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A B S T R A C T

The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfire risk to

lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more

susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread,

which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and

topography. The goal of our study was to assess wildfire risk to a 60,000 ha WUI area in northwestern

Wisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic

fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial

pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to

assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn

probability maps were intersected with maps of structure locations and land cover types. The

simulations revealed clear hotspots of wildfire activity and a large range of wildfire risk to structures in

the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the

entire landscape, as well as to different land cover classes and individual structures. Moreover, the

spatial pattern of risk was significantly different between extreme and normal weather conditions. The

results highlight the fact that extreme weather conditions not only produce higher fire risk than normal

weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is

of great importance for fire management in WUI areas. In addition, the choice of weather data may limit

the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future

scenarios where weather conditions are unknown. Our approach to modeling wildfire risk to structures

can aid fire risk reduction management activities by identifying areas with elevated wildfire risk and

those most vulnerable under extreme weather conditions.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Fire regimes of many ecosystems in the United States have been
altered both by increasing numbers of human-caused ignitions
(Syphard et al., 2008, 2007), and decades of fire suppression
causing fuel accumulation (Hessburg and Agee, 2003; Agee, 1998).
These two trends create management challenges, especially in
areas where houses intermix or intermingle with natural vegeta-
tion, i.e., the wildland–urban interface (WUI) (Radeloff et al., 2005).
Potentially high wildfire risk in the WUI raises the question of how
to minimize wildfire risk to human lives and properties, and this
requires knowledge about the current and future extent of the
* Corresponding author. Tel.: +1 608 263 4356; fax: +1 608 262 9922.
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WUI, its socio-economical characteristics, and about likely fire
patterns.

In 2000, the WUI area in the conterminous U.S. covered about
9% percent of the land area, and contained 39% of all houses
(Radeloff et al., 2005). Housing growth in the U.S. is widespread,
especially beyond the urban fringe (Haight et al., 2004; Radeloff
et al., 2005), and these growth trends are likely to continue (Nowak
and Walton, 2005). Future housing growth is predicted to increase
the overall area of the WUI as well (Nowak and Walton, 2005;
Theobald and Romme, 2007). Housing development also alters the
fire size distribution in the vicinity of the WUI, and can directly and
indirectly lead to increases in ignitions, but most fires are quickly
extinguished and fire sizes remain small (Spyratos et al., 2007). The
paradox of the WUI is that although more fires occur, they are
generally smaller than backcountry wildfires due to early
detection, intense suppression efforts and better firefighter
accessibility. However, every ignition source has the potential to
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grow into a large fire. Risk is influenced both by changing patterns
of the landscape values at risk (i.e., homes) and the process
generating the risk (ignitions and fire spread). The large and
increasing number of lives and structures that are potentially
exposed to wildfire hazard highlights the need to quantify wildfire
risk in the WUI so that this risk can be minimized.

Finney (2005) defined fire risk as the combination of two main
factors: [1] fire behavior distribution (e.g., flame lengths, energy
release factors); and [2] fire effect, which is the expected net value
change associated with a given fire behavior (Ager et al., 2006):

E½n� ¼
XN

i¼1

Xn

j¼1

pðFiÞ½Bi; j � Li; j� (1)

where E[n] is the expected net value change resulting from all N fire
behaviors, p(Fi) is the probability of an i fire behavior, and Bij and Lij

are the jth values benefits and losses resulting from the ith fire
behavior respectively (in principle, there could be benefits from
fire). Fire effects represent the impact of fire on landscape values,
such as damage to structures (e.g., houses and roads, which are
more easily quantified), or change of habitat and ecosystem
services (i.e., non-market values that are difficult to assess). Notice
that this definition of fire risk differs from studies were fire risk is
merely the chance that a fire might start (Hardy, 2005), and follows
the definition by Bachmann and Allgower (2001). Similarly,
Blanchi et al. (2002) defined fire risk as the combination of fire
hazard, risk potential, and vulnerability. All fire risk assessment are
different from fire danger assessments (e.g., San Miguel-Ayanz
et al., 2003), such as the national fire danger rating system
(Deeming et al., 1977), that summarize information about fire
behavior and ignition risk at a regional scale using climate records
and weather forecasts (Hessburg et al., 2007). Fire danger rating
systems do not calculate explicit burn probabilities, and cannot
assess the effects of potential fire events on landscape values.

The probability of a given fire behavior needs to account for fire
spread which is largely dependent on spatio-temporal variation in
ignitions, weather, topography, and fuels (Finney, 2005; Carmel
et al., 2009). Burn probability maps should represent a wide range of
ignition locations, weather conditions, and the resulting fire spread.
This requires data for a large number of fires, based on many ignition
locations and various weather conditions. In practice, it is impossible
to obtain or simulate data for the infinite number of possible
combinations of ignitions and weather conditions. Wildfire risk
studies thus commonly focus on extreme weather conditions, since
these favor the occurrence of large fire events that are harder to
suppress, and pose the highest risk (Finney, 2005).

