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The Impact of Phenological Variation on Texture
Measures of Remotely Sensed Imagery

Patrick D. Culbert, Anna M. Pidgeon, Véronique St.-Louis, Dallas Bash, and Volker C. Radeloff

Abstract—Measures of image texture derived from remotely
sensed imagery have proven useful in many applications. However,
when using multitemporal imagery or multiple images to cover a
large study area, it is important to understand how image texture
measures are affected by surface phenology. Our goal was to
characterize the robustness to phenological variation of common
first- and second-order texture measures of satellite imagery.
Three North American study sites were chosen to represent
different biomes. At each site, a suite of image textures were cal-
culated for three to four dates across the growing season. Texture
measures were compared among dates to quantify their stability,
and the stability of measures was also compared between biomes.
Interseasonal variability of texture measures was high overall
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indicating that care must be taken when using measures of tex-
ture at different phenological stages. Certain texture measures,
such as first-order mean and entropy, as well as second-order
homogeneity, entropy, and dissimilarity, were more robust to
phenological change than other measures.

Index Terms—Image texture analysis, remote sensing, vegeta-
tion.

I. INTRODUCTION

R EMOTELY sensed images are composed of both tone
(spectral variation) and texture (spatial variation) [1], [2].

While spectral information is relatively easy to quantify, texture
is more difficult to quantify because it involves measurements of
pattern variability, shape, and size [3]. Because of the difficulties
in measurement and interpretation, texture has been less utilized
in remote sensing than spectral analysis. This is unfortunate, be-
cause pixel-wise spectral analyses ignore the large amount of
information present in image texture. The use of texture mea-
sures has been recognized as an important method for quanti-
fying spatial heterogeneity, and its use has recently increased
in studies of land cover classification [3]–[5], habitat modeling
[6]–[8], and measurement of vegetation structure [8]–[10].

The most commonly used measures of texture are divided
into two groups: first-order (occurrence) and second-order
(co-occurrence) [11]. First-order measures are statistics calcu-
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lated from the spectral values of pixels in a defined neighbor-
hood, typically implemented as a moving window. Common
first-order measures include minimum, maximum, range, mean,
standard deviation, skewness, and kurtosis. Of these measures,
standard deviation (or variance) is the most commonly used
[3], [6], [7], [12]. First-order measures are limited in power
because they quantify variation in spectral information without
regard to the spatial arrangement within the moving window.
However, first-order measures are computationally simple and
can be quickly calculated over large spatial extents.

Second-order texture measures take into account the spatial
distribution of spectral values [3]. These measures are derived
from the gray-level co-occurrence matrix (GLCM) [11]. The
GLCM is a symmetric n-by-n matrix, where n is the number of
possible gray-tone values. Entries in the matrix, represent the
relative frequency of pixels with tone levels and co-occurring
at a user specified distance and direction [11]. There are four
commonly used directions, 0 (horizontal), 45 (right diagonal),
90 (vertical), and 135 (left diagonal). The distance parameter,

, is typically set to 1, thus comparing adjacent pixels [13]. In
multispectral imagery, a separate GLCM is computed for each
band of interest.

The GLCM assumes that the texture information of an image
can be represented in adjacency relationships between specific
gray tones [14]. Similar to first-order measures, the GLCM is
calculated for a neighborhood, typically a moving window. Har-
alick [11] originally proposed 14 texture measures derived from
the GLCM: angular second moment, contrast, correlation, dif-
ference entropy, difference variance, entropy, information mea-
sures of correlation (two different features), inverse difference
moment (now more commonly referred to as homogeneity),
maximal correlation coefficient, sum average, sum entropy, sum
of squares variance, and sum variance. Many of these original
second-order measures have been found to be highly correlated,
and a subset of six measures is considered most useful for re-
mote sensing analysis: angular second moment (ASM), con-
trast, correlation, homogeneity, variance, and entropy, with the
first three being the least correlated [2], [10].

Several types of remote sensing data analyses benefit from the
inclusion of textural measures. Texture measures are frequently
included as additional (or sole) inputs in image classifications.
The use of texture measures is especially helpful in classifi-
cations of areas such as forests, where species may have sim-
ilar spectral characteristics but different spatial patterns [3]–[5].
Measures of texture are also well-suited to quantify vegetation
structure [15], including forest structure [10], forest age class
[16], woody plant encroachment [17], and leaf area index [18].
More recently, habitat modeling studies have incorporated tex-
ture measures. For animals such as birds, vegetation structure is
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an important cue for habitat selection [19], [20]. Texture mea-
sures derived from remotely sensed imagery have proven useful
in bird species presence/absence models [6], relating vegeta-
tion structure to habitat preference [7], [21], and modeling avian
species richness [22], [23].

