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 Landscape pattern metrics are widely used for predicting habitat and species diversity. However, the relationship between 
landscape pattern and species diversity is typically measured at a single spatial scale, even though both landscape pattern, 
and species occurrence and community composition are scale-dependent. While the eff ects of scale on landscape pattern 
are well documented, the eff ects of scale on the relationships between spatial pattern and species richness and composition 
are not well known. Here, our main goal was to quantify the eff ects of cartographic scale (spatial resolution and extent) on 
the relationships between spatial pattern and avian richness and community structure in a mosaic of grassland, woodland, 
and savanna in central Wisconsin. Our secondary goal was to evaluate the eff ectiveness of a newly developed tool for 
spatial pattern analysis, multiscale contextual spatial pattern analysis (MCSPA), compared to existing landscape metrics. 
Landscape metrics and avian species richness had quadratic, exponential, or logarithmic relationships, and these patterns 
were generally consistent across two spatial resolutions and six spatial extents. However, the magnitude of the relationships 
was aff ected by both resolution and extent. At the fi ner resolution (10-m), edge density was consistently the best predictor 
of species richness, followed by an MCSPA metric that measures the standard deviation of woody cover across extents. At 
the coarser resolution (30-m), NDVI was the best predictor of species richness by far, regardless of spatial extent. Another 
MCSPA metric that denotes the average woody cover across extents, together with percent of woody cover, were always 
the best predictors of variation in avian community structure. Spatial resolution and extent had varying eff ects on the 
relationships between spatial pattern and avian community structure. We therefore conclude that cartographic scale not 
only aff ects measures of landscape pattern per se, but also the relationships among spatial pattern, species richness, and 
community structure, often in complex ways, which reduces the effi  cacy of landscape metrics for predicting the richness 
and diversity of organisms.   

 Habitat attributes are widely used as predictive variables 
when describing the distribution and spatial patterns of spe-
cies and communities (Guisan and Zimmermann 2000). 
More specifi cally, the type, structure, and cover of vegeta-
tion are frequently quantifi ed and incorporated into models 
that predict species occurrence, abundance, richness, and 
diversity (Bergen et al. 2007). Descriptors of habitat can be 
divided into two general types: local and landscape. Local 
descriptors (e.g. fi eld plots or individual pixels derived from 
remotely sensed data) quantify the habitat attributes at a 
plot level (i.e. within a very small spatial extent). Landscape 
descriptors, on the other hand, quantify the spatial pattern 
of habitat in a given area, at broader spatial extents than 
local descriptors (i.e. using groups of pixels that correspond 
to a larger area in the real world). When this information is 
based on remotely sensed data, the spatial resolution (i.e. the 
pixel size), the smallest unit of analysis within the extent, 
also has pronounced eff ects on the outcomes of the analysis 
(Wu 2004). 

 Several types of local habitat descriptors can be calcu-
lated from remotely sensed data. Most of these descriptors 
rely on multispectral satellite imagery, though active remote 
sensing tools such as LiDAR and SAR are emerging as use-
ful alternatives when the vertical structure of the vegeta-
tion is an important aspect of habitat quality (Bergen et al. 
2007, 2009, M ü ller et al. 2010). Th e normalized diff erence 
vegetation index (NDVI) (Tucker 1979), derived from mul-
tispectral imagery, is perhaps the most common metric for 
describing vegetation characteristics that are important as 
wildlife habitat (Kerr and Ostrovsky 2003, Gillespie et al. 
2008). However, the usefulness of NDVI as a direct pre-
dictor of species richness and composition varies among 
ecosystems and taxonomic groups (Fairbanks and McGwire 
2004, Seto et al. 2004, Foody 2005, Laurent et al. 2005, 
Ranganathan et al. 2007). Spectral mixture analysis, in 
which the relative cover of the main spectral components 
within pixels is derived, is often used to determine vegeta-
tion cover (Elmore et al. 2000, Asner et al. 2003), but also 
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has been used to predict avian species richness in urban 
parks (Bino et al. 2008). 

 Landscape based measures of habitat may use raw spectral 
values from remotely-sensed data directly, or be derived via 
a spatial analysis of classifi ed remotely-sensed data. Th e best 
example of a direct measure is the quantifi cation of struc-
tural heterogeneity of habitats with image texture measures 
applied to groups of neighboring pixels (Rey-Benayas and 
Pope 1995). Image texture from Landsat satellite data suc-
cessfully explained the occurrence of seven bird species in 
Maine (Hepinstall and Sader 1997) and the group size (i.e. 
a proxy for habitat quality) of greater Rheas in Argentinean 
grasslands (Bellis et al. 2008). Image texture derived from 
both high-resolution aerial photography (St-Louis et al. 
2006) and from Landsat imagery (St-Louis et al. 2009) also 
explained avian species richness in New Mexico desert. 

 Habitat description at the landscape scale, based on spa-
tial analysis of land cover classifi cations, is a core compo-
nent of the fi eld of landscape ecology. Th ere is a plethora 
of landscape metrics, which are mathematical and statisti-
cal indices that describe and quantify the spatial patterns 
of habitat maps (McGarigal and Marks 1995). During the 
past three decades, there were many attempts to elucidate 
the relationships between spatial pattern, as captured in 
landscape metrics, and species distributions, with varying 
levels of success. Recent examples include characterizing 
the occurrence of avian species (Cushman and McGarigal 
2004, Zuckerberg and Porter 2010), avian species richness 
(Tavernia and Reed 2010), plant community composition 
(Goslee and Sanderson 2010), and the occurrence of large 
mammals (Gaucherel et al. 2010). 

 Th e majority of local and landscape measures that are 
derived from remotely sensed data operate at a single spa-
tial scale (which consists of two components: resolution and 
extent). In addition, we distinguish between cartographic 
scale, which is a characteristic of the map depiction of the 
landscape, and ecological scale, which is a spatial level of 
organization in the real world. Hereafter, we will refer to 
scale in its cartographic context. Unfortunately, a single-
scale approach may limit the eff ectiveness of the analysis of 
species–habitat relations for three reasons. First, the exact 
spatial resolution and extent most strongly associated with 
spatial patterns of species occurrence are usually unknown 
(Marceau 1999, Cushman and McGarigal 2004, Li and Wu 
2004), since the human perception of the landscape may dif-
fer from the perception of other species (Johnson et al. 1992, 
Manning et al. 2004). Th erefore, it is often unclear which 
scale should be used in the analysis of species – habitat rela-
tionships, and studies have typically defaulted to the scales 
of the available environmental data (e.g. the resolution of 
remotely sensed imagery), which may diff er from the eco-
logical scales at which species interact with their environ-
ment (Wiens 1981). 

