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Abstract. National-scale analyses of fire occurrence are needed to prioritize fire policy and
management activities across the United States. However, the drivers of national-scale
patterns of fire occurrence are not well understood, and how the relative importance of human
or biophysical factors varies across the country is unclear. Our research goal was to model the
drivers of fire occurrence within ecoregions across the conterminous United States. We used
generalized linear models to compare the relative influence of human, vegetation, climate, and
topographic variables on fire occurrence in the United States, as measured by MODIS active
fire detections collected between 2000 and 2006. We constructed models for all fires and for
large fires only and generated predictive maps to quantify fire occurrence probabilities. Areas
with high fire occurrence probabilities were widespread in the Southeast, and localized in the
Mountain West, particularly in southern California, Arizona, and New Mexico. Probabilities
for large-fire occurrence were generally lower, but hot spots existed in the western and south-
central United States The probability of fire occurrence is a critical component of fire risk
assessments, in addition to vegetation type, fire behavior, and the values at risk. Many of the
hot spots we identified have extensive development in the wildland–urban interface and are
near large metropolitan areas. Our results demonstrated that human variables were important
predictors of both all fires and large fires and frequently exhibited nonlinear relationships.
However, vegetation, climate, and topography were also significant variables in most
ecoregions. If recent housing growth trends and fire occurrence patterns continue, these areas
will continue to challenge policies and management efforts seeking to balance the risks
generated by wildfires with the ecological benefits of fire.
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INTRODUCTION

Wildfire management in the United States must

balance the ecological benefits of fire with the risks

wildfires pose to society. On one hand, fire suppression is

necessary to limit the damage to property and threat to

public life. On the other hand, fire is an important

disturbance process in many ecosystems and necessary

to maintain ecosystem composition and structure (Pyne

et al. 1996, Bond and Keeley 2005). In the United States,

fire policies, management directives, and funding are

national in scope (Stephens and Ruth 2005), and thus

national-scale models of fire occurrence are needed to

help inform fire management decisions. Our goal was to

fill this knowledge gap by comparing the relative

influence of human and biophysical drivers of fire

occurrence using predictive models for the conterminous

United States.

The cost of fighting wildfires and the damage wildfires

cause are substantial. For example, in October 2007,

wildfires destroyed more than 3000 structures and forced

the evacuation of one-half million people in southern

California (Grossi 2007). In 2003, wildfires in southern

California also destroyed 3361 houses (Keeley 2004).

Furthermore, the destruction of homes by wildfires is

not limited to southern California. In 2010, the Four-

mile Canyon fire near Boulder Colorado burned 6200

acres (;2509 ha) and destroyed 169 homes, In 2000, the

Cerro Grande fire burned 235 homes in New Mexico

(National Park Service 2006) and, in 1998, wildfires

destroyed 340 homes in Florida (Butry et al. 2001).

Even beyond the loss of homes, fighting wildfires has

become an increasingly costly endeavor. Federal fire

suppression expenditures exceeded $1 billion in four of

the seven years between 2000 and 2006 (U.S. Depart-

ment of Agriculture 2006, National Interagency Fire

Center 2009). Wildfires also have high indirect costs. By

reducing timber supply and tourism income, and by
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increasing health care costs, the economic impact of the

1998 wildfires in Florida was greater than a category 2

hurricane (Butry et al. 2001). Because the expense of

fighting fires is high and the consequences of uncon-

trolled wildfires are great, there is a pressing need to

better understand and predict fire occurrence at the

national scale.

The expense of preventing and suppressing fires is

stretching public land management agencies thin,

leaving few resources for other management activities,

including those needed to allow fires to burn for their

ecological benefits (Dombeck et al. 2004, Noss et al.

2006). This is unfortunate, because fire is an important

disturbance process in many ecosystems (Pyne et al.