Empirical determination of fire risk requires information on an
adequate number of fire occurrences for each weather condition,
and an extensive suite of biophysical variables. In most places,
these requirements (especially when fire records are scarce) limit
the feasibility of an empirical approach (Brillinger et al., 2006;
Wiitala, 1999). A solution is to use fire rotation times, which were
used to assess the risk of stand replacing fires in the WUI in
Northern lower Michigan (Haight et al., 2004). However, analyses
using fire rotation data assume that future fire regimes will be
similar to those of the past, and this may not be the case as
landscapes become more settled and climate changes (Syphard
et al., 2007; Lenihan et al., 2003). Additionally, empirical analyses
use extensive spatial units over which fire histories are aggregated.
These units may lack the spatial resolution needed to conduct fine-
scale risk analyses, especially because fine-scale patterns of fire
spread are difficult to account for with static statistical models.
Another type of risk analysis is semi-probabilistic (or semi-
empirical), in which historical fire data is complemented by field
experiments or expert knowledge in order to introduce a
mechanistic component into the empirical model (Blanchi et al.,
2002).

Simulation modeling offers an alternative to empirical fire risk
assessments since it does not require historical data, and rapidly
rising computing power continues to expand its feasibility.
Existing fire models can support simulations that provide detailed
fire risk assessments, as shown in several recent studies. Several
fire models have been used for fire risk assessments. BehavePlus
(Andrews, 2007) is a non-spatial model that is used to gain better
understanding of fire behavior, effects, and environment. FlamMap
(Finney, 2006) adds the spatial component to BehavePlus, by
calculating fire behavior separately for each pixel in the landscape,
while using temporally constant weather conditions that are
allowed to vary in space. Fire Area Simulator (FARSITE) (Finney,
1998) is a spatially explicit model that adds the temporal
dimension to fire behavior, and allows for fire growth simulations.
Minimum travel time (MTT) (Finney, 2002) is also a spatially
explicit model that simulates fire spread across the landscape, but
assumes temporally constant weather conditions. In Greece,
spatially explicit fire risk was modeled as a function of socio-
economic variables, biophysical factors, fuels, topography, and
weather (Bonazountas et al., 2005), and resulted in five fire-related
risk maps: [1] socioeconomic risk; [2] physical risk; [3] fire
occurrence risk (equivalent to burn probability); [4] potential
damage risk; and [5] integrated risk. In another analysis, areas with
high fire potential and fire movement corridors were identified in a
nature reserve in Brazil using FARSITE to simulate fire spread from
four ignition points (Mistry and Berardi, 2005). FARSITE was also
used to assess fire risk in Mt. Carmel, Israel using 600 random
ignitions and randomly sampled weather and wind sequences, and
results showed a good agreement between the spatial patterns of
the simulated burn probabilities and actual fire records (Carmel
et al., 2009). A similar approach was taken in a study that modeled
wildfire risk to the habitat of an endangered owl species in Central
Oregon (Ager et al., 2007). In that work, wildfire spread was
simulated from 1000 random ignitions using MTT with constant
weather conditions that corresponded to the conditions during an
actual wildfire in that area. MTT also predicted burn probabilities
around Missoula, Montana using 20,000 random fires, based on
98th percentile weather conditions (Finney, 2005), but the author
cautioned that the resulting map has limited value for risk
assessment, since MTT assumes constant weather conditions. To
date, the simplifications necessary to conduct a robust wildfire risk
assessment in WUI areas using spatially explicit fire simulation
models precluded use of varying weather conditions.

The primary objective of this study was to assess wildfire risk to
structures and land cover types in a WUI area in northwestern
Wisconsin. The secondary objective was to explore how using
extreme versus normal weather data in the models affected the
predicted burn probability of the landscape and the wildfire risk to
the structures in the WUI.

2. Methods

2.1. Study area

Our study was conducted in a 60,000 ha area west of Minong,
northwestern Wisconsin, bordered by U.S. Highway 53 on the east,
and the Namekagon and Saint Croix Rivers on the west (Fig. 1). We
selected this area for our study because it is representative in terms
of housing growth patterns for many areas in the rural U.S.
Midwest, and since it is an area with comparatively high fire
frequency.

Our study area is part of the northwestern Wisconsin Pine
Barrens, a glacial outwash plain with very sandy soils. The
topography is flat to gently rolling, with elevations ranging from



Fig. 1. Land cover map of the study area (derived from the 2001 National Land Cover Database), and the location of the study area in northwestern Wisconsin (black polygon).