 Second, species may interact with their environments at 
several spatial scales simultaneously (Wiens and Rotenberry 
1981, Wiens and Milne 1989, Milne 1992, Lawler and 
Edwards 2006), thus variables that describe multi-scale 
habitat characteristics or how habitat changes with scale 
may prove to be more useful predictors of species – habitat 
relations than more static measures (Levin 1992), even 
when they are based on cartographic representations of 

scale and not ecological ones. Finally, habitat descrip-
tors (especially landscape metrics), are well known to be 
aff ected by scale in various ways, and often exhibit distinc-
tive scaling laws that vary considerably among metrics and 
habitat types (Wu et al. 2002, Neel et al. 2004, Wu 2004, 
Bar Massada et al. 2008). 

 While the eff ects of spatial scale on landscape metrics are 
well known (Wu et al. 2002, Neel et al. 2004, Wu 2004, Bar 
Massada et al. 2008), and the relationships between species
and landscape pattern are also well studied (Kumar et al. 
2006, Torras et al. 2008, Caprio et al. 2009, Rossi and 
van Halder 2010), the eff ects of scale on the relationships 
between species and landscape structure have received rela-
tively less research attention. Th ese eff ects are complex, and 
likely diff er among species and landscape types, since species 
perceive their environment in varying ways, and select their 
habitat hierarchically according to diff erent requirements 
at multiple scales (Wiens and Rotenberry 1981, Lawler and 
Edwards 2006). However, most prior studies attempted 
to fi nd the  ‘ right ’  scale (or scales) at which species – habitat 
relationships are strongest (Saab 1999, Lawler et al. 2004, 
Lawler and Edwards 2006, Doherty et al. 2008). In contrast, 
the questions of how the type (e.g. linear, quadratic, expo-
nential) and shape (e.g. intercept, slope, maxima) of species – 
habitat relationships are aff ected explicitly by scale have not 
been addressed before. 

 In an attempt to limit the eff ect of scale on the outcomes 
of spatial pattern analysis, we have previously developed 
multiscale contextual spatial pattern analysis (MCSPA), a 
pixel-scale approach to mapping spatial pattern at multiple 
scales simultaneously (Bar Massada and Radeloff  2010). 
MCSPA consists of two alternative approaches that quantify 
spatial context (i.e. the change in habitat cover at various 
spatial extents around every pixel in a landscape map) in a 
continuous manner, providing measures of habitat context 
for models of species occurrence, abundance, richness, and 
community structure. Th e two approaches are based on 
quantifying various characteristics of scalograms, which are 
functions that relate habitat cover to the size of the anal-
ysis window (i.e. N  �  N pixels or the corresponding areal 
extent) around a given focal pixel in a binary landscape map 
consisting of  ‘ habitat ’  and  ‘ non-habitat ’  pixels. MCSPA is 
conceptually related to previous methods where the proper-
ties of scalograms were used to quantify multiscale habitat 
structure. Earlier examples include fractal analysis (Milne 
1992), lacunarity analysis (Plotnick et al. 1993, Elkie and 
Rempel 2001), conditional entropy profi les (Johnson et al. 
2001), and cluster analysis of cover and connectivity at 
multiple scales (Riitters et al. 2000). Th e latter is the most 
closely related to MCSPA since it generates pixel-scale 
results, while all other approaches produce landscape-scale 
results (i.e. a single value for a given landscape). 

 In the fi rst MCSPA approach (MCSPAp), a third order 
polynomial is fi tted to the scalogram, and the four polyno-
mial coeffi  cients serve as descriptors of spatial context. In the 
second approach (MCSPAs), the mean, standard deviation, 
and the mean slope between the percent cover at the smallest 
analysis window and any other window serve as the descrip-
tors of spatial context. However, MCSPA metrics have not 
yet been applied as predictive variables in models of spe-
cies abundance, richness, or community structure, and it is 
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unclear if the theoretical advantages of MCSPA indeed result 
in higher predictive power. 

 Our objectives were: 1) to quantify the eff ect of spatial 
resolution and extent on the relationships between landscape 
and MCSPA metrics and, in turn, avian species richness 
and community structure in a mosaic landscape in central 
Wisconsin. Specifi cally, we were interested in the eff ects of 
scale on the type, shape, and predictive power of the model 
relating species richness, community structure, and land-
scape patterns; 2) to assess the usefulness of MCSPA metrics 
as predictive variables of avian species richness and commu-
nity structure, compared to the three most commonly used 
single-scale landscape metrics, and the most commonly used 
satellite-based vegetation index.  

 Methods  

 Study area 

 Th e study was conducted at Fort McCoy Military Installation, 
which covers 24 281 ha in southwestern Wisconsin, USA 
(Fig. 1). Fort McCoy is an operational military installation 

and roughly 50% of the post is off -limits to non-military 
personal. In the remaining area, three dominant habitat 
types occur, and their distribution depends on edaphic fea-
tures, elevation diff erences, and slope and aspect induced 
microclimates. Th ese habitats are 1) forbs and grass domi-
nated grasslands ( �  5% tree cover and low shrub cover); 2) 
oak savannas (5 – 50% tree cover with variable shrub cover); 
and 3) oak woodlands ( �  50% tree cover with variable 
shrub cover, Curtis 1959). Dominant tree species in these 
habitats include black oak Quercus  velutina , northern pin 
oak Q.  ellipsoidalis , bur oak Q.  macrocarpa , jack pine Pinus 
 banksiana , black cherry Prunus  serotina , red oak Q.  rubra , 
and white oak Q.  alba . Dominant shrubs include American 
hazelnut Corylus a mericana  and blueberry Vaccinium  angus-
tifolium , and dominant herbaceous species include big 
bluestem Andropogon  gerardii , little bluestem Schizachyrium 
 scoparium , and Pennsylvania sedge Carex  pensylvanica .   

 Avian surveys 

 Th e avian surveys were conducted from 2007 to 2009 and 
included 243 sample plots. Sample points were allocated 

  Figure 1.     Th e study area in Fort McCoy (left) and its location in Wisconsin (right, marked by the black rectangle). Th e sample plots are 
depicted as yellow circles.  
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woody cover at monotonically increasing rectangular win-
dow sizes around a focal pixel in a binary raster habitat map. 
We used rectangular windows as they maintain their shape 
regardless of window size, in contrast to circular windows, 
where in particular the edge length of small circles is aff ected 
by the pixel size. We also tested the three MCSPAp metrics, 
but their results were unsatisfactory, and we therefore omit-
ted them from the analysis. 