1996, Bond and Keeley 2005) and maintaining fire

regimes within their historic range of variability is a

benchmark for conservation success (Hunter 1993,

Morgan et al. 1994, Landres et al. 1999). However, fire

return intervals have increased by an order of magnitude

in many areas (Cowell 1998, Rollins et al. 2001, Cleland

et al. 2004, Grissino-Mayer et al. 2004) with negative

ecological consequences. In the dry ponderosa pine

forests of the Southwest, fire regimes have shifted from

frequent low- and mixed-severity fires to less frequent,

high-severity fires (Covington and Moore 1994, Baker et

al. 2007). Changes in southwestern dry forests have

influenced policies implementing fuel treatments to

reduce fire risk, but the changes experienced by

southwestern forests have not occurred everywhere

(Schoennagel et al. 2004). In eastern deciduous forests,

fire-tolerant species, such as oak, have decreased in

dominance while fire-intolerant species, such as maple,

have increased in dominance following years of fire

suppression (Foster et al. 1998, Abrams 2003). This

change in dominance has resulted in a positive feedback,

further limiting fires because litter in maple forests is less

conducive to burning (Abrams 2005). In other places,

such as southern California, human ignitions have

increased fire frequency far above the historic range of

variability, causing shrub-dominated ecosystems to

switch to grasslands (Syphard et al. 2006, 2007b).

Human development and activity can push distur-

bance regimes beyond the historic range of variability

through two primary direct mechanisms: fire ignition

and suppression. Human activities correlated with roads

and housing cause novel ignition patterns different from

patterns generated by lightning-caused ignitions (Chu-

vieco and Congalton 1989, Cardille et al. 2001,

Kasischke et al. 2002, Stephens 2005, Syphard et al.

2007b). Suppression occurs through altered ignition

patterns, fuel treatments, and fire fighting (Rideout and

Omi 1990, Prestemon et al. 2002). The influence of

suppression is especially pronounced in the wildland-

urban interface where the number of potentially

vulnerable homes and the potential costs of uncontrolled

fires are great (Cohen 2000, Radeloff et al. 2005b,

Syphard et al. 2007b). Humans can affect fire regimes

also indirectly due to landscape-level alteration of the

arrangement and types of fuels (Turner et al. 1989,

Finney 2001, Duncan and Schmalzer 2004). Further-

more, the magnitude of human influence on fire

occurrence may vary with the size of fires (Cardille et

al. 2001) and suppression efforts may be overwhelmed

by large fires occurring under extreme weather condi-

tions (Bessie and Johnson 1995, Keeley et al. 2004, Cary

et al. 2009). Thus, human variables may be more

relevant when predicting ignition patterns and less

relevant when predicting large fires and the total area

burned (Cardille et al. 2001, Syphard et al. 2007b).

However, human influences on fire occurrence have been

studied only from landscape to regional scales, and how

they vary across the nation is unknown. Understanding

national-scale relationships between humans and fires is

important because the strong relationship between

human development and fire, and because human

factors affecting fire patterns are much more amenable

to policy and management actions than other drivers

such as climate.

In addition to human activities, fire occurrence is also

a function of topography, vegetation, climate, and

weather, which together influence fuel type and produc-

tion, moisture levels, and fire behavior (Pyne et al. 1996,

Schoennagel et al. 2004, Moritz et al. 2005, Westerling et

al. 2006). Weather conditions are especially important

when predicting short-term fire behavior on an hourly or

daily basis. For example, short-term changes in precip-

itation, humidity, temperature, and solar radiation can

affect fuel moistures, or sudden changes in wind can

have a large effect on fire spread (Rothermel 1972,

Bessie and Johnson 1995, Cary et al. 2009). The short-

term effects of weather conditions are moderated by

vegetation type and topographic influences (Rothermel

1972, Rollins et al. 2004). Climate becomes more

important over the long term, in determining fire

patterns over annual, decadal, or longer time periods.

Climate interacts with topography and vegetation to

determine patterns of moisture availability, which

determines the types of fuels present at a site, as well

as the volume and flammability of those fuels (Neilson

1995, Rollins et al. 2004, Bond et al. 2005). Deviations

from long-term precipitation patterns, in particular, can

result in drought and increased fire activity (Simard et

al. 1985, Swetnam and Betancourt 1990, Veblen et al.

2000, Schoennagel et al. 2004). Biophysical conditions

clearly have strong effects on fire occurrence, but how

they interact to amplify or deamplify human influences

on fire occurrence patterns, and how those interactions

vary spatially is less understood.

Our goal was to identify the drivers that influence fire

occurrence and how their influence varies across the

conterminous United States. To achieve this goal, we

examined patterns of fire occurrence across the United

States and asked the following questions: What drivers

had the most influence on fire occurrence for all fires?