A. Bar Massada et al. / Forest Ecology and Management 258 (2009) 1990–19991992
270 to 400 m. The water table is high, and the study area contains
many lakes. Climate is characterized by cold winters and short,
mild summers. The mean January temperature and precipitation
are �8.9 8C and 30.2 mm, respectively; and the mean August
temperature and precipitation are 19 8C and 106.4 mm, respec-
tively. The predominant wind direction is northeast, though wind
directions vary over the year, and wind speeds are generally low
(the average speed between 1998 and 2009 was 10.6 km/h). The
northwestern Wisconsin Pine Barrens are more fire-prone than
any other eco-region in the state (Radeloff et al., 2000). Historically,
wildfires are most frequent in April, when the relative humidity is
low and the vegetation is dry at the beginning of the growing
season (Sturtevant and Cleland, 2007; Cardille and Ventura, 2001).

Vegetation is a mosaic of forests, clear cuts, and agricultural
fields. The dominant tree species are jack pine (Pinus banksiana

Lamb), accompanied by red and white pine (Pinus resinosa Ait. and
Pinus strobus L., respectively); burr, red, and pin oak (Quercus

macrocarpa Michx., Quercus rubra L., and Quercus ellipsoidalis E.J.
Hill, respectively); and trembling aspen (Populus tremuloides

Michx.) (Radeloff et al., 1999). According to the National Land
Cover Data (NLCD, 2001), the major vegetated land cover types are
deciduous forest (41%), evergreen forest (24%), herbaceous wet-
lands (14%), and grasslands (5%). Other, less common land cover
types include woody wetlands, cultivated crops, scrublands, mixed
forest, and pastures (Fig. 1).

Logging, which started in the mid-18th century, began a
century of major land use changes (Radeloff et al., 1999). Logging
slash provided fuel for many wildfires and until approximately
1930, logging, fires, and farm settlement opened the landscape and
largely removed forest cover. In the 1930s, reforestation began and
so did fire suppression. In recent decades, there has been an
increase in housing development, mainly for recreational pur-
poses, with the majority of new houses being built near lakes
(Gonzales-Abraham et al., 2007a, 2007b). In many cases, houses
are built amidst tall woody vegetation, consisting of pine and oak
species. The majority of WUI in the study area is characterized as
intermix, in which housing density is low and wildland vegetation
cover is high (Radeloff et al., 2005).

2.2. Fire models

In order to assess fire risk, we used a dynamic modeling
approach. We simulated wildfire spread and behavior with two
commonly used models: FARSITE (Finney, 1998) and MTT (Finney,
2002), as implemented in FlamMap (Finney, 2006). FARSITE is a
dynamic, spatially explicit fire model that uses the Huygens
principle of wave propagation to determine the expansion of a
polygonal fire front through time (Richards, 1990). FARSITE
distinguishes between two fire behaviors and uses separate
models for surface fires (Rothermel, 1972) and crown fires (Van
Wagner, 1977). FARSITE requires a large set of input parameters to
capture weather, fuels, and topographic elements. Weather data is
supplied as streams of temporal data, consisting of minimum and
maximum daily temperature and relative humidity (and their



Table 1
Description of fuel models in the study area.

Fuel model Code Description

91 NB1 Urban

93 NB3 Agriculture

98 NB8 Water

99 NB9 Barren

101 GR1 Grass is short naturally or after heavy grazing

103 GR3 Continuous, coarse humid climate grass, any shrubs do not affect fire spread

105 GR5 Humid climate grass, fuelbed depth about 2 feet

106 GR6 Continuous humid climate grass, not so coarse as GR5

108 GR8 Continuous coarse humid climate grass, spread rate and flame length may be extreme if grass is fully cured

122 GS2 Shrubs are 1–3 feet high, grass load is moderate, spread rate high and flame length moderate

123 GS3 Moderate grass/shrub load, depth is less than 2 feet, spread rate is high and flame length is moderate

142 SH2 Woody shrubs and shrub litter, fuelbed depth about a foot, no grass, spread rate and flame low

161 TU1 Low load of grass and/or shrub with litter, spread rate and flame low

162 TU2 Moderate litter load with some shrub, spread rate moderate and flame low

165 TU5 Heavy forest litter with shrub or small tree understory, spread rate and flame moderate

182 TL2 Broadleaf, hardwood litter, spread rate and flame low

183 TL3 Moderate load conifer litter, light load of coarse fuels, spread rate and flame low

186 TL6 Moderate load broadleaf litter, spread rate and flame moderate

201 SB1 Light dead and down activity fuel, fine fuel is 10–20 t/ac, 1–3 in. in diameter, depth less than 1 feet, spread rate moderate and flame low
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corresponding time of day), daily precipitation, and hourly wind
speed, direction, and cloud cover. Fuel data uses either the 13
Anderson fuel models (Anderson, 1982), the 40 Scott and Burgan
fuel models (Scott and Burgan, 2005), or custom fuel models.
Additional input data includes GIS raster layers of elevation, slope,
aspect, canopy cover, crown height, crown base height, and crown
bulk density. The user defines the ignition points and the length of
the simulation. The model generates the following outputs: fire
arrival time, fireline intensity, flame length, rate of spread, heat per
unit area, reaction intensity, crown fire activity, and spread
direction.

