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Abstract The majority of landscape pattern studies

are based on the patch-mosaic paradigm, in which

habitat patches are the basic unit of the analysis.

While many patch-based landscape indices success-

fully relate spatial patterns to ecological processes, it

is also desirable to use finer grained analyses for

understanding species presence, abundance, and

movement patterns across the landscape and to

describe spatial context by measuring habitat change

across scales. Here, we introduce two multi-scale

pixel-based approaches for spatial pattern analysis,

which quantify the spatial context of each pixel in the

landscape. Both approaches summarize the propor-

tion of habitat at increasing window sizes around

each pixel in a scalogram. In the first regression-

based approach, a third-order polynomial is fitted to

the scalogram of each pixel, and the four polynomial

coefficients are used as descriptors of spatial context

of each pixel within the landscape mosaic. In the

second shape-based approach, the scalogram mean

and standard deviation, and the mean slope between

forest cover at the smallest window size and each of

the larger window sizes are calculated. The values

emerging from these two approaches are assigned to

each focal pixel and can be used as predictive

variables, for example, in species presence and

abundance studies. We tested the performance of

these approaches on 18 random landscapes and nine

actual landscapes with varying forest habitat cover.

Results show that both methods were able to

differentiate between several spatial contexts. We

thus suggest that these approaches could serve as a

complement or an alternative to existing methods for

landscape pattern analysis and possibly add further

insight into pattern–species relations.
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Background

Landscape ecology has evolved around the patch-

matrix paradigm (Forman 1995), which describes the

landscape as consisting of habitat patches that are

interspersed within a non-habitat matrix. One theo-

retical foundation of the patch-matrix paradigm is

island biogeography theory (McArthur and Wilson

1967), which was extended to terrestrial landscapes

by assuming that patches within the matrix are

similar to islands (Haila 2002). Patch size and

isolation thus explain species abundance, richness,

and diversity (Ewers and Didham 2006). There are

numerous methods and approaches to quantify land-

scape structure based on the composition and
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configuration of patches within the matrix (Gustafson

1998), and these are typically conducted at two

spatial scales: the patch and the landscape. Patch-

level analyses describe the size, edge, and shape of

individual patches, while landscape-level analyses

deal with the relative cover and density of patches,

the distribution of patch size and shape, and the

proximity/isolation of patches (McGarigal et al.

2002). Ultimately, the goal of landscape structure

analyses is to relate landscape patterns to ecological

processes, especially in the context of species abun-

dance, richness, and diversity (Fahrig 2003). The

relationship between pattern and species is well

established, but as much as there are empirical results

to support this theory, many studies still fail to

confirm the relationship (Ewers and Didham 2006).

In recent years, landscape ecology has developed

new approaches to measure landscape structure

without identifying patches first (McGarigal et al.

2009). One motivation for these new approaches was

to capture variability within patches better and to

quantify gradual changes from patch to matrix.

Landscape structure can be quantified from image

texture of unclassified satellite imagery (St-Louis

et al. 2006, 2009). Another approach, landscape

gradients, calculates a new group of surface metrics

that were adopted from the field of surface metrology

(Hoechstetter et al. 2008; McGarigal et al. 2009).

Surface metrics are landscape-scale analyses of

continuous spatial data that are described by pixels,

rather than patches. A third method, morphological

spatial pattern analysis (MSPA; Vogt et al. 2007;

Riitters et al. 2007), is a pixel-based approach that

retains the binary habitat/non-habitat description of

landscapes but does not define patches. Each pixel is

assigned to a mutually exclusive thematic class

according to its spatial context, or the structural role

it has relative to its neighboring pixels. For example,

habitat pixels adjacent to matrix pixels are defined as

edges, internal patch pixels are defined as core, pixels

that connect between disjoint cores are bridges, and

matrix pixels are classified as background (Vogt et al.

2007; Riitters et al. 2007).

Most landscape metrics are calculated at a certain

scale or window size. Many studies have attempted to

relate landscape structure at given scales to species

abundance and diversity (Fahrig 2003). Most of these

studies used pattern at specific scales as their

predictor variables. However, the scale that is most

important for predicting species abundance is often

unknown (Marceau 1999; Li and Wu 2004), since the

human perception of the landscape may be entirely

different than those of other organisms (Wiens and

Milne 1989; Manning et al. 2004). Moreover, many

studies attempt to predict overall species richness

using structure at specific scales; yet different species

are known to be sensitive to landscape structure at

varying scales (Milne 1992), making evaluation of

multiple scales necessary for multi-species studies.

Therefore, there are no general ‘correct’ scales for

studying a given landscape, since the scale of analysis

varies with purpose and application (Blaschke 2006).