What drivers had the greatest influence on the occur-

rence of only large fires? Did the influence of human
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variables on fire occurrence vary spatially across the

country? Was the influence of human variables the same
for large fires as it was for all fires? We developed

statistical models that examined the influence of human
variables on fire occurrence, while controlling for

climate, vegetation, and topography. Finally, we esti-
mated the probability of fire occurrence, assuming that
places similar to those that burned in the past are most

likely to burn again.

METHODS

Overview

To address our research questions, we developed a

series of logistic regression models that determined the
probability of fire occurrence as a function of the

predictor variables. We evaluated the performance of
our models using area under the curve (AUC) of

receiver operating characteristic plots (Hanley and
McNeil 1982). Then, we estimated the relative impor-
tance of different predictor variables using hierarchical

partitioning (Chevan and Sutherland 1991, Mac Nally
2000). Large fires present unique ecological consequenc-

es, socioeconomic risks, and management challenges
and large-fire occurrence may be driven by a different

suite of processes than other fires (Strauss et al. 1989,
Turner and Dale 1998, Kasischke et al. 2002, Lynch

2004, Keane et al. 2009). Therefore, we built two sets of
models to compare the relative importance of drivers for

large fires and all fires.
We selected a number of data sets as sources of

response and predictor variables in our models. As our
response variable, we used fire data collected by the

Moderate Resolution Imaging Spectroradiometer
(MODIS) sensors onboard NASA’s Earth Observing

System Aqua and Terra satellites (Justice et al. 2002b,
Giglio et al. 2003). Satellite data offer consistent

observation of fire occurrence with more consistent
spatial and temporal accuracy (Flannigan and Vonder
Haar 1986, Giglio et al. 1999, Justice et al. 2002a,

Hawbaker et al. 2008). We selected MODIS fire data
because they include fires across all land ownerships,

have consistent spatial detail across the globe, and often
provide more accurate locations than other fire records,

such as the federal fire occurrence database (Brown et al.
2002).

Our predictors included variables representing hu-
man, vegetation, climate, and topography drivers. We

used housing density and distance from roads to
represent human effects; land cover and the normalized

difference vegetation index to represent vegetation type
and productivity (a proxy for fuel load production);

annual precipitation and temperature summaries to
represent climate effects; and elevation, slope, and

southwestness to represent topographic effects.
We constructed fire occurrence models for all fires and

for large fires for Omernik level II ecoregions (Omernik
1987). These ecoregions capture broad-scale differences

in weather, climate, soils, vegetation, and land-use

patterns. The ecoregion-level approach also provided

localized estimates of the driving variables of fire

occurrence, facilitating analysis of how those drivers

vary spatially across the United States (Loveland et al.

2002). Additionally, subdividing the large volume of

input data by ecoregions made our modeling approach

more computationally efficient.

Modeling approach

We constructed two generalized linear models to

identify the variables influencing fire occurrence for each

ecoregion (Fig. 1b). The first modeled the occurrence of

all fires and the second only modeled the occurrence of

large fires. In both models, we used a logit link to

represent fire occurrence as a binary response. We made

no a priori assumptions about which variables influ-

enced fire occurrence and used step-wise forward

selection (Chatterjee et al. 2000). We selected predictor

variables based on Akaike’s information criteria (AIC)

and removed variables if they did not generate an AIC

difference greater than two. When step-wise selection

included quadratic variables, the linear form of the

variables was also retained.

To avoid spatial autocorrelation and to reduce our

data volume, we generated a sample, using a spatially

stratified sampling scheme, where observations cannot

be closer than the range of spatial autocorrelation

observed in the model residuals (Fortin et al. 1989). Our

sampling scheme subdivided each ecoregion into blocks

of (initially) 3 3 3 pixels. Within each block, we

randomly selected one fire and one non-fire observation.

If there were no fire observations within a block, then we

retained only the non-fire observation and vice versa.

Using the sampled observations, we fit fire models and

then fit spherical variograms to a random sample of

2500 of the model residuals. If the spherical variogram

explained more variability in model errors than did a

constant variance model, we increased block sizes (535,

73 7, etc.), generated a new sample of observations and

refit our fire model, until there was no significant

evidence of spatial autocorrelation in model residuals.

Successively increasing block sizes increases the distance

between observation, which avoids spatial autocorrela-

tion and ensures that our sampled observations were

widely distributed across each ecoregion.