However, while the utilization of texture measures in remote
sensing analyses is increasing, there is a significant issue that
has thus far been mostly overlooked. Any texture analysis in-
volving images of different areas or multitemporal images of
the same area must take into account factors that may severely
affect texture measures. Absolute texture comparisons between
images are confounded by factors such as light angle, atmo-
spheric effects [17], and vegetation phenology [24]. In partic-
ular, the effect of phenology could significantly affect multi-
temporal analyses. Even though these factors can introduce sub-
stantial problems to analyses, thus far, only a few studies have
mentioned the possible effects of phenology on texture mea-
sures [24], [25], and none of these studies explicitly examined
the effect.

At the same time, the potential upside of phenological varia-
tion in image texture is that texture differences among multitem-
poral images could contain important information. The analysis
of temporal variation in image texture could thus yield insight
into phenological processes and help distinguish different veg-
etation types. Texture measures derived from certain phenolog-
ical stages will likely be better suited to specific purposes, such
as plant species identification, and specific texture signatures re-
lated to a process or feature of interest may be more pronounced
at specific phenological stages. To exploit these relationships,
more understanding is needed on the behavior of specific tex-
ture measures in different biomes over the growing season and
which parts of the growing season yield the best texture mea-
sures to be related to specific processes.

As computing power increases, so does the ability to carry out
analyses over large spatial extents. The historical archive of re-
motely sensed imagery is growing, and data are becoming more
freely available (as with the free release of the USGS Landsat
archive). All of these factors will contribute to increases in mul-
titemporal and large-spatial-extent analyses that utilize texture
measures. Thus, both positive and negative implications of the
effects of phenology on measures of image texture need more
study.

The primary goal of our research was to determine how first-
and second-order texture measures respond to changes in phe-
nology. We were interested in finding the degree to which mea-
sures of image texture are robust to phenological change. In
addition, we were interested in understanding how phenology-
related variability in texture measures differs across different
biomes, window sizes, and spectral bands.

We expected that image texture measures that are invariant
to linear transformations of the digital numbers (e.g., angular
second moment and entropy [11]) would be the most robust to
phenological change. We also expected that measures of texture
would vary the most in biomes with high seasonal variation in
vegetation. Strong fine-scale variation in vegetation would lead
to high spectral variation, which we expected would translate
into higher variation of texture measures.

Fig. 1. Three study sites: Landsat path 16 row 33, along the border of New
Mexico and Chihuahua, Mexico; path 33 row 38 along the border of Ontario,
Canada, and Minnesota; and path 27 row 26, including parts of Virginia, West
Virgina, and Maryland.

Texture measures are influenced by window size since the
scale of the spatial patterns measured is dependant on window
size, but we did not expect different window sizes to substan-
tially differ in their response to phenological change. However,
since a larger window contains a larger sample size, we pre-
dicted a slight reduction in variance. Lastly, we expected that
variance of texture measures would not be uniform across spec-
tral bands. In particular, we believed that Landsat TM band
4 would have higher interseasonal variability in texture mea-
sures because near-infrared reflectance is strongly correlated
with vegetative vigor [26], which varies substantially across
growing seasons.

II. METHODS

We calculated a suite of texture measures for three study sites
representing different biomes, and for images acquired at dif-
ferent points in the growing season. The resulting texture mea-
sures were compared among image dates to determine which
measures were most robust to change in surface phenology and
whether ranking in terms of robustness was consistent among
different biomes. We used several window sizes and spectral
bands in order to analyze their effect on texture measure robust-
ness to phenological variation.

Three study sites were chosen, representing contrasting
biomes: a desert scrub region in New Mexico, a mix of de-
ciduous and evergreen forests in Ontario, Canada, and an area
of deciduous forest and agriculture in Virginia. These sites
correspond to Landsat TM path 33 row 38, path 27 row 26, and
path 16 row 33, respectively (Fig. 1).

