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Abstract

Remote sensing needs to clarify the strengths of different methods so they can be consistently applied in forest management and ecology.

Both the use of phenological information in satellite imagery and the use of vegetation indices have independently improved classifications of

north temperate forests. Combining these sources of information in change detection has been effective for land cover classifications at the

continental scale based on Advanced Very High Resolution Radiometer (AVHRR) imagery. Our objective is to test if using vegetation indices

and change analysis of multiseasonal imagery can also improve the classification accuracy of deciduous forests at the landscape scale. We

used Landsat Thematic Mapper (TM) scenes that corresponded to Populus spp. leaf-on and Quercus spp. leaf-off (May), peak summer

(August), Acer spp. peak color (September), Acer spp. and Populus spp. leaf-off (October). Input data files derived from the imagery were:

(1) TM Bands 3, 4, and 5 from all dates; (2) Normalized Difference Vegetation Index (NDVI) from all dates; (3) Tasseled Cap brightness,

greenness, and wetness (BGW) from all dates; (4) difference in TM Bands 3, 4, and 5 from one date to the next; (5) difference in NDVI from

one date to the next; and (6) difference in BGW from one date to the next. The overall kappa statistics (KHAT) for the aforementioned

classifications of deciduous genera were 0.48, 0.36, 0.33, 0.38, 0.26, 0.43, respectively. The highest accuracies occurred from TM Bands 3, 4,

and 5 (61.0% for deciduous genera, 67.8% for all classes) or from the difference in BGW (61.0% for deciduous genera, 67.8% for all

classes). However, the difference in Tasseled Cap classification more accurately separated deciduous shrubs and harvested stands from closed

canopy forest. Our results indicate that phenological change of forest is most accurately captured by combining image differencing and

Tasseled Cap indices. D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

For forestry applications, maps that distinguish tree

species are highly desirable. Satellite imagery can be a

relatively inexpensive way to produce these maps over

large areas. However, while deciduous or coniferous for-

ests can commonly be distinguished with � 90% accuracy

(Horler & Ahern, 1986), classifications of deciduous

species are not very accurate. Accuracy is limited for

broad-leaved deciduous species because of their spectral

similarity (Jensen, 2000; Schriever & Congalton, 1995).

This technical limitation is one of the reasons why satellite

data are rarely used in forest management. Developing

new methods to improve satellite classification accuracy

is necessary.

One approach to improve forest classifications is the

use of multiseasonal data (Jensen, 2000). Leaf-flush or

senescence is phenological change that can be captured by

satellite images. Species can be distinguished when they

are in different phenological stages in the same image, or

when they change differently from one image to the next.

Several studies utilized multiseasonal imagery for forest

classifications. A classification of Pinus, Tsuga, Quercus,

Fagus, and Acer forest types in the Northeastern US

showed that the accuracy of different classes varied

depending on the phenological period of the imagery

(Schriever & Congalton, 1995). That study used a com-

bination of raw Thematic Mapper (TM) bands and prin-

cipal components analysis for the 10.5-km2 area. A much

larger area (28,000 km2) in the northern hardwood forests

of Northern Wisconsin, USA was classified into 23 forest

types (Wolter, Mladenoff, Host, & Crow, 1995). That

study used a combined raw Multispectral Scanner

(MSS) and TM bands, plus the change in Normalized

Difference Vegetation Index (NDVI) from four different
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phenological periods. A 24-km2 forest area, including

Quercus, Acer, Fraxinus, Fagus, Pinus, Tsuga, and Picea

species, was accurately classified at the genus level using

all nonthermal TM bands from three different seasons

(Mickelson, Civco, & Silander, 1998). However, it is

difficult to compare the accuracy of these different meth-

ods since the studies were completed in different areas

and with different types of phenological data. Further-

more, these studies did not fully explore the potential

advantages of vegetation indices.

The most common vegetation index in forest clas-

sification and land cover change studies is NDVI. It

reportedly improves vegetation classifications by partially

compensating for variation in illumination due to terrain

(Lillesand & Kiefer, 1994), and is well correlated to

vegetation biomass (Tucker, 1979). NDVI uses two

bands of light, red and near-infrared. The Tasseled Cap

transformation incorporates more information into vegeta-

tion indices by using six different bands of light (Crist

& Cicone, 1984). The resulting brightness, greenness,

and wetness (BGW) indices, so named for the features

in the data that they emphasize, improve vegetation

classifications because they are sensitive to phenological

changes. Therefore, the indices can be used to distin-

guish green vegetation with soil from green vegetation

with brown vegetation (Crist, Laurin, & Cicone, 1986).