 Th e fi rst MCSPAs metric, S0, denotes the average woody 
cover across extents, and serves as a rough measure of cross-
scale habitat homogeneity: 
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S1 1

k 1
P L S0fi

2

i 1

k

�
�

−
−( )( )∑  (2) 

  S 1 is a measure of woody cover heterogeneity across extents; 
larger values imply that the proportion of woody cover varies 
greatly among diff erent spatial extents. Th e third metric,  S 2, 
denotes the mean slope between the proportion of woody 
cover at the smallest spatial extent  L  0  (here, a 3  �  3 window 
around the focal pixel) and the proportion of woody cover at 
any consecutive spatial extent: 
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 Th us,  S 2 is a measure of directional consistency of the scalo-
gram (e.g. a completely linear scalogram will have an  S 2 
value of zero, as all slopes are identical).   

 Other landscape metrics 

 We compared the performance of the MCSPA metrics to a 
set of three commonly used single-scale landscape metrics, 
and to one remotely sensed vegetation index, NDVI. Th e 
landscape metrics were: proportion of woody habitat (Pf ), 
woody patch density (PD), and edge density (ED, total 
length of all woody patch edges divided by landscape area). 
Th e proportion of woody habitat is strongly related to the 
average woody cover across extents (S0). Nevertheless, we 
tested both metrics since we wanted to assess whether spatial 
averaging (as in S0) improves the usefulness of woody cover 
in predicting species richness and composition.   

 Spatial scales and extents 

 Th e scale of an image consists of two components: spatial 
resolution (the minimal unit of description, i.e. a pixel, or 
grain), and extent (the size or area which is analyzed, consisting 

using a stratifi ed random sampling design, stratifi ed by habi-
tat type. At each sample plot, a fi ve-min point count was 
conducted, during which all bird species seen or heard were 
recorded by trained human observers (Hutto et al. 1986, 
Ralph et al. 1995). Distance to each detected bird was esti-
mated using laser rangefi nders, and detections were trun-
cated at 100 m to allow comparability. Sample points were 
visited four times in 2007 and 2008 and three times in 2009. 
We quantifi ed two measures of avian community structure: 
1) species richness within each plot, averaged over three years 
of sampling to minimize the eff ects of interannual variation, 
and 2) average abundance of each species per plot (again in 
three year average).   

 Landscape map 

 Th ree landscape maps were used for the analysis. Th e fi rst 
was a 10-m resolution binary image of woody vegetation. 
Th e map was generated by classifying and resampling a 
mosaic of 1-m resolution true color aerial photos obtained 
from the National Agricultural Imagery Program (NAIP, 
freely available from the WisconsinView database:  � www.
wisconsinview.org/imagery/ � ), acquired between 1 July 
and 15 August 2008. Th e second landscape map was a 30-m 
resolution binary image of woody vegetation, generated by 
resampling the 1-m mosaic. Th e third map was a 30-m reso-
lution NDVI layer derived from a Landsat satellite image 
(path 25, row 29), acquired on 13 July 2009 (i.e. leaf on). 

 We classifi ed the NAIP image mosaic using a supervised 
maximum likelihood classifi cation, based on 300 randomly 
allocated training data points, which were manually classifi ed 
as  ‘ woody ’  or  ‘ non-woody ’ . We assessed the accuracy of the 
classifi cation using 250 diff erent control points that were ran-
domly located within 500-m of the bird sampling points, and 
were visually interpreted. We limited our accuracy sampling 
locations to these areas (rather than the entire image) since 
eventually we assessed the relationships between both richness 
and community structure versus the MCSPA metrics within 
a short distance from the bird sampling points. Th e overall 
accuracy of the classifi cation was 95.2%. We then resampled 
the classifi ed image using a majority rule to reduce the spatial 
resolution from 1 to 10 m, under the assumption that this 
level of resolution is most suitable for describing the habitat 
characteristics of the bird species in the study area (a pixel size 
smaller than 10 m would often be smaller than an individual 
tree, and we assumed that a tree and its immediate vicinity are 
the smallest potentially defended amount of space for many of 
the bird species in our study area). To test the eff ect of spatial 
resolution on our analysis, we also generated a 30-m resolu-
tion image by resampling the original 1-m classifi ed image, 
again using a majority rule. We did not test a larger pixel size 
since preliminary analyses revealed that it led to an over-sim-
plifi ed description of the study area, which is characterized by 
signifi cant fi ne-grained vegetation heterogeneity.   

 MCSPA metrics 

 We used three MCSPAs metrics developed by Bar Massada 
and Radeloff  (2010). Th ese metrics quantify the statistical 
properties of a scalogram, which is the function that depicts 
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 S � (a � d E ) � (b � e E )  �   M  � (c � f E )  �   M  2  (4) 

 For the exponential model, the model was: 

 S � (a � d E ) � (b � e E )  �  (1 – exp( – (c � f E )  �   M )) (5) 

 where S is avian species richness,  E  is spatial extent (in 
number of pixels),  M  is the corresponding landscape or 
MCSPA metric, and a – f are coeffi  cients. Th e coeffi  cients d, 
e, and f denote the eff ects of extent on the original coef-
fi cients a, b, and c, respectively, and therefore represent the 
eff ects of extent on the relationship between metrics and 
avian species richness. 

 Spatial autocorrelation is a recurring phenomenon in spa-
tial analyses of ecological communities. Here, we minimized 
its eff ects by limiting the spatial overlap between adjacent 
analysis neighborhoods by limiting the largest neighbor-
hood size to 510  �  510 m (i.e. a maximum  distance of 250 
m from the focal pixel). While the shortest distance between 
sample points was 237.5 m, the average distance was 314 m, 
and only nine points were closer than 250 m from another 
point. In addition, we computed and analyzed empirical 
variograms of the residuals of all of our models in all met-
ric/resolution/extent combinations and found no signifi cant 
spatial autocorrelation. 

 We also assessed the relative contribution of diff erent 
metrics to the variation in avian community structure at 
each sample plot using non-metric multidimensional scaling 
(NMDS), (Kruskal 1964, Clarke 1993) as implemented in 
the package vegan (Oksanen et al. 2010) of the R statisti-
cal software (R development core team 2010). Th e species 
data table used for the NMDS analysis consisted of 243 rows 
(sample plots) and 70 columns (individual species abun-
dances). We log-transformed the abundance data to limit the 
eff ect of extreme values. We then generated a dissimilarity 
matrix among sample plots using the Bray – Curtis distance 
measure. Finally, we ran a non-metric multidimensional scal-
ing ordination (NMDS) using random starting coordinates, 
10 runs with real data, two axes, and up to 20 iterations. For 
each combination of spatial resolution and extent we quan-
tifi ed the relative contribution of the landscape metrics to 
the variation in the avian community by fi tting a generalized 
additive model (GAM) to the fi rst two axes of the ordina-
tion simultaneously. We used a GAM instead of the com-
mon vector fi tting approach since the relationships between 
the metrics and the fi rst two NMDS axes were mostly non-
linear. Th e coeffi  cient of determination of the GAM was 
used as a measure of the contribution of the metric to the 
variation in avian community structure.    