Landscape analyses could potentially be improved

with multi-scale landscape metrics, since landscape

patterns and ecological processes vary in scales

(Wiens 1989; Levin 1992). The majority of landscape

metrics used for spatial pattern analysis operate at a

specific spatial scale (i.e., the patch or the landscape),

and most of these metrics are sensitive to scale (Wu

2004; Cushman and McGarigal 2004; Neel et al.

2004), as are the pixel classes used in morphological

spatial pattern analysis (Ostapowicz et al. 2008). In

the past decades, there have been several attempts to

develop landscape metrics that characterize land-

scape structure at varying scales simultaneously and

provide a spatial context of the location of each patch

or pixel. Early attempts to define two-dimensional,

multi-scale spatial patterns were based on fractals

(Mandelbrot 1982). The fractal dimension of a

landscape, i.e., the relationship among cover values

at multiple landscape sizes, captures different land-

scape patterns in both real and simulated landscapes

(Milne 1992) and is also related to, for example, the

movement of tenebrionid beetles in micro-landscape

experiments (Wiens and Milne 1989). Plotnick et al.

(1993) used lacunarity indices to represent multi-

scale pattern at the landscape level. Lacunarity is

based on the frequency distribution of habitat pixels

at various scales calculated with moving windows of

various sizes. Another landscape-scale approach

describes multi-scale pattern using conditional

entropy profiles (Johnson et al. 2001). These are

measures of entropy at a single scale relative to a

subsequent coarser scale (generated by degradation of

the finer scale map, in contrast to other approaches

that retain the original pixel size), computed for a

range of scales and plotted against the corresponding

window sizes.
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In addition to landscape-level multi-scale indices,

there are also pixel-based multi-scale pattern analysis

approaches. The multi-scale aggregation of every

pixel in a landscape was quantified by generating

windows of three, five, and nine pixels around each

pixel and then assigning to each pixel the number of

windows (generated around other pixels) that overlap

it at a given scale (Milne 1992). The three resulting

images were then displayed as an RGB image, and the

aggregation context was visually interpreted. Forest

cover and proportional adjacency of forest pixels (the

probability that a forest pixel is adjacent to another

forest pixel) have been analyzed at multiple scales

over large areas and then classified into four thematic

classes (core, patch, perforation or internal edge, and

edge) to describe coarse-scale global (Riitters et al.

2000) and fine-scale continental (Riitters et al. 2002)

forest fragmentation patterns. Vogt et al. (2007)

generated similar pixel classes (and others) by apply-

ing mathematical morphology. Riitters (2005) also

employed cluster analysis to differentiate between

various contexts of spatial pattern, based on a multi-

scale analysis of forest cover. Riitters (2005) was able

to interpret several classes of context, including

interior, small patches, concave edges, and convex

edges. In a similar manner to Riitters et al. (2002) and

Riitters (2005), the multi-scale pattern of disturbances

in neutral and actual landscapes was assessed by

applying a moving window analysis on binary distur-

bance maps, with window sizes from 3 9 3 to

21 9 21 pixels (Zurlini et al. 2007). A cluster analysis

was then conducted to identify eight disturbance

classes according to their pattern on different land-

scape sizes, and these were mapped back into

geographic space to yield a thematic map of distur-

bance classes. The main advantage of the approaches

of Riitters et al. (2002), Riitters (2005) and Zurlini

et al. (2007) is the ability to account for different

spatial scales simultaneously and thus to introduce a

spatial context to each location (pixel) in the land-

scape. While the generation of thematic structure

(Riitters et al. 2000) and disturbance (Zurlini et al.

2007) classes is appealing, especially for large-scale

analyses, the classification or clustering eliminates

much of the variation in the spatial information and

result in categorical indices, and this may limit the

potential to explain species abundance and diversity.

It is therefore desirable to develop methods to

determine landscape structure at multiple scales that

measure landscape structure with continuous metrics.

Such methods should determine for each pixel in the

landscape its spatial context, i.e., where it is located

relative to the surrounding areas of habitat and

matrix. We present such a method, which analyzes

multi-scale landscape pattern around each pixel, thus

forming a scalogram. We propose two approaches to

analyze scalograms. The first consists of fitting a

polynomial curve to the scalogram and using the

curve parameters as descriptors of context. The

second approach describes the shape of the scalogram

based on the slopes of the lines between the first

entity of the scalogram (forest cover at the smallest

window size) and each subsequent entity. In both

approaches, a binary landscape map is transformed

into a group of continuous maps that may be used as

predicting variables for species studies.