MTT (Finney, 2002) is a much faster algorithm than FARSITE and
predicts fire behavior using constant weather conditions and wind
directions for the duration of the fire. Here, we used MTT to speed
up the analysis when constant weather conditions were used. MTT
calculates the fastest fire travel times along straight lines
connecting cells in a grid. Calculations are based on fire behavior
models similar to the FARSITE surface fire module (Rothermel,
1972). MTT uses the same inputs as FARSITE, and the results of
both models are practically interchangeable when weather
conditions are constant (Finney, 2002). The assumption of constant
weather conditions limits the feasibility of using MTT for
simulating long fire events, but for shorter burn times, its results
are acceptable (Finney, 2005).

We used FARSITE and MTT to simulate fire behavior following
6000 random ignitions across the study area (excluding water
bodies). The duration of all fires was set to 12 h, since according to
the Federal Wildland Fire Occurrence Data almost all fires in the
region are suppressed within that period (http://wildfire.cr.usgs.-
gov/firehistory/data.html). The 6000 FARSITE simulations used
normal weather sequences, described in detail below. For each fire,
the model calculated the fireline intensity, rate of spread, spread
direction, and fire perimeter. MTT simulations were split into 64
sets of multiple randomly ignited fires under extreme weather
conditions (see Section 2.4), with the total number of fires being
6000. The large number of FARSITE simulations was carried out by
automating the graphical user interface of FARSITE using HP
QuickTest professional, a functional software testing program.

2.3. Input themes

The fuel and topography inputs required for both models were
downloaded from LANDFIRE (http://www.landfire.gov/) at 30-m
spatial resolution. The objective of the LANDFIRE project is to
provide nationwide, landscape-scale geospatial products to sup-
port fire and fuels management planning (Rollins and Frame,
2006). LANDFIRE products include all of the spatial data required to
run FARSITE and MTT, and are based on Landsat data, extensive
field samples, and statistical modeling. We selected the 40-
category fuel model map of Scott and Burgan (Table 1) for our
study in order to increase ecological realism. After initial
simulations, it became apparent that the representation of roads
in the Scott and Burgan map was problematic, since many roads,
including highways, were discontinuous, and this allowed fires to
spread across these de facto firebreaks. We thus corrected road
representation in the fuel map with US census bureau TIGERLINE
road data downloaded from the Environmental Systems Research
Institute (ESRI, http://www.esri.com/data/download/census2000_
tigerline/index.html). The vector road data was integrated into the
fuel map, and the road pixels were reclassified into one of the two
fuel types. TIGERLINE road categories that represent primary and
secondary roads, usually wider than 30 m (A21 and A31 in the
study area) were classified as ‘‘urban’’ fuel type (NB1) and no
surface fire could spread across these. All other roads were
classified as short grass fuel type (GR1) that allows slow fire
spread, since minor roads are typically narrower than 30 m (the
pixel size of the fuel map) and may be partially vegetated (in the
case of dirt roads). The original representation of roads in the
LANDFIRE data would have artificially introduced fuel breaks,
while allowing unconstrained fire spread in other areas where
roads were discontinuous. Our approach is more conservative than
the omission of roads from the fuel map, an alternative approach
previously taken by LaCroix et al. (2006) that modeled the effect of
landscape structure on wildland fire spread in the Chequamegon
National Forest, to the East of our study area. However, classifying
smaller roads as short grass fuel types maintains realism, in that
this area’s sandy soils and flat topography lend themselves to a
proliferation of small, minimally-maintained two-tracks.

2.4. Weather data

We used two types of weather scenarios. Actual, hourly
weather sequences were used for the FARSITE simulations, and
95th percentile constant weather data was used for the MTT
simulations. Based on 15 years of historical fire data that included
13,513 fires (including ignition location, cause, duration, and size),
Sturtevant and Cleland (2007) reported that the fire season in
northern Wisconsin begins in March and ends in November, with

http://wildfire.cr.usgs.gov/firehistory/data.html
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Table 2
The wind data used for the extreme weather MTT simulations.

