.

2.5  |  Protection status of potential habitats

To determine the proportion of stopover habitats in natural versus 
transformed landscape, we assigned all habitats to either ‘cropland’ 
or ‘natural’ (i.e. any non-cropland) classes using our static land 
cover maps. Specifically, pixels within the static cropland category 
were counted as cropland even if updated to seasonal water in our 
dynamic maps. We used the World Database on Protected Areas 
(UNEP-WCMC and IUCN, 2023, including Ramsar sites) to determine 
protection status, regardless of protection level. Then, we calculated 
proportions of the ‘cropland’ and ‘natural’ modelled habitats within 
and outside of protected areas.

3  |  RESULTS

3.1  |  Land cover maps

We created a set of land cover maps and environmental metrics 
representing conditions specific to three species and migration 
seasons. The land cover maps had an overall accuracy of 0.919 ± 0.033 
to 0.952 ± 0.024, with user's and producer's accuracy of the water 
class 0.910 ± 0.056 to 0.970 ± 0.034 and 0.7–0.95 (Appendix  S4). 
As the fall land cover maps were similar for Bewick's swan and red-
breasted goose, we selected the higher-accuracy map and used it for 
both species. In spring, however, water extent was unique for each 
species, depending on region and migration timing. With Bewick's 
swan and red-breasted goose, water extent also varied between 
spring and fall, so distance to water was specific to each species and 
season.

3.2  |  Species distribution modelling

The contribution of variables to models varied among species and 
seasons. However, a negative association with distance to water 
and NDVI, a positive association with distance to settlements and 
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6  |    ROGOVA et al.

a non-linear association with elevation were found for all three spe-
cies, and these variables were most important for each species. For 
Bewick's swan, distance to water was the most important variable in 
spring and fall models; for red-breasted goose, distance to water and 
land cover were the most important variables in spring and fall mod-
els, respectively. For taiga bean goose, land cover was the most im-
portant variable. Distance to settlements contributed notably only 
to the taiga bean goose model and was of little importance in other 
species and seasons. Remote sensing indices contributed moderately 
to all models, NDVI being the most important one. Among land cover 
classes, water, wetlands and croplands provided the highest quality 
habitats. Elevation ranged from −26 to 1000 m a.s.l. and had a non-
linear relationship with habitat quality, with peaks at low and middle 
altitudes where larger waterbodies and croplands are located. These 
peaks were species-specific, yet all shared the same general pattern 
(Figure 2, Appendix S5).

Modelled habitats for all species and seasons were mainly lo-
cated either within the agricultural belt or inside the Caspian, the 
Aral and the Manych depressions with large waterbodies. Notably 
smaller areas appeared suitable in natural grasslands. Habitat spa-
tial patterns varied among species and seasons (Figure 3), reflecting 
different ecological requirements of the species and fluctuations in 
resource availability, depending on seasons and migration timing. 
Remarkably, large lakes were not predicted as habitats in spring for 
Bewick's swan and taiga bean goose. The overlap between spring 

and fall habitats was small for red-breasted goose and Bewick's 
swan (22% and 28%, respectively).

All the models had training AUC scores of 0.934–0.967 and 
test AUC scores of 0.886–0.939, demonstrating high discrimina-
tion power (Appendix S5). Comparing our maps with literature data 
(Appendix S6) showed that areas noted as consistently used by the 
study species were within our predicted habitats. Moreover, areas 
mentioned as rarely visited by our species fell within areas we clas-
sified as non-habitats.

3.3  |  Spatial distribution and protection status of 
modelled habitats

Croplands constituted around 20% of our study area; however, they 
contained 48% of modelled habitats, though this proportion varied 
greatly between species and seasons. Within agriculture, stopover 
habitats were distributed unevenly (Figure 4), located mainly in cen-
tral and eastern parts. In natural landscapes, the habitats were pre-
dictably found at permanent waterbodies, in ephemeral wetlands, 
and, in the north-east, along the transition to the boreal zone.

Approximately 13% of modelled habitats fell within protected 
areas or Ramsar sites (hereafter ‘protected habitats’ regardless of 
their actual protection status). Most protected habitats occurred in 
natural landscapes, mainly in the Caspian Sea. We found that 22% 

F I G U R E  2  Variable contribution to distribution models (according to percent contribution of each variable in the output from Maxent) of 
three species during spring and fall migration. Normalized Difference Vegetation Index (NDVI) quantifies vegetation greenness, brightness 
quantifies ground reflectance, Bare Soil Index (BSI) identifies bare soil.
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of habitats in natural landscapes were protected, but only 3% of 
protected habitats occurred in agriculture. For each species, the 
proportion of protected habitats was positively associated with hab-
itat proportion in natural landscape. For Bewick's swan, the amount 
of natural habitats, and of protected habitats, was highest for the 
fall migration. Taiga bean goose showed the greatest proportion of 
habitats located in agriculture and thus a very low proportion was 
protected. Red-breasted goose used natural habitats in spring more 
than in fall, which resulted in a larger proportion of protected habi-
tats during spring migration (Figure 5).