Our goal was thus to develop two new approaches

for Multi-scale Contextual Spatial Pattern Analysis

(MCSPA), based on polynomial coefficients (MCS-

PAp) and the shape of the scalogram (MCSPAs). Both

approaches quantify multi-scale landscape structure at

the pixel level. Our objectives were to test these

methods on both artificial and actual landscapes and

explore their properties and limitations.

Methods

Scalograms: generation and properties

The starting point of our analysis is a binary map

consisting of habitat (‘1’) and non-habitat (‘0’) pixels.

A square moving window of width L is applied to

every pixel (habitat and non-habitat) in the binary

map, and the percentage of habitat pixels Ph(L) within

a window is assigned to its center pixel. The process is

repeated with increasing window sizes, each time

generating a new map, until a pre-defined maximum

window size Lmax is reached. At the basic window size

(focal window hereafter) L = 3, the window consists

only of the eight immediate neighbors of the center

pixel and the center pixel. If L = 3 and Ph(3) is less

than 100, the center pixel is an edge pixel since at least

one of its immediate neighbors is a non-habitat pixel.

For L [ 3, Ph(L) represents the percentage of habitat

for larger neighborhood sizes beyond its eight adja-

cent pixels. The above process is similar to many

previous multi-scale analyses and identical to the first
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step in the methods by Riitters (2005) and Zurlini

et al. (2007). It differs from the approach used by

Milne (1992) to generate multi-scale aggregation

maps (where the number of neighboring windows was

tallied rather than the number of habitat pixels).

Once the moving window analysis is complete,

there are N = Lmax/2 maps that originate from the

original binary map. For each pixel in the landscape,

we then generate a scalogram, i.e., a scatter plot of

percent of habitat versus window size (or scale).

Scalograms of habitat cover have two interesting

properties: [1] they may be locally linear, but globally

non-linear unless their slope is zero; and [2] they

exhibit autocorrelation. The former property occurs

because a scalogram is constrained between a finite

range of values, (0–100). Therefore, a linear function

for all possible window sizes is impossible unless the

slope is zero (i.e., an pixel in an infinitely large

landscape with 100% cover or a pixel along a straight

edge that separates large habitat and matrix areas).

The second property, scalogram autocorrelation,

emerges from the fact that their value at a given

scale is based on a window analysis that contains all

windows of smaller scales. The correlation between

subsequent scalogram values increases with scale,

since the ratio between the total number of pixels in

subsequent window sizes decreases, and the number

of new ‘habitat’ pixels in the larger window sizes has

decreasing impact on the overall percentage of

habitat with increasing scale.

Mathematically, the basic properties of scalograms

can be described in the following manner. Assuming

that the window size at scale i is denoted by Li and

the window size at a subsequent higher scale is Li?1,

the ratio between the number of pixels in subsequent

window sizes is:

kðLÞ ¼
L2

iþ1

L2
i

In case of a continuous increase in window size (odd

numbers, steps of two pixels per window),

Liþ1 ¼ Li þ 2

Then,

k Lð Þ ¼ Li þ 2ð Þ2

L2
i

¼ L2
i þ 4Li þ 4

L2
i

¼ 1þ 4

Li
þ 4

L2
i

And therefore,

lim
L!1

k Lð Þ ¼ 1

Similarly, we can calculate dPh, the difference in

habitat cover Ph between subsequent window sizes Li

and Li?1 that contain n Lið Þ and n Liþ1ð Þ habitat pixels,

respectively, as:

Ph Lið Þ ¼
n Lið Þ

L2
i

Ph Liþ1ð Þ ¼ n Liþ1ð Þ
L2

iþ1

dPh ¼ Ph Liþ1ð Þ � Ph Lið Þ ¼
n Liþ1ð Þ

L2
iþ1

� n Lið Þ
L2

i

¼ n Lið Þ þ dn

Li þ 2ð Þ2
� n Lið Þ

L2
i

dPh ¼
n Lið Þ

Li þ 2ð Þ2
� n Lið Þ

L2
i

þ dn

Li þ 2ð Þ2
ð1Þ

where dn is the additional number of habitat pixels

gained by increasing the window size from Li to Li?1.

The range of these values is:

0� dn� 4Liþ1 � 4

1� n Lið Þ� L2
i

Therefore, as the window size increases, the values of

the three components of Eq. (1) approach zero (the first

two components cancel each other, and the third

approaches zero). Hence, in large window sizes, there is

little change in the value of a habitat cover scalogram:

lim
L!1

dPh ¼ 0:

The polynomial approach

The first approach for describing the scalogram, MCS-

PAp, was based on curve fitting. We used least squares

estimation to fit a third-order polynomial function:

Ph ¼ a3L3 þ a2L2 þ a1Lþ a0 þ e ð2Þ

where a0, a1, a2, a3 are the coefficients of the curve,

and e is the error term of the fit. We used a third-

order polynomial because preliminary analyses with

real-world maps revealed that first-order (linear) and

second-order polynomials (parabolas) did not cap-

ture non-linear scalograms well, especially for

pixels in and near convoluted edge areas. At the
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same time, we did not use higher order polynomi-

als, despite their better fit, because additional

coefficients reduced the interpretability of our

results. Following curve fitting, we use the coeffi-

cient of determination (r2) to assess the goodness of

fit of the curve for each pixel.

