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IntroductIon

Weather and climate constrain and drive ecological 
processes, including flowering and seed set phenology 
(Schwartz 1998, Wolfe et al. 2005, Polgar and Primack 
2011), patterns in species occurrence and abundance 
(Bateman et al. 2012, Forcey et al. 2014), species group 
size (Thogmartin and McKann 2014), synchronization 
of population dynamics within and among species (the 
Moran effect) (Koenig 2002, Post and Forchhammer 
2002), and disease transmission rates (Harvell et al. 
2002). These processes often occur over fine spatial and 
temporal scales, are sensitive to spatial heterogeneity, 
and may entail nonlinear responses, making spatially 
continuous yet fine- resolution weather data important 
for ecological research and applied ecological predictions 
(Jones and Gladkov 2003, Parra et al. 2004). However, 
available weather and climate data may not match the 

information needs for ecological and conservation appli-
cations. Furthermore, the characteristics, limitations, 
and tradeoffs associated with different weather and 
climate data sets may not be easy for ecologists and con-
servation practitioners to discern. It is thus important 
that downscaled climate data sets are evaluated and char-
acterized in terms of their suitability for ecological and 
conservation applications.

The most accurate climate data originate from meas-
urements at quality- controlled weather stations, but 
many applications require a gridded weather product to 
provide complete spatial coverage (e.g., Abatzoglou 
2013). There are many different ways to interpolate 
among weather stations, based on distance to stations 
and local geographic factors such as land cover, slope, 
and elevation. For example, the effects of elevation may 
be approximated by adjusting for the normal drop in 
temperature with altitude (lapse rate) or the usual local 
increase in precipitation up the slope of a mountain 
(Sheridan et al. 2010). However, data sets differ in how 
they make these assumptions, leading to differences in 
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sets does not depend on spatial resolution. Although some inherent differences among 
data sets and weather station data are to be expected, our findings highlight how much 
different interpolation methods affect downscaled weather data, even for local comparisons 
with nearby weather stations located inside a grid cell. More broadly, our results highlight 
the need for careful consideration among different available data sets in terms of which 
variables they describe best, where they perform best, and their resolution, when selecting 
a downscaled weather data set for a given ecological application.
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the products. Despite these uncertainties, gridded station 
data are often treated as observations by users for a par-
ticular application. There is a risk that many users are 
unaware of the accuracy of the gridded product they 
choose and whether another choice might be more 
suitable for their purposes. Users will expect downscaled 
climate products to produce data that match local station 
data as closely as possible, particularly if gridded data 
have relatively high spatial resolution.

The overall goal of our study is to evaluate the ability 
of eight widely used, gridded data sets to represent actual 
weather conditions in the conterminous United States, 
including extreme weather events. Specifically, our 
purpose is to evaluate how closely the gridded data match 
the original station data and thus what information may 
be altered when a user substitutes a gridded data set in 
place of meteorological station data. This concern is 
especially pertinent to extreme weather, which tends to 
be more localized than general weather phenomena, 
especially precipitation extremes. To achieve our goal, 
we focus on four major research questions.

Our first question is how well gridded data sets capture 
temperature and precipitation, based on the expectation 
that performance may differ greatly between these vari-
ables, because precipitation is generally more heteroge-
neous than temperature in both space and time. Thus, 
we anticipated that gridded temperature data would 
resemble point measurements from nearby weather 
 stations more closely than gridded precipitation data.

Our second question is how the accuracy of different 
downscaled data sets varies among ecoregions. Climate 
differs considerably among ecoregions, as does topog-
raphy, posing challenges for any one- size- fits- all downs-
caling algorithm. Therefore, we expected that while one 
data set would perform best, for instance, in desert ecore-
gions, another would be optimal in temperate forest 
regions. Similarly, given that topography will increase 
the spatial heterogeneity of both temperature and pre-
cipitation, one data set may provide the highest accu-
racies in mountainous ecoregions, while another may be 
optimal in flatter areas.

Our third question is how well downscaled data sets 
capture means vs. extremes. Both mean climate and 
weather extremes are important for ecological research. 
Means are typically used to predict the effects of future 
climate change, but extremes may exert more immediate 
and profound effects on ecosystems (Jentsch et al. 2009). 
However, mean climate patterns are more homogeneous 
in both space and time than extremes, suggesting that 
differences in interpolation methods may result in dif-
ferent accuracies, and we expected accuracies for means 
to be higher than for extremes.