The New Mexico site was centered near Las Cruces, NM,
and includes areas of New Mexico, Texas, and Chihuahua,
Mexico. The area was primarily desert scrubland of the Chi-
huahuan Desert Province [27], with relatively flat basins as well
as mountainous areas. The Rio Grande River was a prominent
feature in the scene, with a swath of agriculture approximately
5-mi wide running along the river. The metropolitan area of
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Fig. 2. (a)–(c) Virginia, New Mexico, and Ontario study sites, respectively, bands 4/3/2 false-color composite. (d)–(e) Second-order 11� 11 variance of Virgina,
New Mexico, and Ontario study sites, respectively, bands 4/3/2 false color composite. (g)–(i) Second-order 11� 11 homogeneity of band 4 (near-infrared) of
Virginia, New Mexico, and Virginia study sites, respectively.

El Paso, TX, and Ciudad Juárez, Mexico (population approxi-
mately 2.2 million) was included in the scene.

The Ontario study site covered mostly southwestern Ontario
with a small area of northern Minnesota also included. The
scene was in the Boreal Shield ecozone [28]. This area had a
very low human population and was composed almost entirely
of forests and small lakes. The forests were primarily evergreen
or mixed evergreen/deciduous. Heavy forest harvesting was ap-
parent in parts of the imagery.

The Virginia site included portions of western Maryland,
eastern West Virginia, and Virginia. The West Virginia portion

of the image was dominated by deciduous forests on slopes
of the Appalachian Mountains, with some agriculture in the
valleys. Agriculture dominated most of the Virginia portion of
the image, with some mountainous deciduous forest, including
nearly all of Shenandoah National Park. The area was pri-
marily in the Central Appalachian Broadleaf Forest-Coniferous
Forest-Meadow Province with a small section of Southeastern
Mixed Forest Province [27].

For each study site, a collection of Landsat images was
assembled with the goal of having mostly cloud free im-
ages spanning the growing season within a 1–3 year period
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TABLE I
STUDY IMAGERY

[Table I, Fig. 2(a)–(c)]. For the Ontario study site, approxi-
mately 15% of the 09/12/2000 image was affected by clouds
and about 25% of the 04/29/2000 image was contaminated by
smoke. In the Virginia site, the 05/24/2002 image contained
10% cloud cover. These affected areas were masked out from
all images for the final analysis of each study site.

Within each study site, one image was chosen as the reference
and the others were georeferenced to that image using Erdas
Imagine Autosync [29]. A second order polynomial model was
applied, and images were resampled using nearest neighbor in-
terpolation. Images were projected in UTM NAD83 zones 13,
15, and 17 North for the New Mexico, Ontario, and Virginia
study sites, respectively.

A suite of texture measures were calculated for each of the
10 images using ENVI [30] [Fig. 2(d)–(i), for example]. For
each image band, first-order texture measures: mean, variance,
entropy, and skewness were calculated using window sizes of
3 3, 7 7, and 11 11. The second-order texture measures:
correlation, contrast, angular second moment, homogeneity,
dissimilarity, entropy, and variance were also calculated for
each band. When calculating second order measures, care
must be taken to avoid sparsely populated GLCMs [11], [24].
With small window sizes, the number of pixel adjacencies is
relatively small, and a GLCM of 8-bit data will have 65 536
cells (256 256). This results in a value of 0 in most cells of
the GLCM, causing instability in the texture measurement. For
this reason, we calculated second-order measures with larger
window sizes of 11 11 and 15 15, and we reduced the
radiometric resolution to 6 bits (64 values, yielding a GLCM
with 4 096 cells) instead of the 8 bits of the original data.
GLCMs were calculated for the horizontal direction with a
distance parameter of 1 pixel.

Within each study site, the calculated texture measures were
compared among image dates on a pixel-by-pixel basis. Because
variation in texture measures was consistently higher in pixels
with a high mean texture value, the per-pixel coefficient of vari-
ation was chosen as a more representative measure of intersea-
sonal variability. For each study site, band, texture measure, and
window size combination, the coefficient of variation of each
pixel was calculated among the different image dates in order to
assess the interdate variability of the textures measures (Fig. 3).
With three study sites, six bands, four first-order measures with
three window sizes, and seven second-order measures with two
window sizes, this processing yielded 216 single-band coeffi-
cient of variation images for first-order texture measures and

TABLE II
IMAGE TEXTURE MEASURE FORMULAE

252 images for second-order texture measures (Fig. 4). To facili-
tate comparison between texture measures, cloud-contaminated
areas were masked, and the image-wide mean was calculated
for each of the single-band coefficient of variation images.