The four coefficients of the curve represent the

spatial context of each pixel at varying scales. The

zero-order coefficient a0 is related to the percentage

of habitat within the immediate neighborhood of the

focal pixel (though in reality, it can be larger than

100% since it represents the intercept with the y-axis,

while the lowest x-axis value of the scalogram is

3 9 3 = 9). In other words, the zero-order coeffi-

cient distinguishes habitat edge, habitat core pixels,

and matrix core pixels. The first-order coefficient a1

defines the linear trend of habitat with increasing

neighborhood sizes. Positive values of a1 denote

cases where larger neighborhoods around the core

pixel have a greater percent habitat than smaller

neighborhoods. A value of zero denotes no scale

effect on percent habitat, and negative values denote

decreases in percent habitat with an increase in scale.

The second-order coefficient a2 introduces a non-

linear effect in the scalogram and has two implica-

tions. First, the second-order coefficient denotes

whether the rate of habitat gain or loss changes with

scale (in contrast to the first-order coefficient that

reflects only a constant rate of change). Second, it

allows for the existence of an inflection point

(minima or maxima of the curve) at which the

direction of percent habitat change switches (more

habitat with increasing scale to less habitat and vice

versa). The third-order coefficient a3 is highly and

inversely correlated to the second-order coefficient,

but it adds two more inflection points that are

important for accurate description of highly complex

habitat configurations where changes in the direction

of percent habitat gain or loss occur more than once

(although such complex configurations occur less

often than simple ones, which are captured suffi-

ciently well by a second-order polynomial).

Once the formula is applied and each pixel is

characterized by the four coefficients, it is possible to

depict the general multi-scale context of the land-

scape using the coefficients rather than using a large

set of scale-specific maps. Therefore, four maps are

created in which each pixel denotes the value of the

polynomial coefficient of the relevant order, which

was generated by running the multi-scale analysis in

its neighborhood.

Scalogram shape approach

In the second method, MCSPAs, we determine scale

effects on change in habitat proportion. We calculate

the average amount and the standard deviation of

habitat proportion across scales, as well as the

magnitude of change in habitat proportion among

scales. The second approach is simpler than the

polynomial approach and accounts solely for the

shape of the scalogram, based on its average and

standard deviation values and the average slope

between the scalogram value at the focal window and

any subsequent window size. There is no goodness of

fit measure in the scalogram shape approach, since no

curve fitting algorithm is applied. Resulting from the

shape approach are three complementary metrics: [1]

mean scalogram (S0), which denotes the average

amount of habitat with varying scales; [2] standard

deviation of scalogram (S1), which represents the

variability of habitat amount through scales; and [3]

mean slope (S2), which represents the magnitude of

habitat change through scales. They are calculated in

the following manner:

S0 ¼ 1

k

Xk

i¼0

P Lið Þ ð3Þ

S1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k � 1

Xk

i¼1

P Lið Þ � S0ð Þ2
vuut ð4Þ

S2 ¼ 1

k

Xk

i¼1

P Lið Þ � P L0ð Þ
Li � L0

ð5Þ

where i = 0 is the index of the focal window, and k is

the number of windows (or scales). S0 ranges

between zero and one, and its value is related to the

percent cover of the entire landscape, coupled with its

degree of aggregation. S1 describes the general

variability of the curve by distinguishing between

scalograms that exhibit little change in habitat with

scale versus curves that exhibit large-scale effects.

The values for S1 range between zero, denoting a

linear curve with zero-slope, to positive numbers that

increase as the curve slope deviates from zero, and

scale effects are more pronounced. S2 ranges from

positive values that correspond to cases where habitat
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increases with scale, through zero that represents

cases where habitat is constant with scale (mainly

core pixels, but possibly edge pixels located along

straight boundaries), to negative values that denote

cases where habitat decreases with scale. The lowest

values of S2 occur when the scalogram exhibits a

non-linear decay pattern (rapid decrease of habitat at

smaller window sizes, followed by smaller changes at

larger window sizes).

