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Abstract
The onset of spring plant growth has shifted earlier in the year over the past several decades due to
rising global temperatures. Earlier spring onsetmay cause phenologicalmismatches between the
availability of plant resources and dependent animals, and potentially lead tomore false springs, when
subsequent freezing temperatures damage newplant growth.Weused the extended spring indices to
project changes in spring onset, defined by leaf out and byfirst bloom, and predicted false springs until
2100 in the conterminousUnited States (US) using statistically-downscaled climate projections from
theCoupledModel Intercomparison Project 5 ensemble. Averaged over our study region, themedian
shift in spring onset was 23 days earlier in the Representative Concentration Pathway 8.5 scenario with
particularly large shifts in theWesternUS and theGreat Plains. Spatial variation in phenology was due
to the influence of short-term temperature changes around the time of spring onset versus season-
long accumulation of warm temperatures. False spring risk increased in theGreat Plains and portions
of theMidwest, but remained constant or decreased elsewhere.We conclude that global climate
changemay have complex and spatially variable effects on spring onset and false springs,making local
predictions of change difficult.

Introduction

The onset of spring plant growth, or ‘spring onset,’ has
shifted earlier in the year in recent decades amid rising
global temperatures (Cleland et al 2007, Ault
et al 2011, McCabe et al 2012). Whereas a longer
growing season may increase carbon uptake and
potentially mitigate climate change (Black et al 2000,
Dragoni et al 2011), earlier leaf and flower emergence
has led to phenological mismatches between plant
resources and many of those animals depending upon
them (Walther et al 2002, Schweiger et al 2008, Saino
et al 2011, Burkle et al 2013, Kellermann and van Riper
IIIrd 2015). Earlier spring onset can also lead to
increased risk of false springs, when subsequent hard
freezes damage new, vulnerable plant growth in
ecological and agricultural systems (Cannell and
Smith 1986, Inouye 2008, Knudson 2012). At many

locations, projected future increases in global tem-
peratures will likely result in earlier spring onset and
fewer frost days overall. However, the rates and
magnitude of these changes, determining the like-
lihood of phenological mismatches and false springs,
are not known.

Studies of spring plant phenology often define
spring onset with one of two easily identified events:
leaf emergence (‘leaf out’) or flower emergence (‘first
bloom’; Schwartz 1998, Wolfe et al 2005, Polgar and
Primack 2011). The timing of these events are largely
determined by temperature and photoperiod (Ber-
nier 1988, Bernier et al 1993, Polgar and Pri-
mack 2011), but the exact phenological response
varies among plant species, ecotypes, and genotypes
(Schwartz 1993, Polgar and Primack 2011). Despite
this variation, general phenological models, like the
widely-used spring indices (SI-x) (Schwartz 1990,
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Schwartz et al 2013, Ault et al 2015), capture the beha-
vior of a wide variety of plants in natural and agri-
cultural systems (Wolfe et al 2005, Schwartz and
Hanes 2010, Schwartz et al 2013).

Historical studies using the SI-x (Schwartz
et al 2006, Ault et al 2011, McCabe et al 2012) and
other general indices (Peterson and Abatzoglou 2014)
indicate that spring onset has generally shifted earlier,
but there is considerable variation in the magnitude of
trends, and in some areas spring onset now occurs
later than in the recent past. Both leaf out and first
bloom will likely continue to shift earlier in the year
with rising global temperatures, but the complex nat-
ure of this process makes it difficult to make a priori
estimates of how changes in temperature will affect
spring onset. However, newly available daily records
from climate projections allow for high resolution
modeling of spring onset that may help identify spatial
patterns of change, even in topographically complex
areas where temperatures may vary considerably over
short distances.

Many plants are resistant to cold weather while
dormant through the winter. However, sub-freezing
temperatures after spring onset can damage vulner-
able plant tissue, and reproductive growth stages later
in spring typically make plants more susceptible to
damage from cold (Sakai et al 1987, Augspurger 2013).
Damage due to false springs is often observed in nat-
ural systems (Inouye 2000, 2008, Augspurger 2011),
and lost plant productivity can negatively impact
dependent animal populations (Blais et al 1955, Nixon
and McClain 1969). False springs can also strongly
affect agricultural systems (Paulsen and Heyne 1983,
Brown and Blackburn 1987). For example, the false
spring of 2012 caused $500million in damages to fruit
and vegetables in Michigan (Knudson 2012, Ault
et al 2013). Broad-scale studies suggest that cold
weather is diminishing more rapidly than changes in
spring onset, therefore decreasing the risk of a false
spring at most locations (Schwartz et al 2006, Marino
et al 2011, Peterson and Abatzoglou 2014). However,
several recent false springs in North America suggest
that the risk remains (Gu et al 2008, Hufkens
et al 2012, Knudson 2012) and has even increased in
some areas (Inouye 2008, Augspurger 2013). Empiri-
cal evidence is mixed, and the future risk of false
springs is still largely unknown.