March April May June July August September October November

N 88 185 191 33 36 7 11 49 19

NE 121 1501 490 126 95 20 15 43 38

E 6 103 36 15 18 13 7 7 10

SE 0 0 24 0 3 2 0 0 0

S 39 41 191 50 18 21 30 10 3

SW 28 123 155 58 51 27 15 30 15

W 72 267 191 113 95 33 30 99 39

NW 110 226 167 58 63 23 24 119 53

Total (%) 463 (7.7) 2446 (40.8) 1446 (24.1) 454 (7.6) 378 (6.3) 147 (2.4) 133 (2.2) 356 (5.9) 178 (3)

Speed (km/h) 22.53 27.35 24.14 20.92 20.92 19.31 20.92 22.53 22.53

Values represent the number of times a given wind direction is used in a given month. The corresponding wind speed (constant per month) appears in the bottom row.
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the majority of fires occurring in April (�40%). Additionally, there
is considerable monthly variation in fire occurrence during the fire
season. Accounting for that, we weighted our weather data
according to the temporal distribution of fires and separated the
6000 ignitions into nine monthly subsets according to the fraction
of fires in each month in the historical dataset (i.e., N = 2446
ignitions were assigned to April, since 40.8% of the actual fires
occurred in April). For the FARSITE simulations, N normal weather
sequences of 12 h were picked at random for each monthly subset.
Hourly weather data that included temperature, relative humidity,
wind speed and direction, and precipitation was obtained from a
10-year dataset (1999–2008) of hourly weather data collected at
the Minong remote automated weather station (RAWS) at the
eastern edge of our study area (http://www.raws.dri.edu/cgi-bin/
rawMAIN.pl?sdWMNN).

For the MTT simulations, the 95th percentile temperatures and
relative humidity for each month were calculated from the same
weather dataset used for the FARSITE simulations. The weather
data were used solely for fuel moisture calculation by MTT before
the start of the simulations. Wind speed and direction have a large
impact on fire spread in MTT, but they both vary considerably
through time, even at a monthly scale. We thus split the MTT
simulations into additional subsets according to wind directions.
For each month, we calculated the 95th percentile wind speed. For
that wind speed, we determined the frequency distribution of all
major wind directions during that month (i.e., actual directions
were binned into the eight major wind directions: N, NE, E, etc.).
The possible total number of simulation subsets that could result
from this process is 72 (nine months � eight wind directions). In
our case, six subsets had no winds at the 95th percentile speed
from the Southwest, so the actual number of subsets we used was
66 (Table 2).

2.5. Structure data

In the U.S., decennial housing data are available nationwide at
the census block level. Census blocks are delineated by roads,
waterways or political boundaries, and in urban areas they can be
as small as a single block. However, the size of census blocks is
highly variable, and in rural WUI areas like northern Wisconsin, the
size of these blocks is relatively large, so that the spatial resolution
of housing data is sometimes much coarser (few kilometers) than
the resolution of the fire model outputs (30 m). We therefore
assessed the risk to structures rather than by census blocks. We
define structures as human-built objects that may be houses or
non-housing buildings (e.g., commercial or agricultural buildings).
Individual structures were digitized manually as points from 1-m
resolution color aerial photographs from the summer of 2005
(National Agricultural Imagery Program), available at the National
Map seamless server (http://seamless.usgs.gov/index.php). In
places where structures appeared to be obstructed by overhead
tree canopies, driveways and docks (near lakes) were used as
indicators of the presence of structures (Gonzales-Abraham et al.,
2007b). Overall, 3768 structures were mapped in the 600 km2

study area.

2.6. Risk assessment

Two burn probability maps were constructed: one for the normal
and one for the extreme weather scenarios, by summing the burn
areas of all individual fires, and dividing the sum by the total number
of ignitions (6000). The resulting map portrays the burn probability
for each pixel given that there were 6000 random ignitions under
normal weather conditions for the FARSITE simulations, and 6000
under extreme weather conditions for the MTT simulations. The
structures map was overlaid on the burn probability maps, and for
each structure the burn probability was derived from the burn
probability map under the assumption that if a pixel containing a
structure burned, the structure burned as well. In this manner, we
identified structures with higher fire risk, though we simplified the
risk term (Eq. (1)) by defining the loss term at the structure level,
regardless of its actual economic value. We acknowledge that the
actual ignition of a structure within a given fire perimeter will
depend on other factors, such as building materials, defensible
space, and so on (Cohen, 2000), but we had neither housing data that
could capture these factors nor the empirical data to model the
ignition probabilities as a function of these factors.

We also assessed fire risk in relation to different land cover
types and used the 2001 National Land Cover Data (NLCD) to
determine land cover in the study area. The NLCD cover classes
differ from the fuel maps that were used for the fire simulations,
since fuel models account also for the vertical structure of
vegetation and the existence of understory vegetation which is
not captured by the broader NLCD classes. In addition, LANDFIRE
data was developed using different algorithms than the NLCD,
though NLCD was used to validate some aspects of LANDFIRE. The
land cover map was overlaid on the burn probability maps, and for
each land cover class we calculated the distribution of burn
probabilities. The four NLCD classes that correspond to non-
vegetated areas and extensive human development (open space,
low intensity, medium intensity, and high intensity development)
tended to overlap with road and non-fuel areas, and were therefore
omitted from the analysis.