Case studies

To test the performance of both approaches under

various landscape configurations, we conducted anal-

yses for 18 neutral landscapes and nine real-world

landscapes that consisted of mosaics of forests (with

forests corresponding to habitat hereafter) and agri-

culture (matrix) and represented a gradient of spatial

pattern in terms of forest cover. Neutral Random

landscapes were generated by MATLAB with vary-

ing patterns defined by percent of habitat cover. The

size of each neutral landscape map was 332 9 333

pixels. We altered forest cover between 5% (open

landscape) and 95% (closed landscape) in increments

of 5%. To increase the interpretability of the results,

we display results for forest pixels solely (i.e., matrix

pixels were masked out in the following figures),

even though the two approaches were run on matrix

pixels as well and provide spatial context information

for forest and matrix pixels alike.

Real landscape maps were obtained from the

National Land Cover Dataset (Vogelmann et al.

2001) and represented areas of flat to rolling terrain in

Wisconsin with forest cover ranging between 10 and

90% in increments of 10%. Each map had a spatial

resolution of 30 m and covered a geographic extent

of 10 by 10 km (332 9 333 pixels, same as the

neutral landscapes). We converted the multi-class

land cover map into a binary forest map by reclas-

sifying the three forest classes (evergreen, deciduous,

and mixed) into ‘1’, while setting all other classes to

‘0’.

For each approach and every map, we calculated

the mean polynomial coefficient values and mean S0,

S1, S2. We also calculated the correlation between

any pair of resulting maps from the same approach. In

addition, we tested the effect of maximum window

size on the above values by increasing the window

size from 7 to 33 pixels per side, in increments of

two. In all cases, the scalogram contained all odd

window sizes between the focal window and the

maximum window size. To eliminate map boundary

effects, we applied these methods only to pixels that

were more than Lmax/2 (half the side of the largest

window size) away from the outside edge of the map.

Results

The polynomial approach

Different pixels exhibited a wide variety of scalo-

grams, ranging from simple linear forms to highly

nonlinear and complex curves (Fig. 1). Straight lines

with zero slopes occured in three types of areas: [1]

forest interior pixels for which the distance to the

nearest edge was larger than maximum window size,

which intercepted the y-axis at 100% cover; [2]

matrix pixels for which the distance to the nearest

forest pixel was larger than the maximum window

size, which intercepted the y-axis at 0 % cover; and

[3] edge pixels (forest or matrix) situated along

straight edges between non-perforated core areas and

clean matrix areas, which intercepted the y-axis at

values between 11 and 88 % cover. All other spatial

contexts formed more complex scalograms, either

quasi-linear with non-zero slopes (in simple cases) or

non-linear (in the majority of complex spatial con-

texts), but the majority of these scalograms had

coefficient of determination values higher than 0.8

(Fig. 1).

The goodness of fit of the fitted polynomial curves

was generally high in the actual landscapes, regard-

less of the amount of forest cover (Fig. 2a). In neutral

random landscapes, the goodness of fit was moderate

and was more affected by forest cover (Fig. 2b). The

goodness of fit was also affected by the spatial

context of the pixel (Fig. 3) and was generally lowest

in places where changing neighborhood sizes resulted

in strong nonlinear patterns with several critical

points at which the direction of the spatial trend

shifted. In such cases, the fit was still moderate, but

the curves depicted a simplified version of the

scalogram (i.e., the general trend was retained, but

small-scale variations were ignored). The goodness

of fit could have been increased by increasing the

order of the polynomial to more than four, but this

would have yielded a larger number of parameters
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that are more difficult to interpret and may have

limited ecological relevancy. We therefore decided to

limit our analysis to the third-order polynomial form.

For all maps, the second- and third-order coeffi-

cients were highly correlated (r [ 0.99). Both coeffi-

cients were also highly correlated with the first-order

coefficient (r [ 0.9) and moderately correlated with

the zero-order coefficient (r [ 0.5). We therefore

questioned the need for the third-order coefficient in

the model, but attempts to use only lower order

polynomials resulted in lower goodness of fit (average

r2), especially for pixels that had complex scalograms

(results not shown). In these cases, fitting first- or

second-order polynomials severely decreased the

goodness of fit (in the opposite case, increasing the

polynomial order where the fit is already good does not

change the goodness of fit, and the new coefficients are

zero or very small). Thus, it was important to retain the

third-order polynomial form, even though its fitting

capabilities only benefit the complex areas of the

landscape, which are generally less abundant.