In this study, we asked two questions: first, how
will spring onset change by 2100 in the conterminous
US, and second, how will relative changes in spring
onset and freezing conditions affect the likelihood of
future false springs?

Methods

Downscaled climate data
We based our spring onset and false spring calcula-
tions on daily minimum and maximum temperature

data for 1950–2100 from the Coupled Model Inter-
comparison Project 5 (CMIP5)multi-model ensemble
General Circulation Models (GCM) dataset, statisti-
cally downscaled to 1/8th degree resolution with the
bias-corrected constructed analog (BCCA) technique
(Maurer et al 2007, Bureau of Reclamation 2014).
With the BCCA technique, the GCM data are first
debiased with historical records at the coarse resolu-
tion of the GCM and then downscaled to a 1/8th
degree grid using linear combinations of past historical
conditions (Maurer et al 2010). We downloaded data
covering much of North America from the Global
Organization for Earth System Science Portals
(Maurer et al 2007) but restricted our analysis to the
conterminous US. We analyzed BCCA-derived data
from 19 GCMs and two emissions scenarios: Repre-
sentative Concentration Pathways (RCPs) 4.5 (med-
ium-low emissions) and 8.5 (high emissions) (table 1).
For conciseness, we focus the main text on the model
averages and on RCP8.5, though we do include some
analysis of inter-model variability. We present results
for RCP4.5 in appendix A, and extensive results for
individualmodels under both scenarios in appendix B.

Extended SI-x
We calculated spring onset using the extended SI-x
metrics (Schwartz et al 2013). The original spring
index formulas were empirically derived to predict leaf
out and first bloom of lilac (Syringa chinesis ‘Red
Rothomagensis’) and two honeysuckle clones (Loni-
cera tatarica ‘Arnold Red’ and L. korolkowii ‘Zabeli’) in
theUS (Schwartz 1993). However, these formulas have
proven useful as a general model of plant phenology,
as the first leaf and first bloom dates are well correlated
with those of many natural and agricultural plants
(Wolfe et al 2005, Schwartz and Hanes 2010, Schwartz
et al 2013) and with the ‘green up’ of ecosystems
worldwide (Schwartz 1990, Schwartz et al 2006). Addi-
tionally, first bloom captures leaf out for later spring
species, like many trees (Schwartz et al 2006, Schwartz
and Hanes 2010). The SI-x models that we applied
have beenmodified to estimate leaf out andfirst bloom
in both temperate and subtropical environments
(Schwartz et al 2013, Ault et al 2015). We defined
spring onset using both leaf out and first bloom The
use of both definitions provided ‘bookends’ to capture
the spring phenology of a wide variety of plant species.

The SI-x include an equation to predict leaf out for
each of the three plant species using empirically-
derived equations based on the photoperiod (repre-
sented by the day of the year), short-term growing
degree hours (GDHs), and the season-long cumulative
count of high-energy synoptic events, hereafter ‘warm
spells.’ GDHs are the number of hours above 0.6 °C,
summed over two three-day periods (current and 5–7
days earlier). Hourly temperatures were interpolated
from daily minimum and maximum temperatures
(Ault et al 2015). The season long warm spell count is
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defined as the cumulative number of 3 day periods
with GDH>637. The formula for each species is
updated for each day of year, and the first day of the
year with a SI-x score exceeding a predetermined
threshold is considered the date of leaf out (see Ault
et al 2015 for full models and coefficients). The average
day of the year inwhich this occurs among the lilac and
two honeysuckle clones is considered the ‘leaf out
date’ (Schwartz et al 2006, 2013).