Our fourth and final question is how much the 
accuracy of the gridded products depends on their 
spatial resolution. Finer resolution is typically desirable 
for ecological applications, because many ecological 
 patterns and processes vary at fairly fine resolutions 
(e.g., less than 1 km). However, while it is technically 

straightforward to create downscaled weather data sets 
at any spatial resolution, the question is whether the 
accuracy of the predicted patterns improves when inter-
polated to finer scales. We expect that as their resolution 
becomes finer, gridded products will more closely align 
with nearby weather stations and be better able to 
account for topography, thus matching observational 
data more realistically, but that improvement could 
come with a greater risk of false precision and overfitted 
interpolation models.

data and methodS

Study area

Our study area is the conterminous United States, 
whose size, diverse climate regimes, and pronounced 
topographic variations provide a challenging test for 
gridded data sets. We evaluated these data sets based on 
their agreement with weather stations averaged across 
the entire domain and divided into 17 ecoregions that are 
designed to capture spatial climate variations (Fig. 1). 
These ecoregions are patterned after the classification 
scheme of Bukovsky (2011) and resemble the regions 
used by the National Ecological Observation Network 
(NEON) (Kampe et al. 2010).

Data

As reference data, we used daily precipitation and tem-
perature (maximum and minimum) records from the 
Global Historical Climate Network- Daily (GHCN- D) 
data set (Menne et al. 2012). We selected 3855 stations 
that had a minimum of 83% of daily records for each of 
the three variables for our reference period, 1981–2010 
(Fig. 1). Values flagged by GHCN’s quality control 
 procedure (Durre et al. 2010) were removed. For each 
gridded data set, we extracted the temperature and pre-
cipitation time series only for grid cells containing at least 
one weather station. If a grid cell contained more than 
one station, we averaged the daily values to obtain a 
single time series for the cell. However, the overwhelming 
majority (> 90%) of grid cells contain only one weather 
station. Because the data sets vary in their representation 
of coastal areas, they occasionally do not include weather 
stations close to a coast and thus the number of weather 
stations varies slightly among data sets. We emphasize 
that our methodology does not directly address the spa-
tially interpolated distribution of variables far from 
weather stations, but instead focuses on local compar-
isons between observed and downscaled weather data. A 
similar supplemental analysis was performed using 
observations independent of the GHCN measurements 
from three geographically distinct states: the California 
Irrigation Management Information System (CIMIS), 
the Florida Automated Weather Network (FAWN), and 
the Nebraska Automated Weather Data Network 
(NE_AWDN).
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We investigated eight widely used gridded products 
that provide temperature and/or precipitation data on 
daily time scales throughout our study period: CPC, 
Daymet, Livneh, Maurer, NLDAS2, PRISM, TopoWx, 
and UIdaho (Table 1). Their spatial resolutions range 
from fine (TopoWx at 800 m and DayMet at 1 km) to 
fairly coarse (CPC at 0.25°, or ~25 km), allowing us to 
evaluate accuracy as a function of resolution (Question 
4). Because gridded products differ in how they define a 
calendar day (e.g., local time relative to Coordinated 
Universal Time), appropriate lag correlations were 
applied through cross- correlation analysis to account for 
the several- hour offset in daily station data.

The downscaling and gridding methods of these data 
sets vary substantially and are summarized in Table 2. It 
is beyond the scope of this study to describe these 
methods in detail, but we provide a brief overview here. 
Broadly speaking, the various interpolation methods can 
be roughly categorized according to their sophistication 
into three groups. The simplest methods, lapse rate- based 

and gauge- based, apply a constant elevation correction 
for temperature (−6.5°C/km) and a basic regression or 
weighting algorithm to upscale precipitation measured 
at a rain gauge to the mean precipitation in a grid cell. 
This method is used to generate the CPC, Maurer, and 
Livneh products, which apply either the optimum inter-
polation algorithm (CPC) or the SYMAP computer 
mapping algorithm (Maurer, Livneh) that employs an 
inverse- distance weighting approach. An intermediate 
level, topoclimatic, incorporates environmental covar-
iates such as elevation, aspect, slope, distance to coast, 
and land surface temperature. This procedure is used to 
generate PRISM, Daymet, and TopoWx. A third 
method, employed to generate NLDAS2 and UIdaho, 
employs a hybrid approach by using data from a com-
bination of sources, including station data, reanalysis, 
other monthly or daily gridded data, or modeled data. 
For example, precipitation in the NLDAS2 data set is 
debiased according to observations, while its temperature 
fields are downscaled directly from reanalysis data (i.e., 

fIg. 1. The modified Bukovsky regions and the locations of stations used as reference data.
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Regions
Appalachia
C. Plains
Deep South
Great Basin
Great Lakes
Mezquital
Mid-Atlantic

N. Atlantic
N. Plains
N. Rockies
Pacific NW
Pacific SW
Prairie
S. Plains
S. Rockies

Southeast
Southwest

taBle 1. Information on the eight gridded data products used in this study. 