This sampling strategy produced a different propor-

tion of fire and non-fire observations in the sample than

exists in the population. These differences can bias

model results, so we applied a correction factor (Manly

et al. 2002, Keating and Cherry 2004) that weighted the

sampled proportion of fires (Pf ) and non-fires (Pn)

relative to their prevalence in the population of fires and

non-fires:

Correction ¼ lnðPn=PfÞ: ð1Þ

The number of fires relative to non-fire observations

was small (1.2% of all observations were fires),

potentially complicating modeling (Dixon et al. 2005).
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When events are rare, the precision of predicted event

occurrence may be low (Dixon et al. 2005) and the risk

of over-fitting models increases (Freedman and Pee

1989). The precision of predictions may be increased by

increasing sample size (Dixon et al. 2005). While total

sample size was never a limiting factor, the number of

fire events in some ecoregions was low and over-fitting

may occur when the number of events (fires) per

predictor variable is less than 10 (Freedman and Pee

1989, Peduzzi et al. 1996, Dixon et al. 2005). In a few

ecoregions this was the case, especially in the large-fires-

only samples, and we set a limit on the number of

predictor variables to less than or equal to 1/10th the

number of fires observed. If this limit was exceeded

during step-wise forward selection, then we incremen-

tally removed the least significant variables until the

variable limit was met. No large-fire model could be fit

for the Atlantic Highlands ecoregion due to the lack of

any large fires from 2000 to 2006, and intercept-only

models were fit for the mixed wood plains and central

plains because only 22 and 16 large-fire pixels were

observed in these ecoregions respectively.

Data sources

Fire observations.—The Aqua MODIS sensor cap-

tures actively flaming fires at 01:30 and 13:30 and the

Terra sensor does so at 10:30 and 22:30 (Justice et al.

2002a). In our analysis, we included Terra active fire

observations for 2000–2002 and both Terra and Aqua

fire observations for 2003–2006 (Fig. 1a). Individual

images were mosaicked, reprojected, and converted with

the MODIS reprojection tool (U.S. Geological Survey

2009a) resulting in 926-m resolution pixels. We removed

low-confidence MODIS active fire detections to avoid

false detections, limiting our analysis to the more intense

fires.

Large fires occur as distinctive clusters of connected

MODIS active fire pixels. We developed an algorithm

that identified fire clusters by tracking the spatial and

temporal spread of active fires (Chuvieco and Martin

1994, Loboda and Csiszar 2007). Our algorithm

grouped MODIS active fire pixels into clusters if their

spatial and temporal distance or overlap was less than

user specified minimums. Based on our visual compar-

ison of MODIS fire pixels with known fire perimeters,

we found that one pixel spatial and one-day temporal

overlap produced MODIS fire clusters that closely

matched fire perimeters measured from Landsat imagery

(Eidenshink et al. 2007). After MODIS active fire pixel

clusters were identified, we calculated the size or number

of pixels included in each cluster. We then selected a

cluster size threshold to define large fires. The threshold

we used was 13 contiguous MODIS active fire pixels,

which corresponded to the top 5% fire size quantile.

Throughout this paper, we refer to MODIS active fire

pixels as ‘‘fires’’ and the clusters of MODIS fires at least

13 pixels in size as ‘‘large fires.’’ However, MODIS active

fire detections only indicate that fire activity was

detected somewhere within the 926-m pixel, not that

the entire pixel burned. Additionally, some small and

low intensity fires may have been missed by MODIS

(Hawbaker et al. 2008). Thus, the MODIS active fire

data used here provided a conservative estimate of fire

occurrence.

Human variables.—We included housing density and

median distance to roads as proxies for human activities

in our models. Housing density data were derived from

the U.S. Census and converted to a 1-km grid (Radeloff

et al. 2005b). We assumed housing units were uniformly

distributed within census block polygons and calculated

the pixel-level values as polygon-level housing unit

counts multiplied by the proportion of each polygon

covering a pixel.

We included Euclidian distance-to-road data at 30-m

resolution from the National Overview Road Metrics

database (Watts et al. 2007). We aggregated these data

to 1-km resolution using a median rule. Both housing

density and median distance to road data were log(x þ
1)-transformed prior to analysis. Since housing density

may best predict fire occurrence at intermediate density

(Syphard et al. 2007b), we included quadratic terms for

both housing density and median distance to roads.