III. RESULTS

All study sites showed substantial interseasonal variation in
both first- and second-order texture measures. The overall mean
coefficients of variation of the calculated texture measures were
0.52, 0.66, and 1.06 for the New Mexico, Ontario, and Virginia
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Fig. 3. Processing flow example for a subset of Virginia study site. Orig-
inal images, TM Band 4, 03/31/2000 (a), 05/24/2002 (b), 10/15/1999 (c).
First-order variance TM band 4 3� 3 window size 03/31/2000 (d), 05/24/2002
(e), 10/15/1999 (f). Pixel-wise coefficient of variation across dates (g).

study sites, respectively. These levels are higher than we ex-
pected, and it can be seen that the level of variation was sub-
stantially higher in the Virginia study site. As a test sample, a
small area of evergreen forest was selected from the Ontario
study site, and 11 11 second-order texture measures of this
area were plotted for each of the four image dates (Fig. 5). The
two images from very early in the growing season (04/29/00 and
05/21/2002) showed very similar texture measures. However,
during the peak of the growing season (07/05/2001) most tex-
ture measures changed substantially in value. Entropy, contrast,
variance, and dissimilarity show a marked increase in value,
while correlation and homogeneity show a decrease. Late in
the growing season (09/12/2000) texture measures returned to
values similar to the two early images.

The ranking of seasonal variation in first-order texture mea-
sures was consistent between the Ontario and New Mexico sites
with entropy and mean as the least variable measures, followed
by variance, then skew (Fig. 6). While the relative ordering
of variability in texture measures of the Virginia site was sim-
ilar, entropy, mean, and variance had noticeably higher seasonal
variability. The variability of skew was similar in all three sites
and substantially higher than the three other measures. Overall
variation was high for variance and skew, with a mean coeffi-
cient of variation of approximately 0.7 and 1.75, respectively.

Seasonal variability of second-order texture measures was
fairly complex (Fig. 7). Variability of contrast, dissimilarity, en-
tropy, homogeneity, and variance were very similar between the
New Mexico and Ontario sites, with the New Mexico site being
slightly less variable in each case. Differences between Ontario
and New Mexico were much larger for angular second moment
and correlation. Homogeneity and entropy were the most robust
measures in these two sites, followed by dissimilarity, contrast,
and variance. However, the variation of texture measures of the
Virginia site was substantially higher, with most coefficients of

variation near 1.0. It is difficult to ascertain the relative robust-
ness of angular second moment and correlation given that the
level of variation was inconsistent among the three study sites.

There were noticeable differences in robustness of texture
measures among biomes. The Virginia site had the highest level
of variation in 9 of the 11 texture measures, for an overall av-
erage coefficient of variation of 1.06. For most of the texture
measures, the level of variation was similar between the New
Mexico and Ontario sites, with New Mexico yielding a slightly
lower overall mean coefficient of variation of 0.52 compared to
0.66 for the Ontario site.

With regard to window size, there appeared to be a slight trend
of decreasing interseasonal variability with increasing window
size when comparing coefficients of variation averaged across
all bands and texture measures (Fig. 8).

It was expected that texture measures of different Landsat
spectral bands would behave differently with regard to robust-
ness to seasonal change. Band 4 (near infra-red) was of par-
ticular interest as this band is especially sensitive to vegetative
vigor, which varies substantially over the growing season. Mea-
sures calculated from band 4 did not show substantially higher
interseasonal variation than those of other bands. The mean
per-band level of variability averaged across all texture mea-
sures was relatively constant for first order measures (Fig. 9),
with the exception of band 3 in the New Mexico and Ontario
site and band 4 in the Ontario site.

The mean per-band variability averaged across second-order
texture measures showed a stronger pattern (Fig. 10). Once
again, the Virginia site consistently had the highest variation.
Ontario and New Mexico showed higher variability between
bands and followed a similar pattern with the coefficient of
variation increasing to a peak around band 3 then decreasing.

Although some texture measures appeared to vary similarly
across an individual study site, with other textures, patterns did
emerge. For example, in the Virginia study site, homogeneity
showed noticeable differences in coefficient of variation be-
tween the agricultural areas in the valleys, and the mountainous
forested areas [Fig. 4(d)–(f)]. The coefficient of variation for
band 4 was strikingly higher in the agricultural areas. Homo-
geneity heavily weights the main diagonal of the GLCM, so
areas composed of many adjacent pixels with highly similar
DNs yielded a high value. In agricultural areas, homogeneity
was very high within-field, and low between fields, especially in
this study site where some images contained vegetatively active
fields (high NIR/red ratio) adjacent to fields with low activity
(nearly even NIR/red ratio). In contrast, while the forested
mountainous areas varied in band 4 values over the growing
season, each forested area varied relatively consistently, re-
sulting in a smaller coefficient of variation for homogeneity.
This highlights the importance of considering land cover and
texture characteristics of the setting of interest when consid-
ering the effects of vegetation phenology on texture measures.