 Results  

 Metrics and species richness 

 Over three years, 68 bird species were detected in the study 
area. Avian species richness averaged 13.02 ( �  5.02 SD) spe-
cies per plot per year and was highly variable depending on 
the habitat context of the sample plots. Th e annual average 
of species richness ranged from 1 to 23.5 species. Savanna 
plots had the highest richness, followed by woodland and 

of any number of pixels). To assess the eff ect of changing 
scale on the relationship between spatial pattern and species 
richness and composition, we conducted our analysis at two 
spatial resolutions (10 and 30-m pixels) and six spatial 
extents (from 210  �  210 to 510  �  510 m around each bird 
sample point, with 60-m intervals). Th e smallest spatial 
extent roughly overlapped the size of the bird sample plot, 
while the largest spatial extent was restricted to 510 m to mini-
mize the overlap between adjacent plots to prevent spatial 
autocorrelation. Th e changing spatial extent was achieved by 
positioning rectangular analysis windows of varying sizes in 
each image, centered on each bird sample point. Th erefore, 
for each bird sample point we generated a micro-landscape 
consisting of its surrounding pixels, which represents the 
habitat in its surrounding neighborhood. We used analysis 
windows of 21  �  21, 27  �  27, 33  �  33, 39  �  39, 45  �  45, 
and 51  �  51 pixels for the 10-m resolution image, and 7  �  7, 
9  �  9, 11  �  11, 13  �  13, 15  �  15, and 17  �  17 pixels for the 
30-m resolution image, to maintain identical spatial extents 
for both resolutions. We then calculated the landscape and 
MCSPA metrics in each resolution/extent combination. 
We calculated NDVI only for the 30-m resolution image, 
since we did not have 10-m NDVI data. Furthermore, since 
NDVI is a pixel based measure (i.e. it is calculated without 
considering neighboring pixels), we calculated its average 
value within each spatial extent.   

 Statistical analysis 

 For each metric, we generated three types of univariate 
regression models: quadratic (S � a � b M  � c M  2 ), logarith-
mic (S � log(a � b M )), and exponential (S � a � b  �  (1 – exp
( – c  �   M ))). In these models, S is species richness,  M  is the 
metric ’ s value, and a – c are model coeffi  cients. We fi tted the 
models according to the nature of the relationship between 
the metric and avian species richness in the study plots, at 
the two spatial resolutions and the six spatial extents. We 
used Akaike ’ s information criterion (AIC) to select the best 
model for each metric, and to compare the general goodness 
of fi t among models of diff erent metrics and the predictive 
power of metrics across the two spatial resolutions and six 
spatial extents. 

 To assess the eff ects of spatial resolution and extent on the 
metric/richness relationships, we quantifi ed the change in 
model coeffi  cients for the selected models. For the quadratic 
models, we quantifi ed the change in the slope and intercept. 
For the exponential models, we quantifi ed the change in the 
intercept, asymptote, and rate of change (a, b, and c, respec-
tively). For the logarithmic model, we quantifi ed the rate 
and intercept (a and b, respectively). In addition to the visual 
interpretation, we evaluated the signifi cance of the eff ect of 
spatial extent in the following way for selected models that 
had near-linear relationships between model coeffi  cient val-
ues and spatial extents (given that our preliminary results 
showed that for all metrics, model types were consistent 
across spatial extents). First, we combined the observations 
from all six spatial extents together, and added a new predic-
tive variable that denoted the areal extent of each observa-
tion. We then fi tted the following models using nonlinear 
least squares. For the quadratic model, the model was: 
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extent (though the diff erence between the AIC of it and the 
next smaller and larger spatial extents was small). 

 At 30-m resolution, NDVI was consistently the best 
predictor of avian species richness (Table 2b). After NDVI, 
the order of predictive power was always patch density, edge 
density, standard deviation of woody cover across extents, 
woody cover, and average woody cover across extents. 
Th e eff ect of extent on the predictive power of metrics at 
the 30-m resolution was almost opposite to its eff ect at the 
10-m resolution analysis. At 30-m resolution, all  metrics 
except NDVI had stronger predictive power at larger spatial 
extents. Edge density and the standard deviation of woody 
cover across extents had the greatest predictive power at the 
15  �  15 extent, while average woody cover across extents, 
woody cover, and patch density had the strongest predic-
tive power at the largest extent, 17  �  17. NDVI did not 
exhibit a consistent eff ect of scale on predictive power of 
species richness. 

 In the vast majority of cases, metrics computed at 10-m 
resolution had a stronger predictive power of avian richness 
than metrics computed at 30-m resolution (Table 2c). Th e 
exception was patch density at the two largest extents, where 
the 30-m resolution yielded a better predictive power. Th us, 
in Ft McCoy, avian species richness was generally better pre-
dicted by metrics computed at fi ner spatial scales (both in 
terms of spatial resolution in almost all cases, and in terms of 
extent except for average woody cover across extents).   

 Effects of scale and extent on the relationships 
between metrics and richness 

 Interesting scale eff ects emerged when the best predictive 
models for each metric were compared across spatial extents 
based on the 10-m resolution image (Fig. 3). Four metrics 
(average woody cover across extents, standard deviation of 
woody cover across extents, woody cover, and patch den-
sity) exhibited consistent relationships with avian richness 
across spatial extents (i.e. for a given metric value, both the 
direction and magnitude of the predicted avian richness were 
consistent with the change in spatial extent). Average woody 
cover across extents was more robust than woody cover in 
predicting avian richness, since for a given value the range 
of richness predictions (across extents) was smaller than the 
range yielded by an equivalent woody cover value. In con-
trast to all other metrics, edge density exhibited a unique 
threshold eff ect in regards to spatial extent. For edge den-
sity values smaller than 0.4, smaller spatial extents predicted 
higher species richness than larger spatial extents, but the 
diff erences in richness predictions decreased as edge den-
sity approached 0.4. Once an edge density value of 0.4 was 
exceeded, the trend reversed, and smaller spatial extents led 
to lower predictions of avian richness compared to larger 
spatial extents. 

 Spatial resolution had varied eff ects on the relationships 
between richness and metrics at diff erent spatial extents 
(Fig. 3). For the quadratic models (woody cover and aver-
age woody cover across extents), increasing the spatial reso-
lution from 10 to 30 m slightly fl attened the relationship, 
meaning that at extreme values (i.e.  �  20% or  �  80%), the 
30-m data tended to predict higher richness than the 10-m 

grassland plots. Brown-headed cowbird was the most broadly 
distributed species in the study area, occurring in 195 of the 
243 plots (80.2%), followed by indigo bunting (77%), fi eld 
sparrow (72.8%), eastern towhee (72.4%), chipping sparrow 
(69.5%), and vesper sparrow (66.3%) (Table 1). 