In addition, the wetness band correlates with shadows

and forest stand density. These correlations improve the

separation of fields from forest, and between forest

classes (Crist et al., 1986).

The combination of vegetation indices with multiseaso-

nal imagery that captures phenology has produced success-

ful vegetation classifications of continents (at 1- to 25-km

resolution) using Advanced Very High Resolution Radio-

meter (AVHRR) imagery (Sader, Stone, & Joyce, 1990).

The differences between the vegetation types are usually

emphasized by calculating NDVI. AVHRR studies take

advantage of daily return intervals that permit acquiring

cloud-free images of phenological change (Tucker, Tow-

shend, & Goff, 1985). The frequent return intervals also

allow studies to use statistical change analyses, such as a

seasonality curve, which assume continuous data sets (Mora

& Iverson, 1997; Stone, Schlesinger, Houghton, & Wood-

well, 1994).

The success of combining phenological change ana-

lysis and vegetation indices at continental scales indicates

this combination may also improve landscape-scale clas-

sifications. TM imagery, at 30-m resolution, has become

the standard for landscape studies. This spatial resolution

is necessary for forestry applications since the average

size of forest management stands in temperate forests is

1–100 ha. In addition to this spatial information, TM also

has spectral advantages over AVHRR data by capturing

mid-infrared vegetation response (Jensen, 2000). The

drawback to using TM data for a phenological study is

that images of a point are only taken every 16 days.

Since this makes it more difficult to find cloud-free

images that correspond to phenological events, studies

usually contain multiyear imagery and analyses that do

not assume continuous change.

This paper compares the effectiveness of image differ-

encing and vegetation indices to improve northern hard-

wood forest classifications. Specifically, we compared the

classification accuracies from TM Bands 3, 4, and 5,

NDVI, Tasseled Cap as multiseasonal composite images,

and the difference in these values from one season to

the next. These input data sets were derived from

four phenologically significant TM scenes in Northern

Wisconsin, USA.

2. Methods

2.1. Study area

The study area in Northern Wisconsin includes two

ecoregions: the outwash plain (632,384 ha) and the loess

plain (881,245 ha) (Albert, 1995) (Fig. 1). These ecoregions

have different surficial geology types and therefore different

species compositions. We used the outwash plain to identify

the optimal input data set. Then we used the loess plain to

validate that the best method in one area could be consis-

tently transferred to a different area.

The climate of Northern Wisconsin is continental with

mean monthly temperatures ranging from � 12.2 �C in

January to 18.6 �C in July. Annual precipitation averages

850 mm with 60% falling between May and September

Fig. 1. Outwash plain (O) and loess plain (L) ecoregions in North

Wisconsin, USA.
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(Lac Vieux Desert Weather Station, National Climatic Data

Center, Asheville, NC, 1993). There is north–south vari-

ation in temperature and precipitation due to latitude and

the presence of Lake Superior, there is additional east–

west variation due to Lake Michigan. This local climate

variability creates differences in phenology that are visible

within a single image, but are generally consistent within

an ecoregion.

The glacial outwash plain topography has very little

relief, with many kettle lakes, ponds, and peatlands (Albert,

1995). The upland soils are loamy sands, resulting in well-

drained conditions. The loess plain also has very little relief,

but lakes are less common. The soils are acidic silt loams

that are often poorly drained.

The forests of Northern Wisconsin are dominated on

uplands by sugar maple (Acer saccharum Marsh), aspen

(Populus tremuloides Michaux or Populus grandidentata

Michaux), yellow birch (Betula alleghaniensis Britton),

and red pine (Pinus resinosa Aiton) (Curtis, 1959). Less

common are oaks (Quercus rubra L., Quercus macrocarpa

Michaux, Quercus coccinea Muenchh.), jack pine (Pinus

banksiana Lamb.), hemlock [Tsuga canadensis L. (Carr.)],

paper birch (Betula papyrifera Marsh.), and white spruce

[Picea glauca (Moench) A. Voss]. The lowlands are

dominated by tamarack (Larix laricina DuRoi), white

cedar (Thuja occidentalis L.), red maple (Acer rubrum

L.), black ash (Fraxinus nigra Marshall), and black spruce

[Picea mariana (Miller) BSP.]. Mixed stands containing

several of these species are common. The differences in

species composition between the outwash plain and loess

plain ecoregions are largely due to the soil drainage. There

is a greater dominance of aspen in pure and mixed

deciduous hardwood stands in the outwash plain. In the

loess plain, sugar maple is the more dominant species.