IV. DISCUSSION

The most significant finding of our study was that all tex-
ture measures varied substantially with phenology. This varia-
tion can significantly impact analyses utilizing texture measures
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Fig. 4. Sample of the 468 single-band interseasonal coefficient of variation images. (a)–(c) Ontario study site, first-order variance, 7� 7 window size, bands 2,
3, and 4, respectively. (d)–(f) Virginia study site, second-order contrast, 15� 15 window size, bands 2, 3, and 4, respectively. (g)–(i) New Mexico study site,
second-order homogeneity, 15� 15 window size, bands 2, 3, and 4, respectively.

and should be of special concern in studies using multitemporal
imagery or a very large spatial extent requiring many images.
Even in single-date, single-image analyses, care should be taken
in the choice of image date, as the textural measures of specific
features will vary based on the phenological stage of the image.

While overall variation was high, some patterns did emerge.
Among the three study sites, first-order measures were consis-
tently ranked in their robustness to phenological variation, with
mean and entropy being the most robust, followed by variance
then skew. In contrast, no clear pattern of robustness emerged
in second-order measures, as the Virginia site did not follow

the patterns observed at the other sites. Because of this, it is
inconclusive if there is a consistent ordering of robustness of
second-order texture measures, although homogeneity, entropy,
and dissimilarity appeared to be the most robust.

One of our more striking results was that while the boreal
forest of Ontario was a substantially different ecosystem than
the desert scrub of southern New Mexico, both sites behaved
quite similarly with respect to interseasonal variability in both
first- and second-order texture measures. We expected the Vir-
ginia site to behave similar to the Ontario site, since both are
heavily forested, but found substantial differences.
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Fig. 5. Mean values of 11� 11 second-order texture measures of TM band 4 across the growing season for a small area of primarily coniferous forest in the
Ontario site. Little variation occurred between the first two dates, which both occurred very early in the growing season. The peak of the growing season showed
a substantial difference in texture measures. In the final date, which is in the late growing season, texture measures reverted close to early growing season levels.
Error bars indicate plus and minus one standard deviation.

Fig. 6. Mean image-wide coefficient of variation of first-order texture measures averaged across bands and three window sizes, for the three study sites. Entropy
and mean had the lowest coefficient of variation. The Ontario and New Mexico study sites behaved similarly. Variation was generally higher in the Virginia site
with a less distinct ranking of texture measure robustness.

One possible explanation is the relatively large areas of agri-
culture in the Virginia site. The Ontario site had no agriculture

and the New Mexico site had a limited amount. Agricultural
fields can show substantial spectral variability across the
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Fig. 7. Mean image-wide coefficient of variation averaged across bands and three window sizes for each study site. Homogeneity and entropy were the most robust
second-order measures. The Ontario and New Mexico sites behaved similarly. The Virginia site had higher variation and less distinction in robustness between
different texture measures.

Fig. 8. Mean coefficient of variation in texture measures summarized for first- and second-order measures for each window size. The mean coefficient of variation
shows a slight decreasing trend as window size increases.

growing season, potentially greatly increasing interseasonal
variability.

To further investigate this, we manually selected several areas
of agriculture and forest in the Virginia study site and compared
their interseasonal variability. Contrary to our expectation, the
overall mean level of variability was nearly identical between
the two classes, with a mean coefficient of variation of 0.98 for
agriculture, and 1.09 for forest. Therefore, the higher level of

agriculture in the Virginia study site did not explain the site’s
higher variability.

As we expected, interseasonal variability in texture measures
was relatively unaffected by the window size chosen for the tex-
ture calculations. This allows the flexibility to choose a window
size based on a spatial scale(s) that is appropriate for a specific
research question [3], [31] as long as the window is large enough
to avoid sparsely populated GLCMs [24].
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Fig. 9. Mean variation in first order measures by band. Most bands behaved similarly with a slightly higher level of variation in bands 3 and 4.

Fig. 10. Mean variation in second-order measures by band. Variation was less consistent overall with an apparent peak at band 3.

In contrast to our predictions, robustness to interseasonal
variability was relatively consistent across spectral bands,
especially for first-order texture measures. Our findings imply
that there are not specific spectral bands that are universally
more sensitive to phenological variation than others.