Interesting patterns emerged when the polynomial

coefficients were depicted as maps (Fig. 4a–c). Zero-

order coefficient values were sensitive to edges, and

the maps resemble the output of a majority filter, with

a window size of Lmax/2 (Fig. 4a). The first- and

second-order coefficient maps (Fig. 4b–c) depicted

similar patterns, owing to the high correlation

between them. These coefficients reacted to protru-

sions from large forest areas (i.e., ‘forest peninsulas’),

as well as to intrusions of matrix into the forest (i.e.,

‘inlets’), and also differentiated between major and

minor edges. Major edges are forest pixels adjacent to

matrix with little or no additional forest pixels within

the matrix at the distance of the maximal window size

(i.e., boundaries between forests and large non-forest

Fig. 1 Landscape blocks

representing windows of

21 9 21 pixels and the

scalograms of their center

pixel. The y-axis represents

forest cover, and the x-axis

denotes window area

(number of pixels). The

third-order polynomial fit

appears as a continuous line

in each plot, and its

goodness of fit (r2) is noted

above the plot
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areas). Minor edges are forest pixels that border the

matrix, and that have additional forest pixels within

or beyond the matrix at distances smaller than the

maximal window size. For example, forest pixels

along forest roads are minor edges and so are edge

pixels in areas of low-aggregation forest stands,

forest pixels surrounding perforations (matrix ‘holes’

within forests), and inlets. Interior forest areas

exhibited a gradient of coefficient values near edges,

and the size of these gradients corresponds to the

maximum window size.

The scalograms of these general context types

differed, and distinctive polynomial curves were

fitted to each scalogram with varying goodness of

fit (Fig. 5). However, the general characteristics of

the scalogram were retained even in cases with low

goodness of fit. For example, scalogram B had an r2

of 0.09, but the poor fit is largely the result of the

local minima of the scalogram at the second smallest

window size, which the polynomial function could

not capture well. In other cases, the differences

emerge from shifts in the local extreme points

(maxima or minima, e.g.: scalograms A, C), a

difference in their magnitudes between curves (A,

E, D), or the addition of local extreme points that do

not exist in the scalogram (A, E, D). Yet, the absolute

difference in forest cover was never larger than 10%,

so even in cases where the goodness of fit was low,

the general properties of the scalogram were reason-

ably well described by the third-order polynomials.

The actual landscapes depicted spatial patterns that

represent common forest-agriculture mosaics, in

contrast to the neutral landscapes that represent

random spatial patterns. However, actual landscape

showed similar responses to changes in forest cover

and maximum window size (Lmax) as did the neutral

landscapes, which are characterized by lower aggre-

gation levels (Fig. 6). The average zero- and first-

order coefficients increased linearly with forest cover,

and the average second-order coefficient decreased

linearly with forest cover.

The mean polynomial coefficients were non-line-

arly affected by the maximum window size (Fig. 6).

The zero-order coefficient was less affected by

maximum window size compared to the higher order

coefficients, and the actual landscapes were more

sensitive to window size than the random landscapes.

The effect of maximum window size decreased with

increasing forest cover.

Fig. 2 The distribution of the goodness of fit (r2) for actual

landscapes (a) and neutral random landscapes (b), at three

forest cover values

Fig. 3 Goodness of fit values (r2) for an actual landscape with

50% forest cover
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The scalogram shape approach

The scalogram shape maps depicted several spatial

contexts (Fig. 4d–f). Pixels in the S0 maps high-

lighted effects of forest cover. Pixels in large,

contiguous forest areas had higher S0 values, and

S0 values decreased as pixels were closer to forest

edges. Pixels along minor edges and small perfora-

tions had similar values to core forest pixels, since the

scalogram was less affected by the small amount of

matrix in those areas. In contrast, pixel along major

edges and large perforations exhibited lower values

of S0, due to the impact of the matrix in their

surrounding. There were two types of peninsula

pixels: major and minor. Major peninsula pixels,

which protruded from large forest areas, had inter-

mediate S0 values. Minor peninsula pixels, protrud-

ing from major peninsulas, had very low S0 values.

However, both types of peninsula pixels shared

similar S0 values with intermediate-sized forest areas

Fig. 4 MCSPAp and MCSPAs maps for a landscape in

Wisconsin with 50% forest cover: zero-order (a), first-order

(b), and second-order (c) polynomial coefficient maps. Bottom
row: S0 (d), S1 (e), and S2 (f) maps. The third-order

polynomial coefficient map is not depicted since the differ-

ences between it and the second-order map are minor. The

circles in maps a–c correspond to the scalograms in Fig. 5
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(similar to major peninsulas) and small-sized forest

areas (islands, similar to minor peninsulas).

The S1 maps highlighted in particular the core area

contexts. Major peninsulas that emerged from large

forest areas were highlighted more clearly than in the

S0 maps, but S1 maps did not capture minor penin-

sulas. In small forest areas, the same S1 values

represented core areas. Low S1 values most often

represented core pixels of large forest areas, while

intermediate S1 values depicted transition zones

between core areas and peninsulas or edges. There

was no explicit representation of edges in the S1 maps,

and edges had relatively similar S1 values as cores.