Land cover.—Fire occurrence varies among vegetation

types. We accounted for that variability using the 2001

Multiple Resolution National Land Cover Database

(NLCD), derived from 30-m resolution Landsat imag-

ery (NLCD; Homer et al. 2004). Since we were primarily

interested in wildland fires, we limited our analysis to fire

observations in the grassland, shrubland, wetland, and

deciduous, coniferous, and mixed forest NLCD classes.

Therefore, we combined several of the NLCD classes to

simplify the number of categories used in our models

(Table 1). After combining classes, the modified land

cover data set included eight unique land cover

categories: developed, agriculture, wetland, grassland,

shrubland, evergreen forest, deciduous forest, and mixed

forest. We aggregated these land cover categories to 1-

km resolution using a majority rule.

Vegetation index.—Land cover types alone might not

capture spatial variability in the amount or the

productivity of vegetation, which influence fuel loads.

We therefore included the maximum normalized differ-

ence vegetation index (NDVI) in our models to

represent spatial variability in fuel loads. The maximum

NDVI value can be interpreted as a measure of the peak

level of photosynthetic activity (Tucker 1979, Reed et al.

1994). We used maximum NDVI measured from the

Advanced Very High-Resolution Radiometers for 1999

(U.S. Geological Survey 2009b). We selected the

maximum NDVI value for 1999. NDVI values from

the years over which MODIS fires were observed (2000–

2006) were not included to avoid potential changes in

NDVI that occurred as a result of fires.

Climate.—To represent the spatial variability in

climate, we calculated long-term averages of tempera-

ture and precipitation. We acquired monthly tempera-
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ture and precipitation data with 4-km resolution from

the PRISM Group at Oregon State University (data

available online).7 We calculated the long-term average

of the monthly mean maximum temperature and the

total annual precipitation from 1971 to 2000. We

expected that fire occurrence would be greatest at

intermediate temperature and precipitation levels be-

cause these conditions allow for high primary produc-

tion. In contrast, in those places where conditions are at

the extreme ends of the temperature and precipitation

gradients, fuel production is either too low to support

fire spread, or moisture is typically so high that fires only

occur during extreme drought.

Topography.—We expected that fire occurrence would

be more likely on south-facing slopes, on steeper slopes,

and at lower elevations. We measured aspect, percent

FIG. 1. (a) MODIS active fires from both the Terra and Aqua sensors (2000–2006), and (b) Omernik level II ecoregions.

7 http://www.prismclimate.org
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slope, and elevation using the GTOPO 30 global

elevation data set (U.S. Geological Survey 2009c). These

data have approximately 1-km spatial resolution.

Southerly or southwesterly facing slopes receive greater

incident solar radiation and hence have less available

moisture, limiting vegetation productivity but also

drying fuels that do exist. We converted aspect,

measured as degrees clockwise from north, to a

southwesterly index increasing from �1 (northeast) to

1 (southwest) (Beers et al. 1966):

southwestness ¼ cosðaspectþ 135Þ3 p
180

: ð2Þ

Model validation and evaluation

We assessed the predictive power of our models using

two data sets spanning two different time periods. The

first data set included the MODIS fires for the years our

models were constructed (2000–2006), which we refer to

in the following as the training period. The second data

set was independent and included MODIS fires from the

years 2007–2009, which we refer to as the validation

period. For both data sets, we assessed model perfor-

mance using the area under a receiver operating

characteristic curve (AUC). The AUC measures the

probability of correctly classifying a random pair of fire

and non-fire observations (Hanley and McNeil 1982).

An AUC value of 0.5 indicates that model predictions

are equivalent to a random guess and AUC value of 1.0

indicates perfect predictions.

AUC evaluates the entire model’s predictive power,

but provides no information about the relative impor-

tance of predictor variables. Hence, we used hierarchical

partitioning (Chevan and Sutherland 1991, Mac Nally

2000), which calculates the independent contribution of

a predictor as the average difference in model fit between

models with and without the predictor. The independent

contribution of a predictor is always positive and can be

interpreted as the unique contribution of that predictor

variable to model fit when other variables are also in the

model. If there is no correlation among predictors, then

the predictor’s independent contribution equals the fit of

a bivariate model containing only the response and

predictor. However, this rarely occurs in practice. The

difference between the bivariate model fit and the

independent contribution is the joint contribution. The

joint contribution is positive when the bivariate model fit

is larger than the independent contribution, indicating

collinearity among predictors. When the joint contribu-

tion is negative then the predictor increases the

proportion of variation explained by other variables

(Hamilton 1987).