Furthermore, jack pine, which grows well on sandy

outwash sites, is rarely found on the more clay-based

loess soils.

All forests in this region are second or third growth

after being clear-cut in the late 19th or early 20th century.

Current forest management varies widely among land-

owners. Small private landowners often do not manage

their holdings for timber harvest. Public forests (county,

state, and federal) employ both clear-cutting (e.g., in aspen

and pine stands) and selective cutting (e.g., in northern

hardwood stands).

2.2. Class definitions

The classification scheme was a modification of a

scheme previously developed for the Gap Analysis

program in Wisconsin (WISCLAND; Lillesand et al.,

1998). The forest classes are based on percent dom-

inance of the canopy (Table 1). When species within a

genus were indistinguishable with TM data, the genus

applied (e.g., the aspen class has >80% canopy cover by

Populus spp.).

2.3. Field observations

Ground truth data for the above classes were collected

in the early to mid-1990s as part of the WISCLAND

portion of the GAP Analysis program (Lillesand et al.,

1998). Selection of ground truth sites was based on a

random sample. Within the randomly selected areas, poly-

gons representative of homogenous cover types were

delineated on aerial photographs (National Air Photo

Program at 1:40,000 scale) and satellite imagery. The

polygons were required to be a minimum of 2 ha in size,

along roads, and include a representative range of the

spectral variability present in the area. For upland sites,

the land cover was visually interpreted. This included

identifying the percent composition of up to four canopy

tree species, whether the forested stand was mature or not,

and the presence or absence of understory shrubs and

Table 1

Class definitions based on percent canopy composition

Class (capitals are used to distinguish classes from species) Definition

Jack pine > 80% jack pine

Red pine >80% red pine

Mixed Conifer upland or lowland >66% conifers, < 80% jack pine or red pine

Oak >80% oak species

Aspen >80% aspen species

Sugar maple >80% sugar maple

Mixed Deciduous upland or lowland >66% deciduous, < 80% oak, aspen, or sugar maple

Deciduous–Coniferous upland or lowland < 66% deciduous or coniferous, but still forest

Deciduous Shrubs deciduous woody vegetation < 6.1 m tall, tree cover < 10%

Coniferous Shrubs coniferous woody vegetation < 6.1 m tall, tree cover < 10%

Wet meadows herbaceous plants standing above wet soil

Clearings nonwoody vegetation, soil not saturated, includes agricultural

fields, grassland, golf courses, landing strips, and small roads

Clearcuts (loess ecoregion only) clearcut areas with regeneration generally less than 3 m tall

and not a closed canopy

Urban buildings and large roads

Water lakes, ponds, and rivers
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trees. For shrublands, this interpretation distinguished

deciduous from coniferous or ericaceous species.

Field work verified the cover types in each polygon. For

lowland sites, ground truth polygons were assigned to

classes using the Wisconsin Wetland Inventory. This invent-

ory relied on visual interpretation of air photos. The 1055

ground truth sites for the outwash plain, and 1664 for the

loess plain were assigned to classes based on their vegeta-

tion, then equally divided into training and testing data sets.

For more information on ground truth collection, see

Lillesand et al. (1998).

The ground truth polygons identified from air photos

often included mixed pixels or edge pixels. Some of the

mixed pixels may have been a consequence of rectifica-

tion errors. Spectrally similar pixels within each ground

truth polygon were identified using a region-growing

algorithm and the TM Bands 3, 4, and 5 from all dates

(ERDAS, 1997; Mickelson et al., 1998). In this proced-

ure, a seed pixel near the center of the polygon was

selected. The algorithm included neighboring pixels in the

region when they fell within an operator-specified range

of digital numbers (DN). In this study, the range was 15–

20 DN for most classes and 20–25 DN for mixed classes.

The area overlapping the region and the original polygon

was used for signature generation.

2.4. Image acquisition and preprocessing

Four TM scenes, with less than 5% cloud cover and

average wind speeds less than 16 km/h at the time of data

capture, were acquired to correspond with phenological

events as described previously for Northern Wisconsin

(Wolter et al., 1995). May 19, 1992-captured aspen leaf-

flush before most other trees. In general, aspens leaf-flush

1 week before other associated hardwoods. In the August 10,

1993 image, all species were in peak summer leaf-out.

September 24, 1992 was selected to capture maple trees in

peak color, which usually happens in this area around

September 21. Oaks reach peak color about 2 weeks later.