The S2 maps depicted mainly different types of

edges (Fig. 4f). Minor edges and small perforations

that were unnoticed by S0 were clearly visible and had

high values in the S2 maps. Major edges, on the other

hand, had low S2 values. S2 exhibited also a more

pronounced differentiation (compared to S0) between

core pixels and pixels near (but not along) edges, which

received positive and negative S2 values, respectively.

The lowest values of S2 were related to pixels that were

located in very small forest areas, as well as pixels that

were directly adjacent to edge pixels in small forest

areas and in peninsulas of large forest areas.

Maximum window size (Lmax) and forest cover

had varying effects on the average coefficient values.

Mean S0 was linearly related to forest cover for all

maximum window sizes (Fig. 7a–b). Mean S0

decreased non-linearly with maximum window size

for the actual landscapes and was relatively unaf-

fected at the random landscapes. The effect of

maximum window size decreased with forest cover.

Mean S1 was linearly related to forest cover for both

actual and random landscapes, though the slope of the

relation was larger for actual landscapes (Fig. 7c–d).

Maximum window size had a non-linear effect on

mean S1, and this effect decreased at higher forest

cover values. The effect of maximum window size

was smaller for random landscapes. In the actual

landscapes, mean S2 decreased linearly with forest

cover for all window sizes (Fig. 7e). The slopes of

these relations increased asymptotically with maxi-

mum window size. In contrast, in random landscapes,

mean S2 was non-linearly related to forest cover,

having a parabolic form that peaked at 50% cover

(Fig. 7f). These relations decreased asymptotically

with increasing maximum window size.

Discussion

Landscape ecologists have greatly improved metrics

to quantify landscape structure and to relate these

metrics to ecological processes. The predominant

theme behind the majority of these approaches is the

patch-mosaic paradigm that examines the patch as the

fundamental structural unit within the landscape.

Finer grained units have been used as well in methods

such as morphological spatial pattern analysis (Vogt

et al. 2007; Riitters et al. 2007) and multi-scale

analyses of disturbance (Zurlini et al. 2007). In both

cases, the basic structural unit is the pixel, and its

location within the patch-mosaic complex determines

its class, either via its relationship to nearby pixel

Fig. 5 Real (dashed lines)

and fitted scalograms (solid
lines) of six pixels in a

landscape with 50% forest

cover. The scalograms are

based on the center pixel in

each of the six black circles
in the right map, which

corresponds to the six

circles in Fig. 4a–c. The

numbers in parentheses

represent the goodness of fit

between the actual data and

the fitted polynomial (r2)

Fig. 6 Effects of forest cover and maximum window size

(Lmax) on the average MCSPAp coefficients in actual (left
column) and random (right column) landscapes. Rows repre-

sent: zero-order coefficients (a–b), first-order coefficients (c–d),

and second-order coefficients (e–f)

c
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classes (Vogt et al. 2007) or through the spatial

characteristics of the surrounding landscape at vary-

ing spatial scales (Zurlini et al. 2007). Here, we built

upon the pixel-based approach for landscape structure

analysis and introduced two new approaches for

describing the spatial context of each pixel in the

landscape. MCSPAp fits empirical polynomial curves

to scalograms to describe the multi-scale landscape

structure around each pixel in the landscape.

MCSPAs is a simpler approach, which describes the

properties of scalograms based on the first- and

second-order statistics and the mean value of the

slope between the focal window and any other

window size. Scalograms of habitat cover have two

inherent characteristics—global non-linearity and

autocorrelation—that may facilitate the usage of such

mathematical tools to describe them in a relatively

simple manner. Both MCSPA approaches describe

the spatial context of matrix pixels as well, which

may be important when matrix pixels are located in

areas with high percentage of forest, and therefore

may serve as complementary forest or movement

pathways (Gustafson and Gardner 1996; Cook et al.

2002; Perfecto and Vandermeer 2002).

MCSPAp may be mathematically more elegant

than MCSPAs, but it has inherent limitations. MCS-

PAp is appealing because the polynomial framework

is able to describe the scalogram in a holistic manner,

accounting for the change of habitat at all scales

simultaneously. However, MCSPAp has several lim-

itations that emerge from the necessity to fit third-

order polynomial curves to often noisy scalograms,

with varying goodness of fit. In addition, a fixed

third-order polynomial is fitted to all pixels, for three

reasons: [1] straightforward interpretation of coeffi-

cients; [2] relatively high goodness of fit; and [3]

assigning polynomial order to pixels on a case-by-

case basis based on maximizing goodness of fit would

introduce an element of arbitrariness that would make

interpretation of coefficients intractable. The majority

of spatial contexts were successfully described by a

third-order polynomial, while other contexts were

poorly described. However, we found that even

curves that had a low goodness of fit including

important context information, such as the general

trend of habitat change through scales and the

magnitude of change. The low goodness of fit values

often resulted from noisy scalograms, rather than a

curve that could not capture the general pattern in the

scalogram well.