 We found clear relationships between avian species rich-
ness and the spatial pattern of woody vegetation. On areas 
of low edge density, low variation of woody cover across 
scales, little patchiness, and very low or very high woody 
cover (i.e. core areas of grasslands and woodlands), avian 
species richness was relatively low. In contrast, areas of high 
edge density, intermediate woody cover, high cover varia-
tion, and high patchiness (i.e. savannas) had high avian spe-
cies richness. Th ere were two general types of relationships 
between landscape metrics and species richness, and these 
relationships were consistent across spatial resolutions and 
extents (Fig. 2). Woody cover (Pf ), average woody cover 
across extents (S0), and NDVI had a quadratic relation-
ship with avian species richness, while standard deviation of 
cover across extents (S1), patch density (PD), and edge den-
sity (ED) had a nonlinear relationship with richness, best 
depicted by a saturation curve with either an exponential or 
a logarithmic form. Th e relationship between species rich-
ness and patch density was best explained by a logarithmic 
model at the fi ner resolution, and by an exponential model 
at the coarser resolution, while the relationship between 
species richness and the standard deviation of cover across 
extents behaved in the opposite manner (i.e. exponential at 
10 m, logarithmic at 30 m). 

 Th e mean scalogram slope between the focal scale and all 
larger scales (S2) was diffi  cult to relate to species richness, 
since it consisted of both positive and negative values. We 
therefore omitted it from the rest of the analysis. 

 Th e metrics that are strongly related to absolute forest 
cover (woody cover, average woody cover across extents, and 
NDVI at 30-m resolution) were highly and linearly corre-
lated at all spatial scales and extents. Th e standard deviation 
of cover across extents was moderately but nonlinearly cor-
related with edge density and patch density, while the mean 
slope of the scalogram had weak nonlinear correlations with 
all other metrics.   

 Predictive power of metrics across different 
spatial scales 

 At 10-m resolution, and for all metrics except average woody 
cover across extents, the smallest spatial extent yielded the 
highest predictive power (Table 2a). Edge density was always 
the best predictor of avian species richness at 10-m resolu-
tion (Table 2b), followed by the standard deviation of woody 
cover across extents (S1) at all spatial extents. Th e third best 
predictor was patch density, but it was only superior to the 
average woody cover across extents and woody cover at the 
four smaller extents (21  �  21 – 39  �  39) and inferior to all 
other predictors at the two largest extents (45  �  45, 51  �  51). 
Th e average woody cover across extents was a better predic-
tor than woody cover at the three larger spatial extents, and 
inferior to it at the three small spatial extents. For woody 
cover, larger spatial extents improved predictive power, and 
the strongest predictive power was obtained at the 45  �  45 
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  Table 1. Avian species detected in the 243 sample plots during the three years study period. AOU column is American Ornithologists ’  Union 
four-letter code.   

Common name Scientifi c name AOU
Relative frequency 
of occurrence (%)

Average 
abundance

American crow  Corvus brachyrhynchos AMCR 63.4 0.57
American goldfi nch  Spinus tristis AMGO 37.9 0.3
American redstart  Setophaga ruticilla AMRE 8.6 0.07
Baltimore oriole  Icterus galbula BAOR 54.3 0.54
Barn swallow  Hirundo rustica BARS 11.5 0.1
Black-and-white warbler  Mniotilta varia BAWW 12.3 0.07
Black-billed cuckoo  Coccyzus erythropthalmus BBCU 10.3 0.04
Black-capped chickadee  Poecile atricapillus BCCH 40.3 0.3
Blue jay  Cyanocitta cristata BLJA 51 0.35
Blue-gray gnatcatcher  Polioptila caerulea BGGN 27.6 0.18
Blue-winged warbler  Vermivora pinus BWWA 29.2 0.19
Brown thrasher  Toxostoma rufum BRTH 35.8 0.28
Brown-headed cowbird  Molothrus ater BHCO 80.2 1.28
Cedar waxwing  Bombycilla cedrorum CEDW 26.7 0.42
Chestnut-sided warbler  Dendroica pensylvanica CSWA 12.8 0.1
Chipping sparrow  Spizella passerina CHSP 69.5 0.85
Clay-colored sparrow  Spizella pallida CCSP 21 0.13
Cliff swallow  Petrochelidon pyrrhonota CLSW 3.7 0.06
Common nighthawk  Chordeiles minor CONI 8.6 0.05
Common yellowthroat  Geothlypis trichas COYE 23.9 0.16
Dickcissel  Spiza americana DICK 14 0.16
Downy woodpecker  Picoides pubescens DOWO 11.9 0.05
Eastern bluebird  Sialia sialis EABL 60.1 0.59
Eastern kingbird  Tyrannus tyrannus EAKI 40.3 0.31
Eastern meadowlark  Sturnella magna EAME 23.9 0.22
Eastern phoebe  Sayornis phoebe EAPH 9.5 0.05
Eastern towhee  Pipilo erythrophthalmus EATO 72.4 0.98
Eastern wood-pewee  Contopus virens EAWP 58.4 0.5
Field sparrow  Spizella pusilla FISP 72.8 1.47
Golden-winged warbler  Vermivora chrysoptera GWWA 3.7 0.01
Grasshopper sparrow  Ammodramus savannarum GRSP 51 1.31
Gray catbird  Dumetella carolinensis GRCA 41.2 0.3
Great-crested fl ycatcher  Myiarchus crinitus GCFL 37.4 0.22
Hairy woodpecker  Picoides villosus HAWO 20.2 0.1
Hermit thrush  Catharus guttatus HETH 5.3 0.04
Hooded warbler  Wilsonia citrina HOWA 6.6 0.06
Horned lark  Eremophila alpestris HOLA 14 0.22
House wren  Troglodytes aedon HOWR 42.8 0.32
Indigo bunting  Passerina cyanea INBU 77 0.99
Killdeer  Charadrius vociferus KILL 2.9 0.02
Lark sparrow  Chondestes grammacus LASP 22.6 0.14
Least fl ycatcher  Empidonax minimus LEFL 6.6 0.08
Mourning dove  Zenaida macroura MODO 59.3 0.54
Mourning warbler  Oporornis philadelphia MOWA 7 0.05
Nashville warbler  Vermivora rufi capilla NAWA 11.1 0.05
Northern fl icker  Colaptes auratus NOFL 20.6 0.1
Orchard oriole  Icterus spurius OROR 26.3 0.2
Ovenbird  Seiurus aurocapillus OVEN 32.9 0.52
Pileated woodpecker  Dryocopus pileatus PIWO 5.3 0.02
Pine warbler  Dendroica pinus PIWA 7.4 0.08
Red-bellied woodpecker  Melanerpes carolinus RBWO 9.5 0.04
Red-breasted nuthatch  Sitta canadensis RBNU 10.3 0.06
Red-eyed vireo  Vireo olivaceus REVI 41.6 0.36
Red-headed woodpecker  Melanerpes erythrocephalus RHWO 16 0.1
Red-winged blackbird  Agelaius phoeniceus RWBL 5.3 0.04
Rose-breasted grosbeak  Pheucticus ludovicianus RBGR 56.8 0.47
Ruby-throated hummingbird  Archilochus colubris RTHU 10.7 0.05
Savannah sparrow  Passerculus sandwichensis SAVS 3.7 0.02
Scarlet tanager  Piranga olivacea SCTA 51 0.41
Song sparrow  Melospiza melodia SOSP 29.6 0.23
Tree swallow  Tachycineta bicolor TRES 8.2 0.06
Upland sandpiper  Bartramia longicauda UPSA 16.5 0.13