Data set Variables used Time span Resolution (km)

Climate prediction center unified gauge- based analysis of daily 
precipitation (CPC)

prcp 1948– 28 × 21

Daymet prcp, tmax, tmin 1980–2014 1 × 1
Livneh prcp, tmax, tmin 1915–2013 7 × 5
Maurer prcp, tmax, tmin 1949–2010 14 × 10
National land data assimilation system, version 2 (NLDAS2) prcp, tmax, tmin 1979– 14 × 10
Parameter- elevation regressions on independent slopes model 

(PRISM (AN81d))
prcp, tmax, tmin 1981–2014 5 × 4

Topographical (TopoClimatic) weather (TopoWx) tmax, tmin 1948–2014 0.8 × 0.8
UIdaho prcp, tmax, tmin 1979–2014 4 × 4

Notes: Variables are daily precipitation (prcp), daily maximum temperature (tmax), and daily minimum temperature (tmin). 
Data sets for which resolutions are in degrees have been converted to an equivalent resolution expressed as latitude × longitude for 
a grid box at 40°N, approximately in the center of the analysis domain.
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simulations based on physical models), with no addi-
tional use of station data.

Our classification into gauge- based, topoclimatic, and 
hybrid methods roughly corresponds to commonly 
employed strategies to downscale and interpolate, 
including the translation of coarse- resolution climate 
model output to finer scales by either statistical or 
dynamical downscaling. Such downscaling techniques 
have a long history, including simple inverse- distance 
weighting schemes such as Cressman (1959) and Shepard 
(1968), optimal interpolation algorithms that minimize 
mean- square interpolation errors in a network (Gandin 
1965), sophisticated kriging methods that describe how 
spatial data are related as a function of distance and 
direction by modeling the covariance structure of the 
station and covariate data (Journel and Huijbregts 1978), 
and blending techniques that account for known spatial 
relationships among weather station data (Johns et al. 
2003). Even more sophisticated interpolation methods 
involving Bayesian statistics have also been applied (e.g., 
Fuentes et al. 2006). Likewise, physically based 
approaches take advantage of known spatial relation-
ships among weather variables across a measurement 
network, based on physical laws relating temperature, 
precipitation, solar radiation, humidity, etc. (e.g., Kittel 
et al. 1995). This reasoning also forms the basis for data 
assimilation algorithms that incorporate weather obser-
vations into numerical models that conform the measure-
ments into physically realistic four- dimensional fields 
(Whitaker and Hamill 2002), a technique utilized in 
atmospheric reanalysis products such as MERRA 
(Rienecker et al. 2011), NCEP- NCAR Reanalysis 
(Kalnay et al. 1996), the 20th- Century Reanalysis 
(Compo et al. 2011), and the NLDAS2 data set used here. 
Physically based strategies also form the basis for regional 
climate model simulations, with the primary purpose to 
translate climate data at coarse scales (e.g., from a global 
model) to finer scales suitable for applications.

To address our four research questions, we calculated a 
variety of metrics on a national and regional basis. We used 

standard statistical metrics of mean bias, mean absolute 
error, root mean squared error, standard deviation, and 
linear correlation to compare the accuracy of the gridded 
products in terms of temperature and precipitation 
(Question 1) in each region (Question 2). We synthesized 
these results on a nationwide basis by using a Taylor 
diagram, a commonly used tool in climatology that 
measures agreement with observations among several 
metrics and variables (Taylor 2001), in this case temper-
ature and precipitation. To assess regional (and national) 
performance among the gridded products, we compared 
their mean bias and mean absolute error in daily temper-
ature and precipitation in each Bukovsky region through 
the use of “portrait plots” (Gleckler et al. 2008). To evaluate 
the representation of extreme weather (Question 3), we use 
27 metrics collectively known as CLIMDEX or the 
ETCCDI (Expert Team on Climate Change Detection and 
Indices) (Zhang et al. 2011). These commonly used indices 
include measures of extreme temperature and precipitation 
using a variety of thresholds and time scales (Table 3), 
allowing for a fairly thorough evaluation of how the 
gridded products compare with station data under extreme 
temperature and precipitation conditions. The CLIMDEX 
indices have been used in many recent studies of past and 
future climate change (Alexander et al. 2006, Donat et al. 
2013, Sillmann et al. 2013a,b).

We grouped the 27 CLIMDEX indices into three cat-
egories. The absolute indices are those that use an 
absolute threshold to define an extreme, such as the 
number of occurrences above or below a fixed value 
(e.g., days with a maximum temperature < 0°C). The 
second is the min_max category, which indicates how 
well a data set represents the minimum or maximum 
values of temperature or precipitation over the course of 
a month (e.g., the highest daily maximum temperature 
in a month). The final category is the relative indices, 
which measure extremes based on a relative scale, such 
as the frequency of days when precipitation exceeds the 
local 95th percentile. We did not assign total annual pre-
cipitation (prcptot), daily temperature range (dtr), and 

taBle 2. Interpolation methods and references for the data products.