The effect of different types of weather data (extreme versus
normal) on fire risk were assessed by comparing the distributions
of risk levels (number of burns per structure and burn probability
by cover class) and the spatial configuration of burn probabilities.
In addition, fire risk to structures was calculated for the entire
study area using Eq. (1). Since we examined only a single fire
behavior (burned/unburned), and fires provided just losses, the

http://www.raws.dri.edu/cgi-bin/rawMAIN.pl?sdWMNN
http://www.raws.dri.edu/cgi-bin/rawMAIN.pl?sdWMNN
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equation was modified as follows:

E½n� ¼
Xn

j¼1

pðFÞL j (2)

Fire risk (E) was therefore calculated as a linear combination of
burn probabilities and their corresponding number of structures.

3. Results

3.1. Fire patterns under normal weather conditions

Simulated fires under normal weather conditions were small,
with a mean fire size of 11.76 ha. The largest fire occurred in April,
covering an area of 253 ha in the western part of the study area.
The mean area of fires varied between months, with the spring fires
(March–May) being generally larger than fires in the subsequent
months (Fig. 2). The largest mean fire size occurred in March, after
which fire areas decreased continuously until September. During
the autumn months, mean fire size increased after the lowest fire
size in September, and peaked in November, though this peak was
lower than the average size of the spring fires.

The frequency distribution of all fires showed that the majority
of fires (54.7%) were smaller than 10 ha (Fig. 3). Only a small
proportion of fires (28 out of 6000) were larger than 100 ha. The
Fig. 2. Mean fire size per month in 6000 FARSITE simulations under normal weather

conditions. Error bars represent standard deviation.

Fig. 3. Size distribution of the 6000 FARSITE simulations under normal weather

conditions.
pattern of fire size distribution is similar to that found in other
studies (Ager et al., 2007) and to the actual fire size distribution
in northern Wisconsin according to the Federal Wildland
Fire Occurrence Data (http://wildfire.cr.usgs.gov/firehistory/
data.html).

The size and the date of individual fires could only be
summarized for the FARSITE normal weather simulations. The
MTT algorithm implemented in FlamMap calculates burn prob-
abilities for multiple fires with random ignition locations directly,
without providing individual fire characteristics. Therefore, we
could not compare the fire size distribution from the MTT
simulations to the FARSITE fire size distribution.

3.2. Burn probabilities

The burn probability maps show a clear spatial trend (Fig. 4). In
both models (and thus for both normal and 95th percentile
weather conditions), the ‘hotspot’ with the highest burn prob-
abilities across the largest area was in the western part of the study
area. This hotspot corresponded to a large open area with
continuous humid grassland (fuel type GR3). The southeastern
portion of the study area had much lower burn probabilities under
both weather conditions. This area contains greater proportions of
deciduous forests and agricultural fields.

Under extreme weather conditions, burn probability for any
pixel in the study area ranged from 0% to 0.37%, compared to 0% to
0.26% for the normal weather conditions. 84.56% of the terrestrial
area burned at least once under the extreme weather conditions,
compared to 62.87% under the normal conditions (Fig. 4). The
Spearman correlation between the two burn probability maps was
0.63 (P < 0.01).

3.3. Risk to structures

The overall risk to structures (Eq. (2)) was 1.07 and 0.48 for the
extreme and normal weather conditions, respectively. Under the
extreme conditions, 73% of the structures burned in at least one
simulation, and many structures burned in several simulations
(Fig. 5). In contrast, only 47% of the structures burned at least once
under the normal weather conditions. There were no structures in
the highest burn probability areas (e.g., in the hotspots), and the
maximal burn probability for any single pixel that contained a
structure (0.18% under extreme weather conditions) was less than
half of the maximum burn probability in the entire study area
(0.37%). The burn probabilities of structures under normal weather
conditions explained only a small portion of the variation of the
corresponding burn probabilities under extreme weather condi-
tions (Fig. 6), although the regression was significant (R2 = 0.055,
P < 0.001). The root mean square error between the burn
probabilities of structures under normal and extreme weather
was 0.032 (in percent, which corresponds to an RMSE of 1.93 fires
for burn events). The burn probabilities of the structures differed
significantly between simulations using different weather condi-
tions (Kolmogorov–Smirnov test, D = 0.28, P < 0.001).