The first bloom calculations begin after leaf out for
each species. First bloom depends on two factors: the
number of days since leaf out and the accumulated
GDHs (AGDH) since leaf out (Ault et al 2015). The
base GDHs are calculated in the same manner as for
leaf out, but the AGDH is cumulative rather than
based only on recent temperatures. The date of first
bloom occurs for each species when first bloom values
reach 1000 (Ault et al 2015). Again, we used the aver-
age day of year of the first bloom of the three species as
our first bloom date in subsequent analyses. Changes
in first bloom can only result from changes in AGDH,
the final value of which is relatively constant given the
threshold score of 1000. Therefore, to measure chan-
ges in first bloom we examined the duration of time
between leaf out and first bloom.Within each year, we
considered dates through 31 July, which was sufficient

to capture spring growth even at high elevations while
avoiding the return of colder temperatures accom-
panying the onset of autumn.

We compared changes in spring onset from the
CMIP5 simulated historical (1950–2005), mid-cen-
tury (2041–2070), and end of the century (2071–2100)
time periods. We summarized changes by Omernik
ecoregions (Omernik 1987), i.e., areas with relatively
similar topography and weather patterns, by compar-
ing probability density functions for during the histor-
ical and end-century time periods. We also used these
results to examine differences in inter-model varia-
bility among ecoregions. For each ecoregion, we calcu-
lated coefficient of variation among model density
kernels at a given day of year, and then taking the aver-
age of these values. To prevent values near zeros from
overriding the signal, we removed from consideration
days of the year in which the mean density was less
than 1/50th of the peak value for that ecoregion. To
determine if changes were robust among models at
each location in the presentedmaps, we took themean
of each spring onset date from each model during the
historical period, and compared it to the same values
from future time periods using a Welch’s t-test to
allow for unequal variances. Non-significant changes
weremasked with white in themap figures. Finally, we

Table 1.Global climatemodels considered in this study.

Group Model abbreviation

Commonwealth Scientific and Industrial Research ACCESS1-0

Organization andBureau ofMeteorology,

Australia

BeijingClimate Center, ChinaMeteorological bcc-csm1-1

Administration

College ofGlobal Change andEarth System BNU-ESM

Science, BeijingNormal University

CanadianCentre for ClimateModelling and CanESM2

Analysis

National Center for Atmospheric Research CCSM4

Community Earth SystemModels CESM1-BGC

CentreNational de RecherchesMétéorologiques/ CNRM-CM5

Centre Européen deRecherche et Formation

Avancée enCalcul Scientifique

Commonwealth Scientific and Industrial Research csiro-mk3-6-0

Organization,QueenslandClimate ChangeCentre

of Excellence

NOAAGeophysical FluidDynamics Laboratory GFDL-ESM2G

GFDL-ESM2M

Institute forNumericalMathematics inmcm4

Institut Pierre-Simon Laplace IPSL-CM5A-LR

IPSL-CM5A-MR

JapanAgency forMarine-Earth Science and MIROC-ESM

Technology, Atmosphere andOceanResearch MIROC-ESM-CHEM

Institute, andNational Institute for Environmental MIROC5

Studies

Max Planck Institute forMeteorology MPI-ESM-LR

MPI-ESM-MR

Meteorological Research Institute MRI-CGCM3

NorwegianClimate Centre NorESM1-M
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have included more extensive results from individual
models in appendix B.

False springs
The exact temperature at which plant tissue is
damaged depends upon the species and environmen-
tal conditions, but a daily minimum temperature
below −2.2 °C is likely to cause damage, and is
considered a ‘hard freeze’ (Schwartz 1993, Marino
et al 2011, Peterson and Abatzoglou 2014). Further-
more, the later the freeze occurs after plant growth
begins, the more damage is likely to occur because
plants are in a more susceptible phenological phase
(Schwartz et al 2006, Marino et al 2011, Peterson and
Abatzoglou 2014). Because we calculated two mea-
sures of spring plant phenology, we also had two
measures of false springs. We defined an early false
spring event as the occurrence of a hard freeze seven or
more days after leaf out, following Peterson and
Abatzoglou (2014). Similarly, we defined a late false
spring event as a hard freeze any time after first bloom,
when plants are more susceptible to freezing
conditions.

We summarized changes in false springs by ecor-
egion, and tested for changes that were significant
among models, in the manner described for spring
onset. To investigate spatial variation in false springs,
we calculated daily minimum temperatures around
the leaf out and first bloom dates at each location. For
each year, we calculated the average daily minimum
temperature for the 7 days before and after the date of
interest, and averaged these annual values for each
CMIP5 time period.