Aspen and maple trees had lost their leaves by the time the

October 8, 1991 image was taken. Oaks lose their leaves later

in the season; therefore, they were in leaf-off condition only

in the May image.

The August image was geometrically corrected to a UTM

grid using the TIGER road and stream line files from the 1990

Census. The other images were registered to the August

image. All RMS errors were below half a pixel. Atmospheric

correction was not applied because the classification relies on

the relative change, not the absolute change. Atmospheric

correction performs a linear transformation of the image

feature space (Mather, 1987; Schowengerdt, 1983). How-

ever, a linear transformation does not affect the relative

change of DN, and therefore the subsequent classification.

2.5. Image processing for each ecoregion

To test the effectiveness of vegetation indices to

improve forest classifications, we computed NDVI and

Tasseled Cap BGW using the TM image for each pheno-

logical period (Jensen, 2000) (Fig. 2). NDVI combines the

red and near-infrared bands, whereas Tasseled Cap com-

bines the six nonthermal TM bands. The Tasseled Cap

coefficients were the default values for Landsat 5 as set in

Fig. 2. Index calculation, image differencing, and upland– lowland

stratification using cBGW for the outwash plain as an example.

Table 2

Description of input data files to compare the effectiveness of vegetation

indices and image differencing change detection at classifying northern

hardwood forests

Name of input Description of input to classifications

345 12 TM bands from four dates

NDVI 4 NDVI layers, one from each date

BGW 12 Tasseled Cap layers from four dates

c345a 12 difference layers, where each TM 3, 4,

or 5 band for a date was subtracted from

the seasonally previous date

cNDVI 4 difference layers, where each NDVI

layer for a date was subtracted from the

seasonally previous date

cBGW 12 difference layers, where each Tasseled

Cap index layer for a date was subtracted

from the seasonally previous date

a The letter ‘‘c’’ denotes a change detection algorithm used in im-

age processing.
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Imagine 8.2 (ERDAS, 1997). To test the effectiveness of

image differencing change detection, we computed the

change in TM Bands 3, 4, and 5 and each of the four

indices by subtracting the values from one phenological

period to the next. For example, May brightness was

subtracted from August brightness, August brightness

was subtracted from September brightness, September

brightness was subtracted from October brightness, and

October brightness was subtracted from May brightness.

This image differencing technique is simple and effective,

plus has been shown to be the most effective method in

extracting variability due to defoliation (Muchoney &

Haack, 1994). The difference layers were rescaled from

floating point to 8-bit using a two standard deviation

stretch, and combined into a single file with many data

layers. The result of this image processing was six data

files (Table 2).

The ecoregions were subdivided into lowlands and

uplands using the Wisconsin Wetland Inventory, as pro-

cessed by Lillesand et al. (1998). This step reduced the

number of categories in each classification, and reduced

variation within each class (e.g., upland and lowland

deciduous species were separated into different classes).

This reduction of variation also reduces opportunities for

error (Stewart, 1994).

An unsupervised classification of the upland 345 input

data produced simple land use classes. Ground data and

visual inspection helped identify these classes. Areas classed

as shrubs, clearings, grassland, grain, corn, clearcuts, urban

areas, roads, and edges where images did not fully overlap

were eliminated from any further classification because the

goal of this project was separation of forest classes.

2.6. Signature generation for each input data set and

each ecoregion

A number of unsupervised classifications (ISODATA

algorithm; ERDAS, 1997) were run on the pixels corres-

ponding to the training sites for each class. The resulting

signatures were examined, similar signatures were merged,

and extremely different signatures or those with few con-

tributing pixels ( < 15) were eliminated. Each class had a

number of signatures, but each signature had low variance.

This helped reduce signature overlap between classes. All of

Fig. 3. Hierarchical classification steps using cBGW for the outwash plain

as an example.

Fig. 4. A small section of the Deciduous genera maps using (a) 345, (b) NDVI, (c) BGW, (d) c345, (e) cNDVI, and (f) cBGW.
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the appropriate signatures were used in the classification

process, the result was then recoded into fewer classes

before completing postclassification processing.

2.7. Hierarchical classifications

2.7.1. Uplands

The most general level for the uplands was a vegetation-

type classification (Fig. 3). The upland signatures were used

as seeds to generate clusters in an unsupervised classifica-

tion. The result of this hybrid classification (ERDAS, 1997),

was recoded using the original signature classes, into decidu-

ous, deciduous–coniferous, and either grain or corn depend-

ing on the ecoregion. This procedure was repeated for each

of the six input data files (Table 2). The hybrid classification

method is reported here because the accuracies were higher

than using a maximum likelihood supervised classifier.