3.4. Fire risk and WUI land cover

Different land cover classes exhibited varying burn probabil-
ities and these differences were generally consistent under both
weather conditions (Figs. 7 and 8). Extreme weather conditions
generated higher burn probabilities for all land cover classes, when
compared to normal weather conditions. Under extreme weather
conditions, the highest average burn probability occurred in the
grasslands/herbaceous vegetation class, which is concentrated in a
wildlife management area in the western part of the study area.
Lower burn probabilities were observed in scrub/shrubs, evergreen

http://wildfire.cr.usgs.gov/firehistory/data.html
http://wildfire.cr.usgs.gov/firehistory/data.html


Fig. 4. Simulated fire occurrence under normal weather conditions (using FARSITE, left) and extreme weather conditions (using MTT, right) based on 6000 random ignition

locations.
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forests, mixed forests, emergent herbaceous wetlands, and
deciduous forests (in this order). Cultivated crops and pasture/
hay had the lowest average burn probabilities. Under the normal
weather conditions, cultivated crops had a somewhat higher burn
probability, compared to its relative burn probability under the
extreme conditions. On the other hand, herbaceous wetlands had a
comparatively lower burn probability.

4. Discussion

We assessed wildfire risk to structures in a WUI area in
northwestern Wisconsin using fire simulation models. As
expected, fire risk to structures varied substantially in space,
and between weather conditions, even when ignition locations
were random. Although normal and extreme weather conditions
yielded generally similar spatial patterns of burn probability, the
fine-scale differences of fire risk (i.e., at the level of a structure)
were significantly different between normal and extreme weather
conditions.

In WUI areas, wildfires pose a risk to human lives and property,
highlighting the necessity for thorough risk analyses to aid
management activities (GAO, 1999). Yet, federal land management
agencies in the US have lacked wildfire risk analysis tools for years
(GAO, 2004). The method presented in this study might serve as a
supplementary tool that can aid management decisions in fire-
prone WUI areas, provided that the necessary data (weather, fuels,
and housing) are available. Building on prior studies (Finney, 2005;
Carmel et al., 2009; Ager et al., 2007), but taking them a step
further, we assessed fire risk using multiple simulations (6000) of
dynamic fire models under varying weather conditions and
ignition locations. The main strength of a multiple-simulation
approach is the potential to account simultaneously for the effects
of different factors that affect fire spread (i.e., weather, wind, and
ignitions). In the case of weather and wind, these factors can either
be based on actual data, or represent extreme cases, or examine
hypothetical conditions (such as the impact of climate change on
fire behavior) that may be assessed using future weather
predictions from models (Keane et al., 2008).

Fuel distribution has a large influence on fire spread in FARSITE
and MTT (and other fire models as well). Development of accurate
fuel maps that cover wide geographical extents has been a major
research task for many decades (Keane et al., 2001), and this
information is now available through the LANDFIRE project
(Rollins and Frame, 2006) for the entire United States. The
LANDFIRE data are the best available data for large-scale fire
simulations, and the only data that are readily available to
managers, but the information is not without problems. Inaccurate
mapping of burnable fuel types, which affects mainly the rate of
fire spread and its behavior and characteristics, is one issue; the
second is inconsistent mapping of unburnable surfaces (e.g., roads
and lakes). This can have large impacts on the spatial pattern of fire
spread, since the non-burnable surfaces act essentially as fire-
breaks. In initial tests, the inconsistent representation of the roads
in the fuel map we used lead to anomalies in fire spread. To
overcome this, we used TIGERLINE road data and recommend that
other analysts consider a similar approach when using fuel maps
from the LANDFIRE project for fire simulation on landscapes with
roads.

An additional input theme, ignition locations, may have a large
impact on the spatial pattern of fires. Burn probability maps are
often created using random ignition locations (Finney, 2005; Ager
et al., 2007; this study), but actual ignition locations are not
random. Ignition probabilities are generally higher near roads,
railroad tracks, power lines, and other areas of human activities
(Syphard et al., 2008; Sturtevant and Cleland, 2007; Vasconcelos
et al., 2001; Cardille and Ventura, 2001). However, ignition
probability modeling is not well developed and models do not
seem to generalize; they vary between areas, and may depend on
weather conditions, fuels, and the exact type of human activity.
Using inappropriate ignition patterns may bias the outcomes of
any spatial fire model, and introduce errors of unknown source,
magnitude and effect into fire risk assessment. And since we



Fig. 5. Distributions of burn probabilities across the study area (top), and for

structures (bottom). Extreme (MTT) and normal (FARSITE) weather conditions are

shown in black and gray, respectively.