Data validation
We validated the leaf out, first bloom, and false springs
values calculated from the BCCA downscaled climate
models versus those calculated from Maurer gridded
historical temperature records (Maurer et al 2002),
because the latter were the basis for downscaling of the
BCCA data itself (Bureau of Reclamation 2014). We
compared mean values, interannual variability, and
trends between Maurer and the model average BCCA
values. The BCCA-derived values compared favorably
with historical records (appendix C). To increase
calculation speed, we wrote code in C# based on
earlier Matlab documentation and code (Ault
et al 2015), with a few small modifications to fit our
study (see appendix D). The code is available from the
spring indexGithub page.

Results

Spring onset
During the historical period, model average spring
onset, defined by leaf out, followed a latitudinal
gradient in the Eastern half of the US, whereas
elevation played a larger role in the West (figure 1(a)).

Along the Gulf Coast and the Southern portion of the
North American Desert region, spring onset was
driven primarily by temperatures immediately preced-
ing leaf out (i.e., GDH; figure 2(a)). Just North of these
areas, season-long weather conditions were more
important (i.e., cumulative warm spells), and the
influence of warm spells was particularly strong along
theWest Coast and Pacific Northwest (figure 2(b)). At
the highest latitudes and elevations, temperatures were
lower (figure 2) and photoperiod was most important
(results not shown).

By the middle and end of the century, model aver-
age leaf out is projected to shift earlier at all locations
and under both climate scenarios (RCP8.5 in figure 1;
RCP4.5 in appendix A). For RCP8.5, the region-wide
median change was 22.3 days by the end of the cen-
tury. The largest changes in leaf out occurred in the
Western US, in the North American Desert, Tempe-
rate Sierras, and Northwestern Forested Mountain
ecoregions, with median shifts of 26.5–28.5 days ear-
lier by the end of the century. The smallest shifts
occurred in areas where leaf out was already early in
the historical period (e.g., Gulf Coast, Desert South-
west; figure 1(e)). The largest changes in leaf out were
caused by an increasing influence of cumulative warm
spells (spatial correlation=0.87, figure 2(d)), parti-
cularly at high elevations and in themiddle latitudes of
the Great Plains and Eastern Temperate Forest ecor-
egions (figure 1(e)). Correspondingly, smaller shifts in
leaf out occurred in areas where the importance of the
GDH terms increased (spatial correlation=−0.66;
figure 2(b)). An interesting exception was the Marine
West Coast ecoregion, which saw a large advance in
leaf out (figures 1(c) and (e)) while the influence of
GDH increased in an area previously dominated by
cumulative warm spells (figure 2).

The historical pattern of dates and projected chan-
ges in model average spring onset defined by first
bloom were closely related to those of leaf out, partly
because the calculation of first bloom begins at leaf out
(figure 1). Region-wide changes in leaf out and first
bloom were strongly correlated (ρ=0.86) and the
RCP8.5 nationwide median change of 22.1 days by the
end of the century for first bloom was very similar to
that of leaf out, although the band of largest shifts in
leaf out date is located North of themaximum shifts in
first bloom (figures 1(e) and (f)). However, interesting
spatial patterns emerge in the duration of the period
between leaf out and first bloom (figure 3). The pri-
mary factor in triggering first bloom is the AGDH
since leaf out (see methods). Therefore, in areas where
change in leaf out was driven by GDH (e.g., the Deep
South), AGDH increased rapidly as well, and thus the
time between leaf out and first bloom decreased. This
was particularly evident in the Marine West Coast
ecoregion, and across the Southern Great Plains and
Eastern Forest ecoregions (figure 3(b)). However, we
observed a different pattern in areas where leaf out was
strongly accelerated by cumulative warm spell
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increases, such as the broad swath ofmaximumgain in
warm spell points from the Northern Rockies East-
ward to New England (figure 2(d)). Though both dates
shifted earlier in the year (figures 1(e) and (f)), leaf out
shifted more in these areas, and thus the time between
leaf out and first bloom increased (figure 3(b)).
Though model average changes in both definitions of
spring onset were significant between models at all
locations (figures 1(c)–(f)), individual models did vary
in their predictions. Individual model predictions of
spring onset varied within years, but all models
tracked themodelmean trend (figure 4).When pooled

by ecoregion, distributions of spring onset dates were
shaped by geographical (e.g., latitudinal extent) and
topographical features (figure 5). The shapes of these
distributions changed by end-century, with earlier
spring onset dates and more inter-model variability
than seen in the historical time period (figure 5). How-
ever, levels of inter-model variability were still low (see
coefficients of variation for each ecoregion infigure 5).