Data set Interpolation or gridding method applied Reference

CPC modified optimum interpolation technique of Chen et al. (2002), orographic effects 
accounted for via PRISM methodology

Higgins et al. (2000)

Daymet geographically weighted regression Thornton et al. (1997)
Livneh synergraphic mapping system (SYMAP) of Shepard (1984), precipitation scaled to match 

PRISM climatology
Livneh et al. (2013)

Maurer synergraphic mapping system (SYMAP) of Shepard (1984), precipitation scaled to match 
PRISM climatology

Maurer et al. (2002)

NLDAS2 bilinear interpolation of NCEP- NCAR Reanalysis (Kalnay et al. 1996) adjusted for 
elevation using PRISM methodology, temporally disaggregated to one hour

Xia et al. (2012)

PRISM geographically and elevation- weighted regression, station weighting by topography, 
distance to coast, atmospheric factors

Daly et al. (2008)

TopoWx moving window regression kriging, geographically weighted regression Oyler et al. (2015)
UIdaho bilinear interpolation of NLDAS2 data, daily prcp data from NLDAS2 scaled by monthly 

prcp from PRISM, daily temperatures from NLDAS2 scaled by monthly temperatures 
from PRISM

Abatzoglou (2013)
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the simple precipitation intensity index (sdii) to any 
category.

Following Gleckler et al. (2008), we compared the 
gridded products based on the CLIMDEX indices using 
measures of relative error among data sets. We calculated 
root mean square error (RMSE) for each index and 
region, and assessed the performance of a given data set 
via the relative RMSE (rRMSE), which compares the 
RMSE in a data set (RMSEds) with the median RMSE 
(RMSEMd) of all data sets 

(1).

This method allows for direct comparison among the 
products. For example, an rRMSE value of −0.50 indi-
cates that data set’s RMSE is 50% lower (better) than 

the model median RMSE. In addition to the rRMSE 
metric for extremes, we also evaluated the gridded 
products based on their bias relative to observations near 
the middle of the temperature and precipitation distribu-
tions vs. the tails of those distributions.

To assess the role of resolution (Question 4), we com-
pared these evaluation metrics with the spatial grain of 
each product. Doing so allowed us to determine the 
overall influence of spatial resolution, as well as specific 
relationships among temperature and precipitation, 
regional differences, and extremes.

We evaluated the eight gridded data products using 
the various measures described previously, beginning 
with broad- scale metrics (correlation, standard devi-
ation, and RMSE) at the national level, followed by more 
targeted metrics (mean absolute error and mean bias) at 

rRMSE=

RMSEds−RMSEMd

RMSEMd

taBle 3. Description of CLIMDEX indices. 

CLIMDEX index Description Units Category

Temperature
Extreme

TNx monthly maximum value of daily minimum temperature °C min_max
TXx monthly maximum value of daily maximum temperature °C min_max
TXn monthly minimum value of daily maximum temperature °C min_max
TNn monthly minimum value of daily minimum temperature °C min_max
TN10p monthly percentage of days when TN < 10th percentile n/a relative
TX10p monthly percentage of days when TX < 10th percentile n/a relative
TN90p monthly percentage of days when TN > 90th percentile n/a relative
TX90p monthly percentage of days when TX > 90th percentile n/a relative
WSDI annual warm spell duration index (count of at least 6 consecutive days when 

TX > 90th percentile)
days relative

CSDI annual cold spell duration index (count of at least 6 consecutive days when 
TN < 10th percentile)

days relative

Threshold
DTR daily temperature range: monthly mean difference (TX – TN) °C
FD annual count of days when TN < 0°C days absolute
SU annual count of days when TX > 25°C days absolute
ID annual count of days when TX < 0°C days absolute
TR annual count of days when TN > 20°C days absolute
GSL annual count of days between first span of at least 6 days with TM > 5°C and 

first span after 1 July of at least 6 days with TM < 5°C
days absolute

Precipitation
Extreme

Rx1 day monthly maximum 1- day precipitation mm min_max
Rx5 day monthly maximum consecutive 5- day precipitation mm min_max
CDD annual maximum length of dry spell (days with RR < 1 mm) days absolute
CWD annual maximum length of wet spell (days with RR > 1 mm) days absolute
R95pTOT annual total precipitation when RR > 95th percentile mm relative
R99pTOT annual total precipitation when RR > 99th percentile mm relative

Threshold
R1 mm annual count of days when precipitation ≥ 1 mm days absolute
R10 mm annual count of days when precipitation ≥ 10 mm days absolute
R20 mm annual count of days when precipitation ≥ 20 mm days absolute
PRCPTOT annual total precipitation mm
SDII mm simple precipitation intensity index (mean precipitation on days with RR ≥ 