(Continued)
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 Metrics and community structure 

 Th e NMDS ordination of the sample plots had a stress value 
of 14.55 after 20 iterations, which is acceptable for the pur-
pose of our analysis (McCune and Grace 2002). High values 
of the fi rst axis of the NMDS (NMDS1 hereafter) corre-
sponded to high abundance of woodland bird species (such 
as ovenbird, scarlet tanager, rose-breasted grosbeak, wood 
thrush, and red-eyed vireo) while low vales of NMDS1 
corresponded to high abundance of grassland species (e.g. 
upland sandpiper, grasshopper sparrow, and eastern mead-
owlark) and intermediate values of NMDS1 corresponded 
to high abundance of savanna species (e.g. brown thrasher, 
eastern kingbird, baltimore oriole, and fi eld sparrow). On 
the other hand, high values of NMDS2 corresponded to 
high abundance of savanna species, while intermediate val-
ues of NMDS2 corresponded to high abundance of either 
woodland or grassland species. Th ere were two general types 
of relationships between landscape metrics and community 
structure. Th e metrics related to cover (woody cover, average 
woody cover across extents, and NDVI) peaked at the largest 
values of NMDS1, which corresponded with woodland spe-
cies, and intermediate values of NMDS2. Th ese metrics then 
decreased through intermediate values of NMDS1 and high 
values of NMDS2, and reached a minimum at low values of 
NMDS1 and intermediate values of NMDS2, which cor-
responded with grassland species (Fig. 6(S0), 6(Pf ), 7(S0), 
7(Pf ), and 7(NDVI)). Th e heterogeneity related metrics 
(standard deviation of woody cover across extents, patch 
density, and edge density) peaked at intermediate NMDS1 
values and high NMDS2 values, and decreased with both 
increasing and decreasing NMDS1 values, coupled with 
decreasing NMDS2 values (Fig. 6(S1), 6(PD), 6(ED), and 
7(S1), 7(PD), 7(ED)). Th is gradient showed that areas of 
high spatial heterogeneity of woody cover (i.e. savannas) 
have a diff erent avian community structure than areas either 
high or low heterogeneity (i.e. woodlands or grasslands), and 
the diff erences in community composition between savanna 
and woodland as well as between savanna and grassland 
communities were smaller than the compositional diff erence 
between woodland and grassland communities. 

 Metrics related to woody cover were much better predic-
tors of variation in community structure than the heteroge-
neity metrics (Table 3). At both spatial resolutions, average 
woody cover across extents was the strongest predictor at the 
larger spatial extents, while woody cover was the strongest 
predictor at the smaller spatial extents. Th ey were followed 
by (NDVI at the 30-m resolution) edge density, patch den-
sity, and standard deviation of woody cover across extents, in 
that order. Th e latter was consistently the weakest predictor 

data. In intermediate metric values, the 10-m data tended to 
predict higher avian richness. For the standard deviation of 
woody cover across extents, the 30-m data predicted higher 
richness at high and very low metric values, while at low to 
intermediate values the 10-m data tended to predict more 
richness than the 30-m data. For patch density, once its 
value increased above  ∼ 0.1, the 30-m data predicted higher 
richness for all extents except 210  �  210 m, where the 10-m 
data consistently predicted higher richness. However, for 
both patch density and standard deviation of woody cover 
across extents the model type diff ered across spatial resolu-
tions (from exponential to logarithmic or vice versa), thus 
the results are less conclusive. Finally, for edge density, the 
10-m data consistently predicted higher richness (at com-
parable extents) for metric values above 0.4, but had mixed 
interactions between richness, spatial resolution, and extent 
at lower metric values. 

 When model coeffi  cients were analyzed for resolution and 
extent eff ects (Fig. 4), we found that for the three quadratic 
models (woody cover, average woody cover across extents, 
and NDVI at the 30-m resolution) only the intercept (a) 
changed across extents, while all three coeffi  cients were 
sensitive to spatial resolution (again, except for NDVI that 
had only one spatial resolution). Th is was confi rmed by the 
regression analysis (Eq. 4), where d (the coeffi  cient denoting 
the eff ect of extent on the intercept) was the only signifi cant 
scaling coeffi  cient (among d, e, and f. Th e original coeffi  -
cients a, b, and c remained signifi cant). For NDVI, d was 
almost signifi cant, with p  �  0.056. For the exponential and 
logarithmic fi tted models, the relationships between coeffi  -
cient values and extent were less consistent (Fig. 5). For edge 
density, the intercept (a) decreased nonlinearly with extent, 
the asymptote (b) increased with extent, and the rate (c) 
decreased with extent. All of these coeffi  cients were signifi -
cantly aff ected by extent (the coeffi  cients d, e, and f in Eq. 
5 were signifi cant). For the exponential model of the stan-
dard deviation of woody cover across extents (at the 10 m 
resolution only), the intercept and the rate decreased while 
the asymptote increased across the fi rst three extents, but 
remained fairly constant at higher extents. Finally, for the 
exponential model of patch density at the 30-m resolution, 
the intercept decreased with extent while the asymptote and 
rate generally increased with extent. Since both patch den-
sity and the standard deviation of woody cover across extents 
had diff erent model types across pixel sizes, we could not 
compare the eff ect of spatial resolution on their model coef-
fi cients. In addition, since the relationships between coef-
fi cient values and extent were nonlinear, we could not assess 
the signifi cance of the eff ects of extent using equations 4–5 
as we did for the other metrics.   

  Table 1. (Continued).  