False springs
During the historical period, early false springs based
on leaf out were very common throughout much of
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Figure 1.BCCAmodel average day of year for spring onset defined by (left) leaf out and (right)first bloomdate. (a), (b)Average leaf out
andfirst bloomdates during the climatological base period 1950–2005.Numbers denote theOmernik ecoregions: (1)NorthAmerican
Desert, (2)MediterraneanCalifornia, (3) Southern Semi-AridHighlands (4)Temperate Sierras, (5)TropicalWet Forests, (6)Northern
Forests, (7)Northwestern ForestedMountains, (8)MarineWest Coast Forests, (9)EasternTemperate Forests, and (10)Great Plains.
Remaining subplots indicate themean projected changes in each spring onset definition relative to the historical period during the (c),
(d)middle 21st century (2041–2070) and (e), (f) late 21st century (2071–2100) for the RCP8.5 high emission scenario. Changes at all
locations were statistically significant among the climatemodels, so no changesweremasked.
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the region, occurring almost annually at many loca-
tions (figure 6(a)). The only areas without frequent
false springs based on leaf out were those that either
rarely experienced freezing weather (e.g., the Gulf and
West Coasts), or where leaf out was driven primarily
by photoperiod (e.g., upper Midwest, Northern New
England) and occurred later in the year (figure 7(a)).
Late false springs based on the first bloom occurred
much less frequently, but they were most common in

certain high elevation regions, as well as the Southern
US (figure 6(b)), where first bloom occurs early in the
year (figure 1(b)).

In future projections, false springs declined in fre-
quency under both definitions and throughout much
of the range (figures 6(c)–(f)) as temperatures gen-
erally moderated around the time of spring onset
(figures 7(c) and (d)). The decline was especially pro-
minent for early false springs because they were so
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Figure 2. (a), (b)Components of the extended spring index (SI-x)model for leaf out during the historical period and (c), (d) change in
these components by the end of the century time period. Values shown are the points contributed by (a), (c) the two short-term
growing degree hour (GDH) terms, and (b), (d) the season long cumulative warm spell count. Leaf out is triggeredwhen the sumof
these components and a day of year term (not shown), representing photoperiod, exceed a threshold of 1000 points.
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Figure 3. Spring onset duration,measured as the number of days between spring onset defined by leaf out and by first bloom. (a)
Spring onset duration during the historical period. (b)Change in spring onset duration by the end of the century time period for the
RCP8.5 scenario.
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Figure 4. Spring onset time series for selected locations, showing (solid black)model average and (thin, colored) individualmodel
results, as well as the (black dashed)model average date of the last hard freeze. Variability in themodelmean last hard freeze date
increased at the end of the Portland time series because hard freezes became rare, reducing sample size.

Figure 5.Distribution of (a)–(j) leaf out and (k)–(t)first bloomdates during the (black) historical and (red) end-century time periods
for the (a), (k)NorthAmericanDeserts, (b), (l)MediterraneanCalifornia, (c), (m) Southern Semi-AridHighlands, (d), (n)Temperate
Sierras, (e), (o)TropicalWet Forests, (f), (p)Northern Forests, (g), (q)Northwestern ForestedMountains, (h), (r)MarineWest Coast
Forests, (i), (s)EasternTemperate Forests, and (j), (t)Great Plains ecoregions. Individual lines indicate results for eachmodel. Results
shown for the RCP8.5 scenario. Note that the y-axis scale varies widely among the plots. The numbers in each panel, with colors
corresponding to time periods, represent the coefficient of variation amongmodels averaged over the days of year, a standardized
measure of variation that can be used to compare ecoregions (seemethods for detail).
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common during the historical period. However, large
areas of the Great Plains and Eastern Forest ecoregions
were projected to experience an increase in false
springs, particularly for the late false springs that were
relatively rare during the historical period (figures 6(d)
and (f)). In these areas, leaf out and first bloom dates
advanced so rapidly that simulated daily minimum
temperatures at the time of spring onset were actually
lower at the end of the century than during the histor-
ical period (figures 7(c) and (d), and demonstrated in

figure 4(d)), thereby promoting the chances of a hard
freeze.