For the genera level classification, the area corresponding

to a vegetation type classified in the previous step was

extracted from the input data file. These extracted data were

input to a maximum likelihood supervised classification

with only the signatures of the general that composed the

vegetation type. For example, in the outwash ecoregion, we

classified the deciduous and deciduous–coniferous area into

aspen class, sugar maple class, oak class, mixed deciduous,

and deciduous–coniferous. This procedure was repeated for

deciduous, deciduous–coniferous, and coniferous areas in

each of the six input data files (Table 2).

2.7.2. Lowlands

The outwash plain contained many lowland areas that

were delineated by the wetland inventory. This allowed us to

derive an accurate classification using wetland-type signa-

tures. The loess plain had enough upland forest and clearings

in the wetland inventory to generate signatures, so the

classification required three steps, similar to the upland areas.

The first step was a general vegetation type, then the upland

forested areas were classed to genera, and the wetlands and

lowland forests were classed into more detailed categories.

2.8. Postclassification processing

The classifications were combined into a single ecore-

gion map, while retaining as much detail as possible.

Therefore, all of the areas classified at the genera level were

Fig. 6. The completed outwash plain classification using 345 where (a) is a small section of (c) or using cBGW where (b) is a small section of (d).

Fig. 5. The accuracy assessments for the deciduous genera classifications

for the outwash plain.
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included, plus all of the areas in the wetland classification.

Only areas, such as clearings or urban, which were not

classified in detail were included from the general vegeta-

tion map, and the land cover map. The classifications were

filtered to remove patches smaller than 4 pixels (3600 m2)

and replace them with the surrounding land type to elim-

inate patches smaller than the resolution of the ground truth

sites. The complete outwash and loess classifications were

also combined into a regional map.

Accuracy assessments were conducted for each clas-

sification step, and for the combined map after the filter

was applied. Assessments compared the known class of a

test site with the majority class of a 3� 3-pixel neighbor-

hood around the center point of that test polygon. Only the

center points of each polygon were used to reduce errors due

to the spatial autocorrelation inherent in raster land cover

data (Cliff & Ord, 1975). Assessments were calculated as

percent accuracies and compared using estimates of the

kappa statistic (KHAT) (Congalton & Green, 1999). KHAT

uses the entire error matrix to produce a measure of

accuracy that takes into account agreements expected by

chance. This statistic, and its variance, can be used in a

standard statistical Z test to compare the accuracies of

different classifications (Congalton & Green, 1999).

2.9. Comparisons with other Wisconsin data

Additional data were used to assess how harvested stands

were being classified. These data came from a forest man-

agement map of the American Legion and Northern High-

lands State Forest. Stands that were clearcut between 1981

and 1992 were rasterized. We then calculated the percent area

assigned into each class from the different input data sets.

Comparisons were also made with two other multiseaso-

nal classifications completed in Wisconsin. WISCLAND

classified the principal components of TM Bands 3, 4, and

5 from two image dates (Lillesand et al., 1998). The outwash

ecoregion was extracted from the WISCLAND classification

Fig. 7. A comparison of the 345 and cBGW complete classifications. (a) The user’s percent accuracy multiplied by the percent area for each class. (b) The

producer’s percent accuracy multiplied by the percent area for each class. The diagonal is a 1:1 relationship.
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and we calculated the overall accuracy and the assignment of

harvested stands to compare how the addition of two more

dates and the calculation of the change in Tasseled Cap

affected the classification. Since the same ground truth data

were used in WISCLAND as in this study, only input data

files should affect the results. Wolter et al. (1995) classified

TMBands 3, 4, and 5 and the change inMSSNDVI from five

image dates creating forest species map with 30-m resolution.

This classification overlapped with 67.8% of the loess plain

ecoregion. This overlapping area was extracted from the

Wolter classification and the categories simplified to match

our ground truth data. An accuracy assessment of this area

was used to compare how the higher spatial resolution and

the calculation of cBGW affected the results.

3. Results

The deciduous genera classification varied considerably

depending on the input data (Fig. 4). A small cutout from

the outwash ecoregion illustrates the variability in classi-

fications. The overall accuracy was highest for the 345 input

data (60.9%) and the cBGW input data (60.4%) (Fig. 5).

The lowest accuracy classification used cNDVI (50.9%).

The cBGW was statistically more accurate than cNDVI

(ZcBGW,cNDVI = 1.88, a= .05). Examination of the classifica-

tions and the accuracies made it clear that 345 and cBGW

were the most viable methods. The following results focus

on comparing these two methods.