4  |  DISCUSSION

Phenological synchronization made it possible to combine multi-
year satellite images, while accounting for intra-annual variability, 
and to map fine-scale ephemeral land cover. Habitat distribution was 
strongly uneven, with a high proportion (40% to 75%) of modelled 

habitats within croplands. There was also considerable difference 
in habitat use by each species between seasons, and among species 
during spring, mainly due to changes in water availability. Our results 
represent the first successful attempts to map habitat for Bewick's 
swan, taiga bean goose, and red-breasted goose in northern 
Kazakhstan and European Russia. We found that habitat protection 
is minimal for all three species, especially in agricultural landscapes.

Agricultural landscapes are well-known as habitats for migratory 
waterfowl in North America and Europe, where natural biomes are 
largely transformed or degraded (Davis et  al.,  2014), while crop-
lands provide abundant high-quality food (Fox & Abraham,  2017). 
Regardless of food availability, habitats in agriculture depend on 
fine-scale landscape features affecting water availability. In Europe, 
habitats in croplands are associated with seashore, lakes or wet-
lands (Davis et al., 2014; Harrison et al., 2018). Flooded harvested 
rice fields are typical waterfowl habitat in California (Reynolds 
et al., 2018), while in the Southern Great Plains, waterfowl use sea-
sonally flooded playas (Davis et al., 2014).

F I G U R E  3  Modelled habitat for three species (a—Bewick's swan, b—red-breasted goose and c—taiga bean goose) during migration. For 
the taiga bean goose, only spring migration habitats are represented, as this species does not make long stops in the study area during fall 
migration. Inserts show species' GPS tracks and the areas of modelling (yellow).
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8  |    ROGOVA et al.

In our study area, spring water availability depends on ice and 
snow accumulation, melting rates and drying of ephemeral water-
bodies. In early spring, larger waterbodies and wetlands are covered 
with ice and unavailable to birds. Ephemeral pools emerge as soon as 
snow begins to melt, but they dry out within weeks (Appendix S7). 
In some parts of north Kazakhstan, numerous shallow depressions 
scattered across croplands and grasslands rapidly accumulate melt 
water, providing habitats 10–15 days before ice melts on perma-
nent lakes. In the easternmost area, forest belts planted between 
fields accumulate snow; when it melts, fresh pools become wide-
spread, even on flat surfaces, but for a very short time. Thus, even a 
small difference in migration timing leads to major changes in water 
availability (Appendix  S7)—a reason for within-season differences 
in habitat extent. In the western portion of the agricultural belt, 
no landscape features favour the occurrence of shallow temporary 
waterbodies, while permanent lakes and ponds become ice-free 
rather late in spring, making these areas less suitable for migratory 
waterfowl.

In fall, only larger permanent waterbodies remain, which 
explains the similarity in the fall land cover maps for Bewick's 
swan and red-breasted goose. Potential habitats for these two 
species are generally concentrated in croplands around perma-
nent lakes. Habitats available in both seasons are thus limited 
to areas where shallow depressions/forest belts and permanent 
lakes co-occur.

The main portion of modelled habitats in natural landscapes 
was predictably associated with the two largest permanent wa-
terbodies. Manych Lake, with surrounding croplands and grass-
lands, can accommodate the entire population of red-breasted 
goose, while the Caspian Sea is a key stopover for Bewick's swan. 
Moreover, both remain largely unfrozen, allowing birds to wait for 
good migration conditions, or even stay all winter if the weather 
is favourable. Outside Manych Lake and the Caspian Sea basins, 
only a few habitats were found in natural grasslands because in 
Kazakhstan and Russia they mostly remain where water bodies 
are scarce.

F I G U R E  3   (Continued)
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Stopover site protection is critically important because the loss 
of even a small part of en-route habitats could negatively affect the 
whole population (Runge et al., 2015). Particularly, climate change 
could cause flyway collapse due to phenological mismatch in green 
food availability between stopover sites and breeding grounds (Nagy 
et al., 2022; Wei et al., 2024). Habitats within croplands are espe-
cially important as they provide abundant resources when snowmelt 
begins—several weeks before the start of a ‘green wave’ of vege-
tation productivity. Cropland supplementation allows waterfowl to 
migrate earlier, helping mitigate phenological mismatch. Our find-
ings agree with models demonstrating that waterfowl track snow 
melt (Li et al., 2020; Wang et al., 2019).