Common name Scientifi c name AOU
Relative frequency 
of occurrence (%)

Average 
abundance

Veery  Catharus fuscescens VEER 7.8 0.08
Vesper sparrow  Pooecetes gramineus VESP 66.3 1
White-breasted nuthatch  Sitta carolinensis WBNU 42.4 0.27
Wood thrush  Hylocichla mustelina WOTH 4.5 0.03
Yellow-billed cuckoo  Coccyzus americanus YBCU 20.2 0.09
Yellow-throated vireo  Vireo fl avifrons YTVI 17.7 0.1
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predictive power of average woody cover across extents 
increased with spatial extent, though the magnitude of 
the increase was small (Table 3). Woody cover exhibited 
an opposite pattern (i.e. decreasing predictive power with 
increasing extent), and its strongest predictive power was 
at the second smallest extent (270  �  270 m). Again, the 
diff erence in predictive power across scale was small. Patch 

of community structure, with R 2  values only as high as 0.52. 
At the 30-m resolution, its performance was even worse 
(maximum R 2   �  0.32). 

 For individual metrics at a given resolution, the eff ect 
of spatial extent on their power to predict community 
structure was less pronounced than its eff ect on their power 
to predict avian species richness. At both resolutions, the 

  Figure 2.     Relationships between landscape or MCSPA metrics and avian species richness. Plots depict the 210  �  210 m spatial extent, in 
two spatial resolutions (10 m, left column; 30 m, right column).  
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at the second smallest extent). At the 30-m resolution, 
their predictive power increased with extent, and the range 
of increase was larger than the range exhibited among 
models at diff erent extents of any other metrics. Th e eff ect 

density and edge density exhibited opposite trends at diff er-
ent grain sizes. At the 10-m resolution, their power to pre-
dict avian community structure decreased with extent (and 
the highest R 2  from models using patch density occurred 

  Figure 3.     Eff ects of spatial resolution (10 m solid; 30 m dashed) and spatial extent (colors) on the relationships between metrics and avian 
species richness.  
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spatial patterns are scale dependent as well (Rahbek and 
Graves 2001). Here, by quantifying relationships between 
the avian community and the spatial pattern of habitat, we 
highlight the importance of explicitly considering scale in 
models of species habitat relationships, corroborating prior 
studies (Cushman and McGarigal 2002, 2004, Lawler and 
Edwards 2006). Landscape metrics (and NDVI) exhib-
ited one of two general types of relationships with species 
richness, and these functional forms were mostly consis-
tent across spatial grains and extents. We found quadratic 
relationships for metrics that quantify cover (woody cover, 
average woody cover across extents, and NDVI). For these 
metrics, intermediate cover values were associated with the 
highest levels of avian species richness. Th is made sense eco-
logically since intermediate cover values often represent the 
savannas in the study area. Th ese savannas have considerably 
higher avian richness compared to less heterogeneous habitat 
types of woodland (high woody cover) and grassland (very 
low woody cover) (average species richness of 16.77  �  0.33 
in savanna, 12.78  �  0.35 in woodland, and 7.36  �  0.44 
in grassland; Wood unpubl.). Areas of high vegetation and 
species richness and structural heterogeneity, such as the 
savannas at Fort McCoy, are typically associated with areas 
of higher bird diversity (Cody 1981, Rotenberry 1985). 
We found exponential or logarithmic relationships between 

of spatial extent on the predictive power of the standard 
deviation of woody cover across extents was also inconsis-
tent across spatial resolutions, as it decreased with extent at 
the 10-m resolution, and peaked at a middle extent at the 
30-m resolution.    

 Discussion 

 Models of species richness and community abundance dis-
tributions typically incorporate and benefi t from spatial 
information about habitat and landscape characteristics. 
Th ere are many ways to quantify habitat characteristics based 
on fi eld and remotely sensed data. Yet the vast majority of 
these approaches analyze spatial information at a single car-
tographic or ecological scale (Li and Wu 2004). It is likely, 
however, that individual species perceive their environments 
at multiple spatial scales (Manning et al. 2004). Th us, using 
single scale information to describe habitat characteristics 
may not capture the relevant multi-scale landscape pat-
terns species respond to (Wiens 1981, Lawler and Edwards 
2006). Moreover, given the inherent scale dependence of 
spatial metrics (which are used to quantify species  –  land-
scape relationships), coupled with species  –  scale relation-
ships per se, the relationships between species richness and 

  Figure 4.     Eff ects of spatial extent on the coeffi  cients of the quadratic models (average woody cover across extents (S0), woody cover 
(Pf ), and NDVI). Th e 10-m resolution models are depicted by black circles, while the 30-m resolution models are depicted by white 
circles. NDVI was modeled only at the 30-m resolution; therefore there is no spatial resolution comparison. Error bars denote standard 
deviations.  



405

 At the fi ner spatial resolution (10 m), measures of habi-
tat heterogeneity (edge density, standard deviation of woody 
cover across extents, and patch density in that order) were the 
best predictors of avian species richness regardless of spatial 
extent. Interestingly, image variance, which is a fi rst-order 

avian richness and metrics that capture habitat heterogene-
ity (standard deviation of woody cover across extents, patch 
density, and edge density). In these cases, higher metric val-
ues were observed in the savanna areas, which again, had the 
highest avian diversity in the study area. 

  Figure 5.     Eff ects of spatial extent on the coeffi  cients of the nonlinear models. Edge density (ED) is fi tted an exponential model at both 
spatial resolutions (10 m, black circles; 30 m, white circles), while the standard deviation of woody cover across extents (S1) and patch 
density (PD) were fi tted with an exponential model at 10- and 30-m resolution, respectively, and a logarithmic model at the other spatial 
resolution. Error bars denote standard deviations.  
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that happens when a fi ne grained mosaic of woodlands and 
grasslands is depicted by a binary woody/non-woody map 
(McGarigal et al. 2009). In general, the contrasting eff ect of 
spatial resolution in terms of which variables better explain 
species richness may occur because bird species select their 
habitats in a spatially hierarchical manner (Wiens et al. 
1987). At the coarse scale, habitat selection is driven by the 
presence of the dominant habitat type (e.g. woodlands), 
which is captured by cover-related metrics such as NDVI. At 
the fi ne scale, vegetation structure and species drive habitat 
selection by birds (Lawler and Edwards 2006). 

image texture measure (Haralick 1979), and is conceptu-
ally similar to the standard deviation of woody cover across 
extents, was the strongest predictor of avian species richness 
in this study area (Wood unpubl.). In contrast to the fi ner 
spatial resolution, at the coarser spatial resolution (30 m), 
NDVI was the strongest predictor of avian richness at all 
spatial extents by far. We explain this superiority by the fact 
that in contrast to all other metrics that are based on a binary 
landscape representation, NDVI is based on a continuous 
representation of the landscape. As such, it is less prone to 
the loss of information about fi ne-scale habitat heterogeneity 