Discussion

Our projections indicated that spring onset will occur
earlier throughout the conterminous US by the year
2100. Spatial variation in the rates of change stemmed
fromdiffering contributions by projected temperature
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Figure 6.The BCCAmodel average probabilities of a false spring in a given year. (Left)An early false spring, defined as a ‘hard freeze’ (a
dailyminimum temperature below−2.2 °C) seven ormore days after leaf out. (Right)A late false spring is defined as a hard freeze any
time after first bloom. (a), (b) Likelihood of a false spring during the historical period. Remaining subplots indicate change in the
annual probability of a false spring relative to the historical period during the (c), (d)middle 21st century (2041–2070) and (e), (f) late
21st century (2071–2100) for the RCP8.5 high emission scenario.White areas indicate areas where themean change among climate
models was not significantly different from zero.
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changes and the temperature components of the SI-x
model: the short-term GDH terms around the time of
spring onset, and the season-long cumulative count of
warm spells. Our projections of earlier spring onset
indicate that recent historical trends may continue,
but not everywhere. In the Western US, leaf out has
advanced at a rate of 1.5 days/decade from 1950 to
2005 (Ault et al 2011), consistent with the BCCA
model average changes in the RCP4.5 scenario
(appendix A) but less than in the RCP8.5 scenario
(figures 1(e) and (f)). However, in the Great Plains the
historical pattern is variable, with some areas even
indicating a later spring onset (Schwartz et al 2013,
Peterson and Abatzoglou 2014). Similarly, our results
showed a trend toward earlier spring onset in the
central Eastern Temperate Forests ecoregion, but it
has actually been later in the recent past (figure C1,
Marino et al 2011, Schwartz et al 2013). These
discrepancies are likely caused by the strong influence
of internal climate variability, including large-scale
modes such as El Nino-Southern Oscillation and the
Pacific-North American Pattern, on historical spring
temperatures (Ault et al 2011, Marino et al 2011,
Schwartz et al 2013). We found similar variability in
individual BCCA models (figure 5, appendix B), but
the year-to-year variability in these modelled atmo-
spheric patterns is not expected to match historical
records. Our averaging of many models canceled out
the effects of the simulated internal variability and
emphasized the role of greenhouse-forced climate
change.

The extended SI-x that we calculated are well cor-
related with spring phenology in ecosystems world-
wide (Schwartz et al 2013), and the time from leaf out
to first bloom spans the period of spring phenology for
many plant species. However, the phenological
response to environmental conditions varies among
plant species and even among locations (Polgar and
Primack 2011), and other phenological models have
been developed. While the extended SI-x incorporate
spring degree-above-threshold and photoperiod (day
of year) measures to predict leaf out, winter chilling
days are included in other models, reflecting the phy-
siology of plant species that require cold temperatures
to break dormancy (Polgar and Primack 2011). Our
projectionsmay not capture changes in spring phenol-
ogy of such plants. For example, a study using a black
ash (Fraxinus nigra) phenological model and a CMIP3
GCM predicted that spring leaf out will arrive later in
themid-latitudes of the Eastern US (Morin et al 2009),
where we projected much earlier spring onset.
Detailed phenological models may be required for
species-specific models, whereas our study was
designed to capture ecosystem green up in general, for
which the extended SI-x are ideal (Schwartz
et al 2013).

Future changes in false spring risk depend on the
relative change in the timing of spring onset and the
last spring freeze (Cannell and Smith 1986, Peterson
and Abatzoglou 2014). While both relate to changes in
temperature, differences arise because spring phenol-
ogy is a cumulative process throughout the spring
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meanTMin in the 7 days before and after leaf out or first bloomwithin each year, then averaged over the historical and end of the
century time periods.