1 mm)

Notes: All monthly indices were aggregated to annual for this study. Description includes minimum temperature (TN), maximum 
temperature (TX), mean temperature (TM), and precipitation (RR). Indices with “n/a” units were unitless.
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both the national and regional levels. These evaluations 
captured the ability of the gridded data products to 
 represent observed weather conditions over the entire 
distribution of temperature and precipitation. We then 
evaluated for extreme weather conditions using the 
CLIMDEX indices and assessed the influence of spatial 
resolution. All of the gridded data sets provide both tem-
perature and precipitation data, except for CPC (precipi-
tation only) and TopoWx (temperature only).

reSultS

Accuracy of temperature vs. precipitation

Across the conterminous United States, gridded values 
of temperature matched weather station records closely, 
with very high correlation coefficients (> 0.9) and nearly 
identical temporal variability (Fig. 2). By contrast, the 

agreement for precipitation was much weaker, as all the 
data sets exhibited correlations < 0.8 with much larger 
RMSE and weaker temporal variability than observed. 
According to the Taylor diagram, the Maurer data 
 provided the best match with observations in terms of 
correlation, variability (daily standard deviation), and 
RMSE, whereas NLDAS2 and UIdaho showed the 
largest discrepancies. Thus, at least on a nationwide 
basis, temperature was represented far more realistically 
and uniformly than precipitation in all of the gridded 
products (Question 1).

Regional variations

Regional variations in the performance of the gridded 
products, as displayed in the portrait plots, showed con-
siderable variability in mean bias and mean absolute 
error for temperature and precipitation among the 
Bukovsky regions, as well as the national average (Fig. 3). 
Mean regional biases in temperature ranged from −2.5°C 
to +4°C and were almost all negative for the daily 
maximum (gridded data were cooler than observed), 
whereas biases of both signs occurred for the daily 
minimum. Although no product stood out as superior 
across ecoregions, Daymet had the smallest mean bias 
nationwide (−0.06°C). Conversely, NLDAS2 overesti-
mated minimum temperature (mean bias = 2.46°C) and 
underestimated maximum temperature (mean bias = 
−1.23°C) much more than the other data sets. Mean 
absolute errors for both minimum and maximum tem-
perature generally clustered between 1°C and 2°C in all 
regions, except for NLDAS2, which had values > 3°C 
for maximum temperature and > 4°C for minimum tem-
perature. The influence of topography was not straight-
forward. With respect to the mean bias, regions with high 
topography, such as the Northern and Southern Rockies, 
exhibited the largest differences with observations, while 
flatter and more topographically uniform regions, such 
as the Plains, showed the smallest differences. However, 
this topographic effect was much less clear in terms of 
mean absolute error, in that the Northern and Southern 
Rockies had among the largest differences of any region, 
yet so did the much flatter Northern and Central Plains. 
Overall, the magnitude of the mean bias and mean 
absolute error, when averaged over all data sets and 
regions, was comparable between the daily maximum 
and daily minimum temperature (−0.31°C and 0.26°C 
for mean bias and 1.69°C and 1.49°C for mean absolute 
error, respectively).

For precipitation, PRISM had a clear negative mean 
bias in most regions, while the mean bias for other data 
sets was slightly positive. Livneh exhibited the smallest 
mean bias nationwide (0.03 mm) and Daymet the largest 
(0.14 mm). However, the magnitude of the mean biases 
among the data sets was very small, < 0.2 mm, compared 
with the mean absolute errors that sometimes exceeded 
3 mm. The spread of the mean absolute errors was more 
substantial, ranging from a low of 1.17 mm in Maurer 

fIg. 2. Taylor diagram showing the ability of gridded data 
sets to represent station observations for maximum temperature 
and precipitation. Minimum temperature is not shown because 
it is very similar to maximum temperature.



R. BEHNKE ET AL. Ecological Applications 
Vol. 26, No. 5

1344

fIg. 3. Portrait plot showing the annual mean bias and mean absolute errors by region for gridded temperature and precipitation 
compared to observed values. The All categories represent the mean bias and mean absolute error for the average temperature and 
precipitation values of all the gridded data sets in a region (x- axis) or of all the regions in a data set (y- axis).
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to a high of 2.19 mm in NLDAS2. The data sets consist-
ently indicated more precipitation than observations in 
highly elevated regions, such as the Northern Rockies, 
Pacific Northwest, and Great Basin. By contrast, the 
mean absolute errors were more closely associated with 
precipitation amount, with the largest discrepancies in 
the relatively wet Deep South, Southeast, and Pacific 
Northwest, while the smallest errors occurred in the arid 
to semiarid climates of the Southwest, Southern Rockies, 
and Northern Plains.