We believe most of the observed variability in the texture
measures can be attributed to changes in phenology, but other
factors may have contributed to the variability. As with all
studies using imagery from different points of the year, sun
angle varies between images, yielding different illumination.
In areas of more complex vertical structure, such as forests,
this lighting effect will be more pronounced, due to sunlit

portions of crowns being brighter, and due to shadows cast by
taller trees. These changes in highlight and shadow will yield
changes in texture measures. It is also possible that atmospheric
conditions varied among (and within) the images, and we did
not apply atmospheric correction in this study. Atmospheric
contamination can reduce the contrast of an image, which
would reduce the values of texture measures responding to
heterogeneity (e.g., variance), and increase the value of texture
measures that respond to homogeneity (e.g., angular second
moment). As with all multitemporal analyses, precise co-regis-
tration of imagery is very important. Misregistration between
image dates would artificially inflate variability because the
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texture values would be calculated from a slightly different area
in each image. Lastly, because the imagery used in our study
was not all acquired during the same year, in addition to the
large seasonal differences in the images, there were likely some
interannual differences contributing to variability.

Remote sensing has been used to explicitly monitor vegeta-
tion phenology [32]–[34]. Much of the effort has focused on
using time series to monitor vegetation phenology over very
large spatial extents, often continental scale, from coarse spa-
tial resolution imagery. The goal of these analyses is often to
track specific points in vegetation phenology such as greenup or
senescence over many years to monitor temporal shifts in phe-
nology. Thus far, there have been relatively few mentions of the
effect of phenology on texture measures. Many studies using
measures of texture have relied on single-date imagery [3], [4],
[7], [9], [10], [12], [15], [16], [18], [35], [36], and little men-
tion was made regarding the choice of date in relation to texture
measures. It is important to consider how texture measures may
vary over the growing season in relation to the feature of in-
terest. Even within the growing season, there may be specific
windows of time during which certain texture measures will be
most powerful in discerning the feature of interest.

It is critical that future studies consider the effects of phe-
nology on texture measures. Some existing multitemporal
studies using texture measures [17], [24], [25] have utilized
anniversary date imagery, with some making explicit references
to concern over phenological changes. However, the specific
effect of phenology on texture measures was not explored.

Thus far, few studies have carried out texture analysis over
very large spatial extents. In a study modeling bird species oc-
currence [6], textures measures were calculated from a 2001
Landsat TM mosaic of the state of Maine. It was unclear if
the mosaic used same date imagery. Such large spatial extent
studies are likely to increase in number as technical capabilities
allow. In these cases the effects of phenology must be carefully
considered, as cloud cover and other natural variability makes
it difficult to create large image mosaics with all images on the
same date or even within the same month.

Several actions can be taken to minimize the effect of phe-
nological variation on texture measures. Foremost, whenever
possible, imagery should be selected for the same date or phe-
nological stage. The texture measures chosen should be based
on the specific application, but if possible, measures that are
more robust to phenological variation should be selected, such
as first-order mean or entropy, or second-order homogeneity, en-
tropy, or dissimilarity. Special attention should be paid to land
cover types, such as agriculture, that show high interseasonal or
interannual variability. Just as it is advisable to explore different
texture measures and parameter settings for a specific applica-
tion, the effects of seasonality should be explored in small test
areas when possible.

The upside to phenological variation in image texture is that
these changes may contain important information. As Fig. 5
shows, a land cover class (in this case evergreen forest) can show
a strong change in texture measures with change in phenology.
With higher temporal resolution, the behavior of each texture
measure could be further teased out to determine a more pre-
cise pattern. When these patterns are known for other land cover

types or features of interest, the variability in texture measure
can be exploited by choosing imagery at a specific phenological
stage or stages to yield the best results.

The phenological variation of texture measures can also be
exploited in image classification. Multitemporal classification
of spectral data has been shown to improve classification accu-
racy over single-date classifications [37]. For example, some
broadleaf tree species are spectrally similar during the growing
season, but green-up and senesce at different time points; thus,
a multitemporal classification that includes imagery across
these points can yield higher accuracy than a single date clas-
sification [38]. A similar approach utilizing texture measures
instead of spectral values seems promising and warrants further
exploration.

Before this can be done, more understanding is needed on the
trends of specific texture measures in different biomes over the
growing season, and which parts of the growing season yield the
best measures to characterize a specific process.
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