After variable selection, we performed hierarchical

partitioning for all models of fire occurrence and

summarized the results according to four variable

groups: human (housing density and median distance

to roads), vegetation (land cover and maximum NDVI),

climate (temperature and precipitation), and topography

(elevation, slope, and southwestness; Table 2). We

calculated the total proportional contribution of each

variable group to the total model fit as the sum of

individual and joint contributions for each variable

group divided by the sum of the individual and joint

contributions of all variable groups.

RESULTS

We found considerable variability in the estimated

probability of fire occurrence among and within

ecoregions (Fig. 2). Models of all fires predicted high

probability of fire occurrence in the Southeast, the Flint

Hills of Kansas, Upper Gila Mountains of Arizona and

New Mexico, northern and western parts of the Western

Cordillera, and in mediterranean California (Fig. 2a).

The probability for large fires was generally lower than

the probability for all fires (Fig. 2b); however, some

clear hot spots remained, mostly in the West, and

especially in the Upper Gila Mountains, mediterranean

California, and northern parts of the Western Cordille-

ra. Other areas with high large-fire probability included

the Flint Hills of Kansas and parts of Oklahoma,

Arkansas, Louisiana, and Florida. Areas with low fire

probabilities, irrespective of fire size, included the

Northeast and arid areas of the West.

We assessed model performance using AUC values,

which ranged from 0.60 to 0.82 for the all-fire models,

and from 0.50 to 0.88 for the large-fire models for the

training period (2000–2006; Table 3). Performance of

the all-fire models tended to be lowest in ecoregions with

extensive fire activity, such as mediterranean California.

However, performance measured by AUC, usually

increased when only large fires were considered. AUC

values calculated using an independent fire data set for

the years in the validation period (2007–2009) varied

from year to year. The AUC values from the validation

period tended to be centered around the AUC value

calculated from the training period, and ranged from

0.60 to 0.82 for the all-fire models, and from 0.50 to 0.88

for the large-fire models (Table 3).

TABLE 1. Original national land cover database classes
(Homer et al. 2004) and merged classes that were used in
our analysis.

NLCD land cover category Merged category

Developed (four classes) developed
Pasture/hay agriculture
Cultivated agriculture agriculture
Woody wetlands (four classes) wetland
Emergent herbaceous wetlands

(four classes)
wetland

Open water water, etc.
Permanent snow and ice water, etc.
Barren water, etc.
Grassland grassland
Shrubland shrubland
Evergreen forest evergreen forest
Deciduous forest deciduous forest
Mixed forest mixed forest
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Drivers of all-fire occurrence

Models of all-fire occurrence were fit for all 21

ecoregions in the coterminous United States. The

predictor variables most commonly selected in the all-
fire models included maximum NDVI, precipitation,

temperature, housing unit density, distance from roads,
and elevation (Table 4). Every model included a

predictor from three of the four variable groups (human,
vegetation, climate, and topography) and most models

included predictors from all four variable groups (see

Appendix).
We ranked the predictor variable groups according to

their relative contribution to model fit. The climate
variables had the greatest contribution to model fits

most frequently, ranking first in nine and second in six

of the 21 ecoregions (Table 5; Fig. 3a). The vegetation
variables were also important contributors and were

ranked first in eight ecoregions and second in seven
ecoregions. Climate variables tended to have the highest

relative contribution in the East and Great Plains while
vegetation variables had the highest relative contribu-

tion in the West.

Human variables were present in models for 19 out of
21 ecoregions, but their contribution to model fit had

lower rankings than the climate and vegetation vari-
ables. Human variables were ranked highest in the

Central Plains, the Mixed Wood Plains, and the Ozark-

Ouachita-Appalachian Forests ecoregions in the East
and in these ecoregions, the human variable, housing

unit density had a consistent negative relationship with
the probability of fire (see Appendix). Human variables

were also important in the West, especially in the Marine
West Coast Forests, the Chihuahuan Desert, and

Mediterranean California ecoregions. Similar to the
patterns observed in eastern ecoregions, the probability

of fire was negatively related to housing unit density in

the Marine West Coast Forest ecoregion. However, the

pattern was different in the Chihuahuan Desert and

Mediterranean California ecoregions, and fire probabil-

ity increased with housing unit density but decreased

with distance from roads.