Extremes

As a bridge between these evaluations comprising all 
the daily data and the detailed CLIMDEX indices 
focused on extremes, we first compared differences 
between the gridded products and weather stations 
across the whole distribution of temperatures and pre-
cipitation amounts over the entire domain (Fig. 4). In 
terms of temperature, the gridded products were fairly 
realistic across most of the distribution, but we found 
discrepancies at both tails. The sign of these biases dif-
fered, however, such that the gridded products underes-
timated the magnitude of both extremely hot and cold 
weather. Overall, the magnitude of the mean bias was 
considerably larger for minimum temperature than 
maximum temperature, especially under the coldest con-
ditions. Biases in daily maxima were below 7°C for 
maximum temperature, whereas all the data sets except 
Livneh exceeded this bias in minimum temperature at 
some point in the distribution. We emphasize, however, 
that very rarely do temperatures in the continental 
United States reach the extremes plotted at the tails of 
these distributions, and locations in the vast majority of 
the domain never experience them.

Under the coldest conditions, Maurer and Livneh 
showed little bias, but both underestimated the mag-
nitude of the most extreme heat (above 45°C). In con-
trast, Daymet, TopoWx, PRISM, and UIdaho had 
greater mean biases for extremely cold weather than the 
very warmest days, for which their mean bias remained 
relatively small (≤ −4°C). NLDAS2 displayed noticeable 
biases across the entire temperature distribution, con-
sisting of an overall cool bias for maximum temperature 
and a warm bias for minimum temperature, with a sharp 
increase in biases at both tails of each temperature 
distribution.

The biases for precipitation were fairly uniform, in that 
the mean bias increased nearly linearly in each data set 
until the observed daily precipitation reached an 
extremely high value of ~175 mm, beyond which the 
behavior was more erratic. Consistent with the Taylor 
diagram and portrait plots, Maurer most closely matched 
station observations across the entire precipitation dis-
tribution, while the mean biases were consistently largest 
in NLDAS2 and UIdaho.

The results for extreme temperature and precipitation 
from the CLIMDEX indices were generally consistent 

with our findings for the entire distribution, as summa-
rized among the three categories (Fig. 5) and illustrated 
for every index (Appendix S1: Figs. S1 and S2). We found 
the best overall match with observations for the Maurer 
product, and the largest biases for NLDAS2. In 
 particular, NLDAS2 was erroneous in its depiction of 
temperature extremes based on absolute thresholds, con-
sistent with its systematic biases across the entire distri-
bution (Fig. 4). With respect to the other two categories 
of extreme temperature, the Livneh and Maurer products 
were very comparable in matching point observations 
better than the other data sets. Maurer stood out even 
more clearly in representing precipitation extremes accu-
rately, producing the smallest errors in every category. 
Livneh was similarly accurate for relative measures of 
extremes, but fared less credibly in depicting extremes in 
the other two categories, especially absolute indices. The 
limitation of using relative measures of error in con-
structing the portrait plots prevented a clear regional 
assessment, but we note that for extreme precipitation 
there was a larger spread across products in their perfor-
mance within regions in the absolute precipitation cat-
egory than in the min- max and relative categories (Fig. 5). 
The same conclusion also holds for extreme temperature, 
but the magnitude of intra- regional variability in the 
absolute temperature category was largely dictated by 
the outlier NLDAS2 data set.

Spatial resolution

We assessed the influence of spatial resolution by com-
paring the relationship between resolution and perfor-
mance among the gridded products in these results. Our 
results showed that the Maurer product agreed best 
overall with weather station observations, both for tem-
perature and precipitation, whereas NLDAS2 generally 
had the largest discrepancies. This result is noteworthy, 
because both of these data sets have the same spatial 
resolution (14 × 10 km), which was the coarsest except 
for CPC’s precipitation- only data. Conversely, the two 
products with the finest resolution, TopoWx (800 m) and 
DayMet (1 km), generally fell in the middle of the pack 
in terms of their agreement with observations. This was 
the case even for weather extremes (Fig. 5) and in the 
most topographically complex regions (Fig. 3), where we 
had expected that a fine resolution would matter most. 
Particularly surprising was the lack of an influence of 
resolution on precipitation extremes (Fig. 4), because we 
expected larger grid cells would dilute the intensity of 
heavy rainfall interpolated from weather station data. 
Yet even for extreme precipitation, Maurer produced the 
smallest biases throughout virtually the entire range of 
precipitation amounts.