The complete classifications with 19 classes were similar

whether 345 or cBGW was the input data (Fig. 6). The

Table 3

Three different classification results for areas harvested within 10 years of

the imagery dates

Classes assigned to harvested areas 345 cBGW WISCLAND

Closed canopy forest classes 51.5 32.5 71.0

Open classes 48.5 67.5 28.9

Water 0.03 0.06 0.1

Values are percent area for the population.

Fig. 8. A comparison of raw spectral and cBGW classification of < 10-year-old harvested stands. (a) Percent of harvested stand area in 345 or cBGW. (b) Percent

of harvested stand area in WISCLAND or cBGW. Diagonal is a 1:1 relationship.
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Table 4

Confusion matrix for the cBGW classification of the outwash plain ecoregion

Data J pine R pine

Mix

Conif

up Oak Aspen

Sugar

maple

Mix

Decid

up

Dec–

Con

up

Mix

Conif

low

Mix

Decid

low

Everg

shb

Dec–

Con

low Water

Con

shb

low

Wet

mead

Dec

shrub Urban Clearings Total

User’s

accuracy

Jack pine 10 3 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 16 62.5%

Red pine 1 35 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 40 87.5%

Mix Conif up 0 2 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 6 16.7%

Oak 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 3 33.3%

Aspen 0 0 2 1 39 0 14 1 0 0 0 0 0 0 0 2 1 0 60 65%

Sugar maple 0 0 0 0 1 19 5 0 0 0 0 0 0 0 0 0 0 0 25 76%

Mix Decid up 0 0 0 2 12 6 24 2 0 0 0 0 0 0 0 0 1 1 48 50%

Dec–Con up 0 0 1 2 4 0 7 3 0 2 0 1 0 0 0 0 0 0 20 15%

Mix Conif low 2 3 5 0 0 0 0 2 70 0 4 1 1 2 1 2 1 0 94 74.5%

Mix Decid low 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 2 50%

Everg shrub low 0 0 0 0 0 0 0 0 0 0 10 2 0 0 0 0 0 0 12 83.3%

Dec–Con low 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 3 100%

Water 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 23 100%

Con shrub low 0 0 0 0 0 0 0 0 1 0 0 0 0 4 1 1 0 0 7 57.1%

Wet meadow 0 0 0 0 0 0 0 0 3 0 0 0 0 0 14 1 0 1 19 73.7%

Dec shrub 0 0 0 0 1 0 0 0 3 0 1 0 0 0 2 23 0 2 32 71.9%

Urban 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 4 13 20 20%

Clearings 1 1 0 0 3 1 2 1 0 0 0 0 0 0 1 5 2 81 98 82.6%

Total 14 44 14 6 65 26 55 10 77 3 15 8 24 6 19 35 9 98 528

Producer’s

accuracy

71.4% 79.5% 7.14% 17% 60% 73.1% 43.6% 30% 90.1% 33.3% 66.7% 37.5% 95.8% 66.7% 73.7% 65.7% 44.4% 82.7%

Numbers in bold are discussed in the Results.
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overall accuracies were 67.8% and 69.13%, respectively,

and were not statistically different (KHAT for 345 was

0.643, for cBGW was 0.656). However, the user’s accuracy

multiplied by percent area showed higher accuracy for

cBGW clearings (Fig. 7a). This difference occurred because

the cBGW clearing had less confusion with the urban areas

than the 345 clearings. The higher accuracy of 345 mixed

deciduous upland occurred because mixed deciduous was

confused with mixed deciduous–coniferous in the cBGW

(Fig. 7a). The mixed deciduous was confused with the aspen

class using either cBGW or 345.

One of the biologically important differences between the

maps was the overclassification of deciduous shrub from

345. In the circled areas, it is apparent that the purple

deciduous shrub in the 345 classification was mixed decidu-

ous in the cBGW classification (Fig. 6a and b). The produc-

er’s accuracy multiplied by the percent area showed the

deciduous shrub class in 345 was less accurate than in

cBGW (Fig. 7b). We also found overclassification of decidu-

ous shrubs in the Wolter et al. (1995) classification where the

user’s accuracy was 18.8%. Areas originally classified as

alder, willow, ericaceous, or miscellaneous brush were

identified in the reference data as conifer (20%), aspen

(12%), sugar maple (6%), mixed deciduous (12%), wet

meadow (5%), clearings (11%), and clearcuts (8%), as well

as deciduous shrubs (19%).