  Figure 6.     NMDS ordination biplot of avian community structure and its relationship with landscape or MCSPA metric. Metrics were 
calculated at a 10-m spatial resolution and a spatial extent of 210  �  210 m. Each circle represents a sample point, while contours depict the 
functional relationship between the ordination and a corresponding landscape/MCSPA metric.  
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(30 m), for all metrics except average woody cover across 
extents. We suggest that this contrasting eff ect of spatial 
resolution is caused by the relationship between fi ne-scale 
landscape heterogeneity and avian richness in our study 
area. Generally, our fi ne-resolution models are always bet-
ter than the coarse-resolution models in predicting avian 
richness. Th e 10-m resolution is suffi  cient to describe the 
fi ne scale heterogeneity that is known to successfully explain 
avian richness (St-Louis et al. 2006). At the 30-m resolu-
tion, much information about the fi ne scale heterogeneity is 
lost, thus larger scale variations in habitat (here, distinctions 
between three major habitat types of grassland, savanna, and 

 Spatial resolution and extent had complex eff ects on the 
relationships between spatial metrics and avian species rich-
ness. While spatial extent had overall consistent eff ects on 
the relationships between metric (except for edge density), 
its interaction with spatial resolution had more complex 
eff ects on metric–richness relationships, especially for the 
metrics that are best described by exponential (and logarith-
mic) models. 

 Our results reveal that univariate models that explain 
avian species richness using landscape metrics tend to be 
better at smaller spatial extents when the pixel size is small 
(10 m), but better at larger extents when the pixel size is large 

  Figure 7.     NMDS ordination biplot of avian community structure and its relationship with landscape or MCSPA metric. Metrics were 
calculated at a 30-m spatial resolution and a spatial extent of 210  �  210 m. Each circle represents a sample point, while contours depict the 
functional relationship between the ordination and a corresponding landscape/MCSPA metric.  
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woodland, which require larger spatial extents to be cap-
tured) explain better the variation in avian species richness. 
Th erefore, even within the relatively few scale combinations 
studied here (compared to a much larger number of ecologi-
cal scales relevant to all species in the avian community in 
our study area) it is obvious that varying factors aff ect species 
richness at diff erent scales, and the choice of sampling design 
(resolution and extent) and modeling framework may thus 
strongly aff ect the results (Wiens 1981, Wiens et al. 1987, 
Rahbek and Graves 2001). 

 In the quadratic models of richness versus metrics (woody 
cover, average woody cover across extents, and NDVI), the 
only signifi cant eff ect of spatial extent was the decrease of the 
intercept. On the other hand, spatial resolution had a more 
complex eff ect on the model, where extreme metric values 
(very low or very high) tended to predict higher richness at 
a coarser spatial resolution, and intermediate metric values 
predicted lower richness at a coarser (Fig. 3). We explain this 
result by the way the coarser resolution (30 m) image was 
generated. We followed the path of the vast majority of scale 
studies and used a majority fi lter to resample the fi ne resolu-
tion image to a coarser resolution. However, resampling with 
a majority fi lter means that areas that are characterized by very 
fi ne scale heterogeneity (at a 3  �  3 focal window of 10 m pix-
els, which is used to resample the image to 30 m resolution) 
tend to be converted to either grasslands or woodlands. Th us, 
the overall abundance of these areas is expected to decrease 
(while their higher richness values are retained). Th is can 
shift higher richness values towards the extremes (i.e. low or 
high metric values) of the richness – metric relationship, and 
explain the eff ect of spatial resolution that was evident in our 
results (Fig. 3). Ultimately, this is an outcome of the reliance 
on a binary landscape for spatial analysis, coupled with the 
choice of a majority fi lter to rescaling to coarser resolutions 
(which is known to aff ect the pattern of the coarser-scale 
maps, and as a consequence the species – pattern relationships; 
Parody and Milne 2004). We expect that NDVI, which is a 
continuous measure, will be less susceptible to this phenom-
enon (McGarigal et al. 2009). Unfortunately, we did not have 
10-m NDVI data to test this assumption. 

 Th e most striking eff ect of spatial extent on the richness–
metrics relationship was exhibited by edge density. At the 
fi ner resolution, the exponential models of richness versus 
edge density intersected approximately when edge density 
was 0.4. Mathematically, this was caused because the inter-
cept (a) and the rate (b) coeffi  cients of the model decreased 
signifi cantly with extent, while the asymptote coeffi  cient (c) 
increased signifi cantly with extent. We do not have a plau-
sible ecological explanation for this phenomenon. 

 Th e avian community in the study area consisted of three 
main assemblages, which roughly corresponded to the three 
major habitat types, grasslands, savannas, and woodlands. 
Th e variation in avian community structure corresponded 
strongly to gradients of landscape and MCSPA metrics. In 
general, there were two types of metrics – community struc-
ture relationships. Woody cover based metrics (woody cover, 
average woody cover across extents, and NDVI) were mostly 
related to variation in the fi rst axis of the NMDS ordination 
surfaces. Sample plots with high metrics values (right side 
of the x-axis of the biplots in Fig. 6, 7) corresponded to for-
ested areas, and were characterized by woodland bird species.   Ta
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in terms of woody vegetation. In Ft McCoy, there are three 
major types of habitat, which diff er substantially in the 
amount of woody cover: grasslands (little or no woody cover), 
savannas (intermediate woody cover), and woodlands (high 
woody cover). Grassland areas had low tree cover and low 
species richness, while woodland areas had high tree canopy 
cover and moderate species richness, and savanna areas had 
intermediate tree canopy cover and high species richness. By 
being successfully able to distinguish among these general 
habitat types, we expected that all landscape and MCSPA 
would perform moderately well. 

 Th e main conclusion that emerges from our results is 
that cartographic scale (both spatial resolution and extent) 
has profound and complex infl uences on the relationships 
between avian species and spatial measures of their habi-
tat (here, described using landscape and MCSPA metrics, 
and NDVI). Th e eff ects of scale are manifested in two ways. 
First, the ability of habitat pattern to predict species rich-
ness varies by the scale at which habitat pattern is measured 
in a complex way, through the interaction with both spatial 
resolution and extent. Th us, the choice of the resolution/
extent combination (which in many studies is driven by 
data availability) infl uences the strength of the relationship 
between species richness and habitat. Second, and equally 
important, the form of the relationship itself will vary with 
spatial resolution and extent. We conclude that since both 
components of scale profoundly aff ect the relationships 
between habitat pattern and species richness and commu-
nity structure, the effi  cacy of using landscape metrics to 
predict the diversity of organisms is limited, unless their 
sensitivity to scale eff ects is accounted for.                 
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