Topography variables were generally ranked low in

terms of their contribution to model fits even though

they were selected in 18 of the 21 ecoregion models

(Table 5, Fig. 3a). However, topography variables were

ranked highest in terms of their contribution to model fit

for a couple of ecoregions, including the Western

Cordillera and the Everglades. In the Western Cordil-

lera, the probability of fire generally decreased as

elevation increased. In the Everglades ecoregion, prob-

ability of fire also had a decreasing relationship with

elevation, which is consistent with observations of fire

activity being more prevalent in wetland areas and less

prevalent in the surrounding uplands.

Drivers of large-fire occurrence

Models of large-fire occurrence were fit for 18 of the

21 ecoregions that we examined. Most models included

predictor variables from three of the four variable

groups (human, vegetation, climate, and topography)

and half the models included predictor variables from all

four groups. The predictor variables most often selected

for the large-fire models included precipitation, temper-

ature, elevation, vegetation type, maximum NDVI, and

housing unit density (Table 4). Data limitations

prevented us from fitting fire models for the remaining

3 ecoregions. Large fires were observed in the Central

Plains and Mixed Wood Plains ecoregions; however, we

were only able to construct intercept-only models

because the number of fire observations in each

ecoregion was small (N , 30). No large fires were

observed in the Atlantic Highlands ecoregion.

The climate variable group had the greatest contri-

bution to model first most frequently and was ranked

TABLE 2. Input variables and units for logistic regression models.

Variable group and name Units Source

Vegetation

Land cover Four categories: grassland, shrubland,
evergreen forest, deciduous forest

Homer et al. (2004)

max(NDVI) USGS (2009b)

Climate

Precipitation mm PRISM Group 2004 data, see footnote 7
Temperature 8C PRISM Group 2004 data, see footnote 7

Topography

Elevation km U.S. Geological Survey (2009c)
Slope % U.S. Geological Survey (2009c)
Southwestness U.S. Geological Survey (2009c)

Human

Housing unit density� housing units/km2 Radeloff et al. (2005b)
Median distance to road� m Watts et al. (2007)

Notes: Max(NDVI) was the maximum NDVI measurement obtained by the Advanced Very High-Resolution Radiometers for
1999. Southwestness is a conversion of the aspect, measured as degrees clockwise from north, and resulting in a index increasing
from�1 (northeast) to 1 (southwest).

� Natural-log transformed.
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first in 11 of the 18 models (Table 5, Fig. 3b). Similar to

the all-fire models, the climate variable group tended to

be ranked first in the East (five of five models) and Great

Plains (four of five models). Vegetation variables were

also important and ranked first in six of the models, and

similar to the all-fire models, the vegetation variable

group was frequently ranked first in the West (five of

eight models).

Human variables were included in 15 out of 18 models

and were typically ranked second to fourth in terms of

their importance to model fit (Table 5, Fig. 3b). Human

variables were import contributors in all of the eastern

ecoregions, except the Everglades. In the Great Plains

and the West, the human variable group was not the

most important contributor to model fit, except for the

Temperate Prairies, the Western Cordillera, and the

Marine West Coast Forests. Both housing unit density

and distance from roads tended to have negative

relationships with large-fire occurrence in the eastern

ecoregion models that included human variables (see

Appendix). Similarly, in ecoregions in the Great Plains

and in the West, human variables tended to be

negatively related to large-fire occurrence. There were

a few exceptions though. In the Sonoran and Mohave

Deserts and the Western Interior Basins and Ranges

ecoregions, large-fire occurrence was positively related

to distance from roads. And in Mediterranean Califor-

nia, both housing unit density and distance from roads

had a positive relationship with large-fire occurrence.

Topography variables were included in 15 out of 18

large-fire models and tended to be ranked second and

third for contribution to model fit; this was generally

higher than in the all-fire models (Table 5, Fig. 3b). Only

one ecoregion had topographic variables as the most

important group, the Western Cordillera. Elevation was

the topographic variable most frequently included in the

large-fire models, followed by slope and then south-

westness (see Appendix). The relationship between

elevation and large-fire occurrence was generally posi-

tive, except for southeastern coastal ecoregions and

southwestern deserts, where the relationship was nega-

tive. Large-fire occurrence tended to be positively related

to slope. The relationship between large-fire occurrence

with southwestness was negative in the West but positive

in the Great Plains and the East.