Revealing fine-scale landscape features affecting ephem-
eral conditions required by species is essential for management 
actions. Most conservation efforts focus on natural habitats 
(Nagy et  al.,  2022), yet protecting agricultural sites with par-
ticular landscape features is also important (Davis et al., 2014; 
Reynolds et  al.,  2018). For instance, shallow depressions in 
croplands are prone to soil erosion and sedimentation. In the 
US Playa Lakes area (a landscape similar to our study area), 
such degradation negatively impacts the hydrological regime of 
surrounding areas and compromises waterfowl habitats (Davis 
et  al.,  2014). Preventing excessive sedimentation by preserv-
ing natural vegetation around depressions and promoting snow 

F I G U R E  3   (Continued)

F I G U R E  4  Modelled habitats of three species in natural and agricultural landscapes, with protected areas overlaid.
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10  |    ROGOVA et al.

accumulation could maintain the conditions necessary for wa-
terfowl stopover habitat (Joint Venture Playa Lakes,  2014). 
Besides important habitats, these measures would also support 
the overall hydrological regime, securing future agricultural 
production.

Given the importance of water to waterfowl (Li et  al.,  2017), 
we expected that distance to water would be the most important 
variable in our SDMs. However, in two of five models, land cover 
was the most important variable (red-breasted goose, fall migra-
tion, taiga bean goose, spring migration), while elevation was the 
second most important variable (Figure 2). The importance of land 
cover is easily understood since all three species prefer water and 
croplands but avoid forests and bare ground. The importance of 
elevation is less straightforward to interpret as differences in el-
evation in our study area are relatively modest. We suggest that 
elevation influences the spatial distribution of agriculture, large 
water bodies and human pressure. Notably, NDVI, our proxy for 
green vegetation, was not among the most important variables in 
any models. The negative relationship between NDVI and habitat 
suitability indicates that migrating waterfowl do not depend on 
green food availability. Since negative NDVI values indicate water, 
the negative relationship also highlights the importance of water as 
a critical stopover resource.

Human activity can force birds to concentrate in the least dis-
turbed areas (Davis et al., 2014). Kazakhstan has several strictly pro-
tected private areas where hunting is limited (Rozenfeld et al., 2012). 
Such sites attract up to a million geese during spring migration 
(Rozenfeld et  al.,  2012), making naturally uneven waterfowl dis-
tribution even stronger. The Russian part of the study area has no 
well-protected refuges, which probably explains why the taiga bean 

goose makes no long stops there in fall (Appendix S1). Incorporating 
human pressure patterns into SDMs is complicated because the 
necessary information is generally unavailable. However, the high 
importance of variables that cannot directly affect species distribu-
tions, like elevation in generally flat country, suggests hidden factors 
at work.

Spring hunting has strong negative effects on waterfowl 
populations (Juillet et  al.,  2012). Strictly limited in Kazakhstan 
(MARK,  2015) but allowed in Russia (MNRRF,  2020), it could 
explain why distance to settlements has notably higher impor-
tance for taiga bean goose whose habitats mainly occur in Russia. 
Precise species distribution modelling can reveal small differences 
in preferred habitats in vulnerable and game species (Piironen 
et al., 2022). This information can be used to limit hunting pres-
sure in critical areas.

Fine-scale environmental maps could greatly improve SDM, 
although creating them is challenging (He et  al.,  2015; Huseby 
et al., 2005) due to limited availability of medium-resolution satel-
lite observations. Although image availability has increased since 
the launches of Landsat 8, 9 and Sentinel-2, it still might not suffice 
for areas with frequent clouds or for mapping short-lived environ-
mental states. Furthermore, only Landsat 4, 5 and 7 provide data 
for 1984–2015, which makes them irreplaceable for studies of that 
period. Phenological synchronization of satellite images is a useful 
approach to map ephemeral environmental conditions regardless 
of intra-annual differences in weather. We used transitions in snow 
cover and surface temperature for phenological synchronization; 
yet frequent MODIS/VIIRS data can also be used to calculate other 
phenological events relevant for different target species (Andrew & 
Fox, 2020).

F I G U R E  5  Proportions of modelled ‘agricultural’ and ‘natural’ habitats for three waterfowl species during migration within and outside of 
protected areas and Ramsar sites.
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5  |  CONCLUSIONS

We demonstrated that fine-scale maps representing ephemeral envi-
ronmental conditions at the time of bird presence are crucial for SDM 
performance because they reveal landscape features affecting resource 
availability. Our workflow based on combining MODIS and Landsat 
data and integrating different maps is flexible and easily adjustable to 
a wide range of wildlife studies. Knowing seasonal resource dynamics 
is critical for understanding habitat suitability in the migratory phase of 
the annual cycle. Quantifying the role of fine-scale landscape features 
in resource availability is essential for effective habitat management, as 
well as planning new protected areas and developing species conserva-
tion strategies, especially in human-developed landscapes.
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