MCSPAs, though being a simpler approach,

appeared to capture more spatial contexts than

MCSPAp. This result is based on visual interpretation

(i.e., which landscape ‘features’ emerge from the S0,

S1, and S2 maps), which is constrained by the

number of landscapes analyzed and their character-

istics. The simplicity of the approach may be one of

its great strengths, since there is no error in quanti-

fying metrics (as there is in MCSPAp due to the

curve fitting stage), and no need to make a priori

decisions about parameters (as is the case of cluster

analyses of scalogram values). On the other hand, the

main limitation of this approach is that pixels with

different spatial contexts may have similar metric

values. This problem may be reduced by using all

three metrics simultaneously (S0, S1, S2).

There are several issues that need to be considered

when applying either MCSPA approach. The first is

the choice of ‘habitat’ (forest) among all land cover

classes. Though this is the standard in landscape

ecology studies, it is based on a simplistic human

perception that may be different than the species

perception of landscapes (i.e., ‘Umwelt’; Manning

et al. 2004). While attempting to predict the occur-

rence of specific organisms, a careful selection of the

relevant habitat types should precede the analysis,

based on a priori ecological knowledge (Li and Wu

2004). In addition, the response of different species to

landscape context is often unknown. Some species

may be sensitive to certain types of context (e.g.

edge-preferring or edge-avoiding species in a simple

case), while other are insensitive to context. And last

but not least, species reaction to context may vary

during different life cycles such as nesting, feeding,

or breeding. Careful selection of the appropriate land

cover classes to be included in the habitat category

thus is always a required first step of any landscape

structure analysis.

A pixel-based approach for landscape description is

not inherently superior to the patch-based approach,

but it may be more suitable in cases where the

ecological process of interest is sensitive to landscape

variability or context at a scale smaller than the patch.

One strong benefit of using pixels versus patches is

Fig. 7 Effects of forest cover and maximum window size

(Lmax) on the average MCSPAs indices in actual (left column)

and random (right column) landscapes. Rows represent: S0 (a–

b), S1 (c–d), and S2 (e–f)

b
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their ability to describe spatial heterogeneity beyond

the capability of patches. Pixels may also be used to

quantify structural differences between different

patches with similar patch-based metric values. In

contrast, a criticism of pixel-based approaches is that

they do not represent real-world objects (pixels can

only be interpreted in terms of their class value and

spatial context; Lang 2008), but a sampling of the

landscape (depending on pixel size), and as such are

less meaningful than studies of image objects or

patches (Hay et al. 2003). Therefore, the choice of

pixel size (and consequently, the maximum window

size) has to be related to the characteristics of the

ecological process (or organism) of interest (Marceau

1999), just as the scale of the analysis of a patch-based

study should correspond with its application (Blaschke

2006). For small organisms with limited dispersal

range, pixel size should be small since using large

pixel sizes will represent context that may be ecolog-

ically irrelevant. Also important to consider is that

larger pixels may contain a mixture of landscape (or

habitat) types, and as such introduce bias into the

analysis since the map representation of the landscape

is not a reliable depiction of the actual landscape

(Fisher 1997; Townsend et al. 2000).

A potential application of MCSPA beyond quanti-

fying spatial context per se would be assessment of

multi-scale connectivity. Based on percolation theory,

binary landscapes become connected once a certain

proportion of habitat exists, and this proportion is

defined as the percolation threshold (Gardner et al.

1987). Habitat pixels may be connected to other

habitat pixels at a given landscape size (L) in which the

percolation threshold is exceeded (Ph(L) [ percola-

tion threshold), but not connected at larger landscape

sizes. Conservation planning would benefit if connec-

tivity was measured at multiple scales simultaneously,

and MCSPA combined with percolation theory may

offer a suitable methodology to meet this need.

The main assumptions behind both MSPA

approaches are that the scalogram is a good descriptor

of spatial context in landscapes and that spatial context

may be an advantageous predictive variable of

ecological processes. Just like any other landscape

metric, a single scalogram may be representing

different spatial contexts, though when looking at

the coefficient maps, it is clear that scalograms are able

to successfully represent spatial context. Therefore,

the major challenge in multi-scale spatial pattern

analysis is finding robust ways to successfully describe

the properties of scalograms. The two approaches

developed here, MCSPAp and MCSPAs, offer two

alternative ways to do so, and as such can offer further

insight into how ecological processes, and particularly

species distribution and movements, are affected by

spatial patterns.
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