Fig. 7. The percent cover of vegetated land cover classes (diagonal stripes) and their

mean burn probability under normal (gray) and extreme (black) weather

conditions.
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expect more ignitions to occur in the WUI, the risk assessment
might be highly sensitive to the parameters of the ignition model
(i.e., a small change in the ignition model may result in a large
change in fire risk). The only fire start model that contains our
study area (Sturtevant and Cleland, 2007) had a resolution too low
for our needs (2.6 km2 grid cells rather than point locations). In the
absence of a suitable ignition probability model parameterized for
Fig. 6. The relation between the number of times structures burn under normal

(FARSITE) and extreme (MTT) weather conditions following 6000 random ignitions

in the study area. Dot size is proportional to the number of occurrences.
our study area, we used a random ignition model to normalize the
effect of ignition locations. Our choice of a random ignition model
also enables future comparisons with similar studies in other
locales, especially where the ignition patterns are unknown (which
is common due to insufficient empirical fire data). However, it
would be interesting to examine the difference in fire risk resulting
from models based on random ignitions versus a suitable ignition
model, or empirical ignition data.

The choice of weather conditions had a significant effect on the
results of our fire models and consequently on the risk assessment.
It is not surprising that extreme weather posed a higher wildfire
risk than average weather. What we have shown here is that the
spatial pattern of risk (i.e., which structures are at higher risk or
which areas are more fire-prone) may also change, and these
changes can be quantified. Therefore, risk maps that are based on
extreme weather condition should be interpreted with care if they
are used for actual fire and fuel management, since they do not
necessarily reflect the most realistic spatial pattern of risk.
Furthermore, comparisons of risk maps from different areas need
to take into account the pronounced effect of weather conditions.
For example, the range of burn probabilities that were obtained for
the 95th percentile weather conditions were an order of
magnitude lower that those reported by Finney (2005) for the
landscape around Missoula, Montana under 98th percentile
weather conditions and constant wind speed and direction.

In our study area, fire risk to structures over the entire analysis
extent was twice as great under extreme weather conditions as for
the normal weather conditions. In addition, much larger propor-
tions of the study area and of structures were burned under the
extreme conditions. Even though these differences were expected
between such different weather scenarios, we were surprised by
the only moderate correlation between the burn probability maps.
We had expected that normal weather conditions would simply
result in uniformly lower burn probabilities. As expected, land
cover classes exhibited different fire risks. The fire risk of different
land cover types is affected by the biophysical properties of their
corresponding fuel types, but also by the interaction between
ignition locations, weather conditions, and the spatial patterns of
different land cover types. Grasslands had the highest burn
probability, twice as high as the forest type with the highest burn
probability, evergreen forests. The majority of grasslands are
located in a wildlife management area in the western part of the



Fig. 8. The distribution of number of fires (out of 6000 random ignitions) under normal (left column) and extreme (right column) weather conditions for the four dominant

vegetated land cover classes. Each bar represents a single burn probability, and its height depicts the percentage of pixels out of all pixels for the corresponding land cover

class.
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study area, where large and continuous grasslands allow rapid
wildfire spread. Though there are no houses or other structures in
the immediate vicinity of that fire hotspot, it may be desirable to
manage the fuels in this area to prevent fire spread and smoke
impacts to surrounding roads and communities.

The following management recommendations emerge from
our analysis: [1] it is crucial to obtain the best available fuel maps
prior to estimating fire risk. If LANDFIRE data is used, TIGERLINE
road data should be used to correct the misrepresentation of roads
in the fuel map; [2] Weather data should account for several types
of conditions (versus just extreme weather), preferably normal
fire season weather and extreme conditions weather, to represent
both sides of the spectrum of fire behavior (e.g., Cheyette et al.,
2008); and [3] a random ignition model should be used only in
cases where there is an insufficient fire record to support the
development of an empirical ignition model (e.g., Syphard et al.,
2008).

Despite the minor limitations of the LANDFIRE data, and the
FARSITE and MTT fire models, our results demonstrate that fire risk
assessments for large areas are feasible, and provide important
information for land managers. Due to the availability of LANDFIRE
products and RAWS weather data, it is possible to replicate this
approach in any place in the conterminous U.S., assuming that
structure data is obtained by manual digitization from high
resolution aerial imagery. While our study area represents mainly
WUI conditions typical for the northern Great Lakes region, which
is characterized by the abundance of lakes and a relatively flat
topography, our approach is general enough to be applied to any
WUI area. In WUI areas where topography plays a bigger role in fire
spread, the spatial heterogeneity of fire risk is expected to be more
pronounced (e.g., in the southern California mountainous WUI
where fire spreads mainly along canyons, which often contain
many structures, producing an extreme fire hotspot). Without fire
risk assessments, fuel management and other fire prevention
efforts are likely to be less effective. Our results also highlight that
patterns of risk vary depending on normal or extreme weather
conditions and that both types of risk patterns should preferably be
accounted for in risk assessments. We conclude that dynamic fire
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models are a promising tool for more robust wildfire risk
assessments, and that further research is warranted to validate
and enhance the quality of data sources that are used in these
models, and to develop realistic models of fire ignition locations.
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