Using vegetation indices and four phenologically signific-

ant dates improved the classification of recently harvested

forest (Fig. 8). When cBGW was classified, harvested stands

were more likely to be assigned to deciduous shrub or

urban, two mixed classes that more appropriately reflected

the mixed vegetation and soil of the stand. The 345

classification confused some harvested stands with the

forests in the aspen class or the mixed deciduous upland

class (Fig. 8a). This difference was illustrated in the rect-

angular stand that was harvested in 1987, 5 years before the

satellite image dates (Fig. 6a and b). The WISCLAND

classification, which relied on principal components ana-

lysis of TM bands from two dates, showed similar inaccur-

acy (Fig. 8b). The overall accuracy of that classification was

60.5%, compared to 69.13% using cBGW. The WISC-

LAND classification had lower percent harvested area in

clearings, and higher percent area as aspen class, mixed

deciduous upland, jack pine class, and sugar maple class

compared to using cBGW. In comparing the percent areas

assigned to open classes, using cBGW improved the clas-

sification 19% over 345, and 38.6% over WISCLAND

(Table 3). However, we cannot presuppose that the cBGW

classification was wrong in assigning 32.5% of the har-

vested area to closed canopy classes, as some forest types

can reach a closed canopy state within 10 years.

The cBGW classification produced a map useful for

managers and modelers working over large areas (Table 4).

There was a more consistent separation of the aspen class

from the sugar maple class, which are the two main

silviculture species. This separation was an improvement

over the Wolter et al. (1995) classification, where only

18.5% of the aspen class test sites were correctly classified

and 39% of the aspen sites were classed as northern

hardwoods (sugar maple class and mixed deciduous).

Furthermore, Wolter et al. (1995) did not distinguish sugar

maple stands from the rest of the mixed deciduous forest.

The cBGW also separated the jack pine class from the red

pine class, the two dominant conifer species. In contrast,

there was confusion of the aspen class with mixed

deciduous upland. This confusion was inevitable since

aspen dominates the mixed stands. Similar results were

found in the loess plain between the sugar maple class and

Fig. 9. Combination of complete outwash plain and loess plain classifications. Overall accuracy is 65.44%.
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mixed deciduous upland, because in that ecoregion, the

mixed stands are often dominated by sugar maple (data

not shown).

The cBGW method developed here can be applied to

different areas. The same methods applied to the loess plain

resulted in 62.7% overall accuracy. Due to inconsistencies

in the wetland classification, mixed forest stands could not

be distinguished into upland or lowland classes. The com-

bination of the outwash plain with the loess plain had 65.4%

accuracy overall (Fig. 9).

4. Discussion

Phenological change captured by Landsat TM satellite

data in the northern hardwoods region can improve forest

classifications significantly. Overall accuracy for raw TM

bands (345) was similar to using cBGW, (67.8% vs.

69.13%), however the change in Tasseled Cap more accur-

ately classified deciduous shrubs sites and had a lower

tendency to class harvested stands with unharvested stands.

Achieving accuracy in these two areas is especially import-

ant for forest management applications. Furthermore, mod-

els that derive primary productivity estimate from satellite

imagery (Bonan, 1993; Fassnacht & Gower, 1997) require

accurate identification of harvested areas.

The image differencing of Tasseled Cap bands (cBGW)

may have produced the best classification because the

transformation ion emphasized the shadows of the vegeta-

tion structure and the phenological differences. Tasseled

Cap improves the separation of agricultural fields from

forest because the forest stands contain more deep shadow,

and this is captured in wetness (Crist et al., 1986). Within

agricultural fields, Tasseled Cap improves the separation of

developing green vegetation from fully green vegetation and

from senescing vegetation (Crist et al., 1986). Our results

showed that this ability also extends to forest systems.

Explicit modeling using image differencing emphasized

the phenological change in the data and produced the

highest classification accuracy. Change analysis of Tasseled

Cap is also effective in detecting deforestation (Cohen,

Fiorella, Gray, Helmer, & Anderson, 1998; Collins &

Woodcock, 1994; Fung, 1990).

The success of cBGW in distinguishing the aspen class

from the sugar maple class is important for management

applications since these silviculturally important species

have different ecological characteristics and silvicultural

treatments. These classes were separated because the sugar

maple class had a greater change in brightness and green-

ness from August to September as the maple leaves change

color. The sugar maple class also had a greater change in

brightness from September to October as the leaves fall,

revealing the dark brown bark of the maple, and the light,

photosynthesizing bark of the aspen. Furthermore, there is a

greater increase in brightness of the sugar maple class

compared to the aspen class from May and August. This

occurred because aspen have most of their leaves by May,

but maples develop most of their leaves later in the spring.