Independent weather stations

The analyses described previously relied on compar-
isons among the gridded products and some weather 
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stations from which the gridded data were ultimately 
derived. It was not possible to verify our analyses using 
a complete network of independent weather stations, 

because there is no such alternative data set of sufficient 
spatial and temporal coverage available. In lieu of this, 
we compared the gridded products against three sets of 

fIg. 4. Line plots showing the mean bias of gridded precipitation and temperature data relative to observed values. A nine- 
point and a five- point running mean were applied to the precipitation and temperature data mean biases, respectively.
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regional weather networks from very different parts of 
the conterminous United States, comprised of stations 
independent of the GHCN measurements (Data and 
Methods, Appendix S2: Fig. S1). As summarized in 
Appendix S2, the conclusions from these supplemental 

comparisons were similar to those obtained from the 
GHCN observations for each of our four primary 
research questions. Again, the gridded data sets repre-
sented temperature much more accurately than precipi-
tation among all three networks (Appendix S2: Fig. S2). 

fIg. 5. Summarized precipitation and temperature CLIMDEX indices. Values are equal to the sum of the individual CLIMDEX 
indices, as categorized in Table 3.

Summarized Precipitation CLIMDEX Indices

Summarized Temperature CLIMDEX Indices
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We also found the same kind of complex relationships 
between accuracy and topographic variability among the 
regional networks as in the GHCN comparisons. The 
largest mean biases in temperature occurred over the 
most geographically diverse network in California, but 
the precipitation biases in that state were somewhat lower 
than in the other two networks (Appendix S2: Figs. S2 
and S4). However, the much higher rainfall amounts in 
Florida probably boosted the magnitude of errors in that 
state. As with the GHCN comparisons, climatic averages 
in the gridded products were represented much more 
accurately than extremes, and daily maximum tempera-
tures were better captured than daily minima (Appendix 
S2: Figs. S2–S4). Furthermore, the resolution of the 
gridded data sets was not an important factor in 
explaining their accuracy in the comparison among 
regional weather networks. The finest- resolution product, 
Livneh, generally fell within the middle of the pack, while 
NLDAS2 again displayed the largest biases, particularly 
for temperature (Appendix S2: Figs. S2–S5), even though 
it is not the coarsest data set.

dIScuSSIon and concluSIonS

We evaluated the performance of commonly used 
gridded weather data sets for the conterminous United 
States. Our study was designed for users of these products 
for ecological research and applied ecological predic-
tions, with particular emphasis on extreme temperature 
and precipitation. Our study was not intended to serve 
as a “beauty contest,” in part because each user has a 
unique purpose for applying these products and also 
because the agreement between the data sets and obser-
vations differs greatly across variables and regions. In 
fact, no data set was “best” everywhere and for all the 
variables we analyzed. Instead, our purpose was to 
present how well the gridded data sets agree with station 
observations at overlapping locations and to assess the 
relative agreement between variables (temperature vs. 
precipitation), across regions, and between means and 
extremes, so that ecologists and conservation biologists 
can select the data set that is best suited for their pur-
poses. We believe that ours is the first study to compre-
hensively evaluate a large set of these data sets on a large 
geographic scale.

For the first three research questions, our findings 
matched expectations, though the degree of differences 
between gridded products and weather station records 
were intriguing. We found that the gridded data matched 
observations of temperatures much better than those of 
precipitation (Question 1; Fig. 2), and regional variation 
in performance indicated that topographically complex 
regions are most difficult for these models (Question 2; 
Fig. 3). The gridded products reproduced average 
weather conditions more accurately than extremes for 
both temperature and precipitation (Question 3; Fig. 4), 
but we found larger mean biases in daily minimum than 
daily maximum temperatures. This feature may stem 

from reduced atmospheric mixing at night, which can 
produce more spatially variable temperatures associated 
with urban heat islands and cold- air drainage in moun-
tainous terrain (Hocevar and Martsolf 1971, Oke 1995). 
In terms of precipitation magnitude, we found a nearly 
linear increase in the deviation from observations in all 
data sets, some of which exhibited a bias of more than 
50% for very heavy rainfalls (> 200 mm/d). For both 
temperature and precipitation, biases were quite large for 
the most extreme values, but such outliers are very 
unusual and do not occur at many locations.

Contrary to our expectations for Question 4, we found 
no clear relationship between the resolution of gridded 
products and their agreement with observations, either 
for average conditions (Figs. 2 and 3) or extremes (Figs. 4 
and 5). For example, the moderate- resolution PRISM 
(5 × 4 km resolution) and high- resolution DayMet 
(nearly the finest coverage at 1 km) data sets had the 
largest nationwide mean biases in precipitation, whereas 
the coarsest product, CPC at 25 km, fell right in the 
middle. Mean biases and absolute errors in temperature 
were largest in NLDAS2, whereas the domain- averaged, 
mean absolute error in temperature was second- smallest 
in Maurer, even though both products have the same 
resolution. The lack of a relationship between accuracy 
and resolution was even more surprising for extreme pre-
cipitation, for which depicted intensity typically declines 
with increasing grid box area (Chen and Knutson 2008). 
Nevertheless, the Maurer data set clearly agreed best with 
observations in representing extreme precipitation, even 
though its resolution is the same as that of NLDAS2, 
which showed the worst overall match with observations. 
In fact, CPC is the only product coarser than Maurer. 
Therefore, differing assumptions and methodologies 
among the data sets must be responsible for overriding 
the presumably beneficial effect of resolution.