9

Environ. Res. Lett. 10 (2015) 104008 A J Allstadt et al



whereas a single cold night can cause a hard freeze.
Though our early definition was common enough to
strain the term false spring, the shared spatial patterns
indicate that future patterns of damaging false springs
will likely be somewhere between our two ‘bookend’
scenarios (figure 4). We projected only slightly earlier
spring onset along the Gulf Coast, where projected
increases in temperature nearly eliminated freezing
temperatures, causing a large reduction in the risk of
false springs. Similarly, decreases in false springs
risk in the Northern forests were the result of a pro-
jected decrease in late cold temperatures, and only a
slightly earlier spring onset in a region where photo-
period remained an important component of the phe-
nology. This difference in timescales was particularly
evident in the Great Plains ecoregion, where the
cumulative warm spells caused large shifts in leaf out
and first bloom. These dates changed more than the
projected mean temperature increases would suggest,
causing temperatures around those dates to become
cooler at the end of the century than historically.
Although itmay at first glance be counterintuitive that
increasing mean temperatures could increase the
risk of a false spring, the phenomenon has already
been reported in historical studies (Inouye 2008,
Augspurger 2013).

Plants face an evolutionary tradeoff between the
benefit of earlier leaf emergence, and hence, a longer
growing season, and the risk of tissue damage from a
false spring. Variation in internal responses to envir-
onmental cues may allow some individuals to survive
the opposing selective pressures from earlier leaf out
and risk of tissue damage (Leinonen and Hanni-
nen 2002, Gömöry and Paule 2011). Though extended
SI-x are static, our results suggest these selective pres-
sures will continue. Throughout most of the US a
similar or reduced risk of false springs indicates that
plants could continue their present responses to envir-
onmental cues, and the resulting earlier spring growth
would have little negative consequence, but it may
mean missing the benefit of a longer growing season.
However in the Great Plains, conditions may favor
individuals that demonstrate delayed spring leaf out
and avoid the increased risk of tissue damage from
false springs.

Given changing plant phenology, maintaining
current plant-animal interactions will require evolu-
tionary or behavioral adaptation by dependent ani-
mals (Visser and Holleman 2001, Berteaux et al
2004). However, animals may respond to different

environmental cues than plants. For example, long-
distance migratory birds respond to cues present in
their overwintering habitat, such as day length, while
plants in their summer breeding grounds respond to
local environmental cues like temperature. Birds
that have adapted to migrate earlier have maintained
their population levels, while birds that retained his-
torical temporal patterns inmigrations have declined,
at least in part due to phenological mismatches with
plant-based resources (Saino et al 2011, Clausen and
Clausen 2013). Increasing temperatures have led to
poor synchronization between moth emergence and
leaf out of host trees (Visser and Holleman 2001).
Ultimately, the ability of a species to respond to
rapid phenological changes will depend upon genera-
tion time, levels of genetic variability, and the plasti-
city of phenological and behavioral traits (Berteaux
et al 2004).

In summary, our projections indicate that wide-
spread historical advances in spring plant phenology
will continue into the future, albeit with considerable
spatial variation in the rates of change and the risk of
false springs. Extensive regional variation emphasizes
the need for future predictions that are even more
fine-scale and species specific, to better understand the
potential effects on natural and agricultural systems.
To facilitate such research, we have created an online
repository of weather data. The data presented here
and more can be downloaded at http://silvis.forest.
wisc.edu.
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AppendixA.Model average results for
RCP4.5
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Figure A1.BCCAmodel average day of year (DOY) for (left) leaf out and (right)first bloomdate. (Top)Average leaf out and first bloom
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MediterraneanCalifornia, (3) Southern Semi-AridHighlands (4)Temperate Sierras, (5)TropicalWet Forests, (6)Northern Forests,
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Remaining subplots indicate themean changes in phenological events between the (top)historical period (1950–2005) and (middle)
mid-century (2041–2070) and (bottom) end-century (2071–2100) time periods for the RCP8.5 high emission scenario. Changes at all
locations were statistically robust among the climatemodels.
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Appendix B. Results for individual climate
model

Figure B1.Change in leaf out fromhistorical period (1950–2005) to end-century (2071–2100) for RCP8.5. Fullmodel names in table 1
of themain text. Continued, and color legend, infigure B2.
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Figure B2.Change in spring onset fromhistorical period (1981–2010) to end-century (2071–2100) for RCP8.5. Fullmodel names in
table 1 of themain text. Continued fromfigure B1.
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Figure B3.Change infirst bloom fromhistorical period (1950–2005) to end-century (2071–2100) for RCP8.5. Fullmodel names in
table 1 of themain text. Continued, and color legend, infigure B4.
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Figure B4.Change infirst bloom fromhistorical period (1981–2010) to end-century (2071–2100) for RCP8.5. Fullmodel names in
table 1 of themain text. Continued fromfigure B3.
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Figure B5.Change in annual probability of an early false spring (FSEarly, based on leaf out) from the historical period (1950–2005) to
the end century (2071–2100) for RCP8.5. Fullmodel names in table 1 of themain text. Continued, and color legend, infigure B6.
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Figure B6.Change in annual probability of FSEarly from the historical period (1950–2005) to end-century (2071–2100) for RCP8.5.
Fullmodel names in table 1 of themain text. Continued fromfigure B5.
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Figure B7.Change in annual probability of a late false spring (FSLate, based on first bloom) from the historical period (1950–2005) to
the end century (2071–2100) for RCP8.5. Fullmodel names in table 1 of themain text. Continued, and color legend, infigure B8.
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AppendixC.Data validationwithMaurer
historical data