These differences reflect the appropriateness of the image

dates. The separation of the aspen class from mixed decidu-

ous possibly could be improved with a spring date that

captures aspen flowering, because this occurs very early in

the spring before other species are leafing up or flowering.

The confusion of mixed deciduous with deciduous–con-

iferous in cBGW was not found in 345. Therefore, this

confusion may be due to Tasseled Cap sensitivity to

shadows (Crist et al., 1986) and the algorithm interpreting

forest gaps as conifers. Accuracy may be increased further

by using change algorithms designed specifically for Tas-

seled Cap data (Collins & Woodcock, 1994, 1996).

NDVI and cNDVI possibly produced poor results

because only using two spectral bands makes NDVI more

affected by many nonvegetation conditions including soil

color, soil moisture, and the presence of dead material in

the canopy (Jensen, 2000; Qi, Cabot, Moran, & Dedieu,

1995). This creates up to 50% errors in classifications

(Goward, Markham, Dye, Dulaney, & Yang, 1991). The

poorer separation of senescent, brown, and green vegeta-

tion created signature overlap between the different classes

compared to using Tasseled Cap data. This error, combined

with lower spatial resolution, may also explain the rel-

atively poor separation of aspen and maple by Wolter et al.

(1995) compared to the results from cBGW in this study.

Incorporating the additional spectral information available

from the TM sensor, either as raw data or Tasseled Cap,

should produce the more detailed landscape-scale models

and classifications.

The incorporation of four images and the use of cBGW

improved the classification compared to using principal

components from two images by WISCLAND (Lillesand

et al., 1998). The overall accuracy was increased by 9% and

the detection of harvested stands was also improved. Further

improvement in the classification may come from the

incorporation of additional remote sensing data. TM data

are limited in spatial resolution (30 m), so the addition of

higher resolution imagery may better isolate different land

cover types into different pixels (Coppin & Bauer, 1996;

Franklin, Hall, Moskal, Maudie, & Lavigne, 2000; Franklin

& Peddle, 1990).

The incorporation of additional spectral bands by Tas-

seled Cap compared to NDVI, or the empirical relationships

between indices and land cover characteristics, do not

always result in increased accuracy. The application of

Tasseled Cap transformations has expanded beyond its

initial development to distinguish agricultural crops (Crist

& Cicone, 1984; Kauth & Thomas, 1976). For instance, it

has been applied to mapping forest composition (Bauer et

al., 1994; Woodcock et al., 1994), estimating forest mortal-

ity (Collins & Woodcock, 1996), stand age, and structure

(Cohen, Spies, & Fiorella, 1995). However, our results

showed that Tasseled Cap indices without image differ-

encing (BGW) produced one of the lowest accuracy
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deciduous genera classifications (Fig. 5). These results are

consistent with the similarity of classifications using raw

TM bands or Tasseled Cap indices for wetlands (Sader,

Ahl, & Liou, 1995), and forest successional stage (Fiorella

& Ripple, 1993). Further comparisons on the effectiveness

of different input data sets for both phenology and land

cover change would ensure the most appropriate methods

are being employed.

Combining image differencing and vegetation indices

may improve classification accuracy on a variety of land-

scapes. For example, wet–dry deciduous forests have leaf-

flush and leaf-senesce events that occur over weeks

(Daubenmire, 1971), although some species may remain

bare for only a few days (Ewusie, 1992). Tall-grass prairie

guilds may also be able to be distinguished by variation in

leaf-flush, shoot elongation, and senescence (Leopold &

Jones, 1947). Tropical evergreen forest guilds might be

separable using flowering phenology. Some tropical spe-

cies mass produce flowers over a short season, whereas

others produce flowers throughout the year, but in general,

flowering events are spread out between species (Frankie,

Baker, & Opler, 1974; Stiles, 1977). Another application

would be to help locate and monitor exotic species that

have a different phenological response from indigenous

vegetation (Holmes & Rice, 1996; Marigo & Pautou,

1998), although these differences do not always occur

(Harrington, Brown, Reich, & Fownes, 1989).

Our results showed that satellite classifications of broad-

leaved deciduous forests can be improved by using the

differences in Tasseled Cap indices from phenological

change. These greatest improvements were in separating

the classes with similar species, but different structural

features. Our results support the research showing that good

results can be achieved using Tasseled Cap indices to detect

a variety of forest change events.
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