In this study, two products stood out in their overall 
tendency to be closest to (Maurer) and farthest from 
(NLDAS2) observed measurements. This assessment 
holds for both extremes and moderate weather condi-
tions, although there are exceptions for certain variables 
and regions. The precise reason(s) why these two are 
outliers is beyond the scope of this study, but we dem-
onstrated previously that resolution alone was not the 
cause. A possible factor is the contrasting structure of 
these two data sets. The Maurer product is, in part, 
derived from the same weather station data used in our 
evaluation, and it applies interpolation algorithms that 
do not use inputs besides elevation as predictors (Data 
and Methods). By contrast, NLDAS2 uses data from a 
combination of sources to construct gridded estimates. 
In addition, the daily maximum and minimum tempera-
tures in NLDAS2 are based on hourly data obtained 
from the temporal disaggregation of three- hour NARR 
(North American Regional Reanalysis) data, rather than 
the actual high and low temperatures recorded by weather 
stations and used by the other gridded products. Conse-
quently, NLDAS2 would be expected to underestimate 
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(overestimate) the daily temperature maximum (mini-
mum), consistent with its systematic bias identified here.

Because our analysis was limited to grid cells con-
taining weather stations, we did not evaluate the ability 
of each data set to interpolate temperature or precipi-
tation elsewhere. However, our findings should still be 
relevant to unsampled locations for several reasons. 
First, temperature and precipitation patterns typically do 
not change greatly from one grid cell to the next, except 
under unusual conditions such as extreme elevation 
changes. Second, the 3855 stations that we used in our 
analysis represent only a fraction of the total used in 
creating the data sets. For example, Livneh uses ~30 000 
stations, PRISM at least 10 000 stations, and TopoWx 
over 14 000 stations (Daly et al. 2008, Oyler et al. 2015). 
Because of these dense measurement networks, the 
average distance between stations is fairly small. Third, 
errors similar to those revealed by our local evaluations 
of weather station data can also be expected to occur 
elsewhere, as a reflection of inherent biases in the inter-
polation algorithm employed by a particular gridded 
product. Therefore, we believe that a realistic represen-
tation of weather conditions at nearby weather stations 
is a prerequisite for a product to be considered trust-
worthy elsewhere, and that errors prevalent in grid cells 
co- located with weather stations suggest that similar 
biases occur throughout the spatial domain. While 
limited in scope, our analysis of three independent net-
works supports this interpretation.

One purpose of this study was to analyze a broad range 
of extreme weather conditions among the products, so 
we chose the widely used CLIMDEX indices. While there 
are many advantages to using these particular metrics, 
they do pose some challenges for evaluation, especially 
because not all the indices measure what is considered 
an extreme event at many locations. For example, a daily 
rainfall of 20 mm (R20 mm) may constitute an extreme 
event in some places, but it is a fairly common occurrence 
in the eastern half of the United States.

An ideal analysis would base evaluation upon a 
network of weather stations completely independent of 
the gridded data products. While at this time no such 
alternative data set with sufficient spatial and temporal 
coverage is available, the Meteorological Assimilation 
Data Ingest System (MADIS) network is growing in 
both the number of participating stations and length of 
record, and may be useful for such an assessment in the 
future. However, the general agreement between the 
results from the nationwide analysis with GHCN 
weather stations and the regional networks (Results and 
Appendix S2) indicates that our conclusions are likely 
robust. We suggest our findings be interpreted as lower 
bounds for expected errors in the application of these 
data sets if the products were evaluated at all grid cells 
in the domain.

We hope that our study will encourage ecologists to 
consider carefully the details of available gridded data 
products, rather than treating them as “black boxes.” 

For example, our analysis has demonstrated that selecting 
the highest resolution product may not translate to the 
most accurate data. Most of the gridded data sets we 
evaluated would be appropriate for ecological applica-
tions typically using long- term climate measures (e.g., 
species distribution modeling) or seasonal weather 
 conditions (e.g., annual population models). However, 
the effects of shorter- term, extreme weather events are 
increasingly included in these applications (e.g., Altwegg 
et al. 2006, Bateman et al. 2012, Descamps et al. 2015), 
so gridded data sets should be selected with care. As more 
weather records become available at new locations and 
new downscaling techniques are developed, gridded data 
sets should continue to improve in accuracy and 
precision.
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