Here, we conduct a validation of leaf out, first bloom,
and false springs values calculated from the BCCA
downscaled climate models versus those calculated
from Maurer gridded historical temperature records
(Maurer et al 2002). This dataset provided a natural
comparison because it was used in the downscaling of
the BCCAdata itself (Bureau of Reclamation 2014).

The mean values of leaf out and first bloom were
very similar between the Maurer and BCCA results
(figures C1 and C2 top). Differences do exist, but they

are small and not readily viewable on the map. Inter-
annual variability in leaf out and first bloom were
higher in the BCCAmodels, thoughwe observed simi-
lar spatial patterns of variability with the Maurer data.
There was considerable spatial variation in trends of
spring onset through the base period for both Maurer
(figures C1 and C2) and individual BCCAmodels (not
shown). However, the BCCAmodel average smoothed
over most of this variability, and there was typically a
slight shift earlier in these dates through time. For both
definitions of false springs, spatial patterns were nearly
identical between the Maurer and BCCA model aver-
age values (figures C1, C2, bottom).

Figure B8.Change in annual probability of FSLate from the historical period (1950–2005) to end-century (2071–2100) for RCP8.5. Full
model names in table 1 of themain text. Continued fromfigure B7.
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FigureC1.Comparison of 1950–2005 leaf out (rows 1–3) and (bottom row) early false springsmeasures calculated between (left)
Maurer historical gridded data and (right)model average frombias correction constructed analog (BBCA) statistically downscaled
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AppendixD. Comparison ofC# code
againstMatlab package

To rapidly process our large set of data, we wrote code
to calculate the extended SI-x and associated values in
the C# language. We followed the documentation
provided in Ault et al (2015) in writing the code. In this
appendix we evaluate output from our code against
the recent version of the associated Matlab script
(si_ml_v6.0.0) associated with Ault et al (2015), and
use test weather station data provided in the Matlab
package.

We found that in almost all instances, the C# code
produced exactly the same results as the Matlab code
for leaf out, first bloom, and all of the predictor vari-
ables therein. However, in rare cases, we found differ-
ences in leaf out date. First bloomwas unaffected other
than as a results of a change in leaf out date, so we do
not consider it further here. After thoroughly analyz-
ing the code, we found that the issue stems from a line
in the Matlab code (Line 61 in leaf.m) that skips all
processing on days that where themaximum tempera-
ture is below the baseline threshold. This was likely
intended to save processing time on days that cannot
contribute GDH, or to match legacy programs, but

unfortunately this causes problems in lagged GDH
values that the program stores (e.g., Line 124-5 in
leaf.m).

We show an example below using the DDE2 com-
ponent of SI-x, the sum of GDH over the current day
and previous two days. In table D1, the GDH has not
been calculated for the days of year 5 and 6 because the
daily maximum temperature was below the baseline
temperature. However, we can see that the lag variable
has not been updated, and the DDE2 value for day of
year 7 is the sum of days 3, 4, and 7 (highlighted in
bold), rather than 5, 6, and 7. Values from theC# code
or modified Matlab code also produce zero GDH for
days 5 and 6, but these zeros are properly included in
theDDE2 total for day 7 (tableD2).

Because these values occur when temperatures are
low, these changes in, e.g., DDE2, do not directly cause
changes in the leaf out date. Instead, occasionally this
type of error can cause the loss or gain of a warm spell,
which are cumulative throughout the year (see meth-
ods). While this issue can shift the date of spring onset
by a few days at a location within a year, the issue was
rare and exploratory analysis showed no noticeable
difference in the time period averages in the main text,
within or among models, using the unmodified
Matlab code or theC# code.
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