Differences in variable importance between all-fire

and large-fire models

The contribution of variables differed between models

of all-fire occurrence and large-fire occurrence (Fig. 3a

and b). Climate variables were important in both

models, but tended to have a greater contribution to

model fits in the large-fire models. Variables in the

vegetation group were also important for both fire

models, but they tended to have a reduced contribution

to model fit in the large-fire models compared to the all-

fire models. The exceptions were the Chihuahuan Desert

and Mediterranean California where the contribution of

vegetation variables was greater in the large-fire models.

The influence of topography variables was lower in the

large-fire models than in the all-fire models for eastern

ecoregions. However, in the Great Plains and West, the

differences varied with topography increasing in impor-

tance in some ecoregions and decreasing in others. The

importance of human variables was also mixed: the

contribution to model fit of human variables increased

in most eastern ecoregions in the large-fire models, but

tended to decrease in the Great Plains and in the West.

The exceptions were the Temperate Prairies in the

Western Cordillera.

DISCUSSION

We quantified drivers of fire occurrence using satellite

fire observations for the coterminous United States

collected between 2000 and 2006. We sought to identify

which drivers (human, climate, vegetation, and topog-

raphy) had the most influence on fire occurrence

patterns, how their influence varied across the country

for all fires and for large fires. Our results showed that

climate and vegetation were the primary drivers of fire

occurrence for both all fires and large fires in the United

States. This finding is in agreement with the extensive

body of fire-science literature that highlights the

interactions among weather, climate and vegetation in

determining fire patterns (Swetnam and Betancourt

1990, Flannigan et al. 2000, Schoenagel et al. 2004,

Bond and Keeley 2005, and Westerling et al. 2006). Our

results also demonstrated that climate and vegetation

drivers are only part of the story though, and that

human drivers played a significant role in predicting fire

occurrence in most ecoregions in the conterminous

United States. These findings reinforced the strong

influences of people on fire that had been documented

in regional studies across various parts of the United

States and elsewhere (Cardille et al. 2001, Prestemon et

al. 2002, Syphard et al. 2007b).

Although human variables were important predictors

of fire occurrence, their influence varied among different

regions of the country. The influence of human variables

was strong in the Great Plains and the East for both all

fires and large fires. Natural fire ignitions are rare in this

region and mostly limited to southern Florida (Preste-

mon et al. 2002, Stephens 2005) and the importance of

human variables was not surprising. There is a long

history and tradition of using prescribed fire to reduce

understory brush in managed forests in the Southeast

(Cleaves et al. 2000, Haines et al. 2001, Lafon et al.

2005). There is also an extensive wildland–urban

interface, and a large proportion of the population lives

in close proximity to wildland fuels and this increases the

likelihood of accidental ignitions. In spite of the strong

relationship between humans and fires in the East, our

models showed negative relationships between housing

unit density and fire occurrence. Because the MODIS

active fire data primarily capture larger fires (.1 acre

[0.405 ha]), our results demonstrated that the areas
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where fires did occur was largely limited to areas free of

human development. This suggests that fires were and

will be more or less limited to public lands and large

tracts of private lands in the Great Plains and the East.

In the West, the influence of human variables was less

important than in the Great Plains and in the East, but

the relationships were largely similar to that in the Great

Plains and the East, highlighting higher fire suppression

in areas that are more developed. For example, in the

Western Cordillera, probability of fire was negatively

related to distance from roads and housing density. This

indicated that fires were more likely in areas with limited

development and this may reflect fire suppression efforts

near development and policies allowing fires to burn

when there is little risk, e.g., appropriate management

response policies on public lands (Miller 2006).

There were a couple of ecoregions in the West where

the relationship between people and fire differed though.

In the Desert Southwest, fires were more likely to occur

distant from roads. This strong human influence may be

related to invasive species. Historically, vegetation

productivity has been low in these ecoregions and

vegetation was often too spares to carry fires. Invasive

species, such as cheatgrass (Bromus tectorum) and

buffelgrass (Pennisetum ciliare) introduced as cattle

forage, produce continuous fuels capable of supporting

FIG. 2. Modeled probability for occurrence of (a) all fires and (b) large fires.
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TABLE 3. Area under curve (AUC) of the receiver operating characteristics (ROC) curve using for
all-fire and large-fire models by ecoregion.

Training period
Validation years

Ecoregion and model 2000–2006 2007 2008 2009

Everglades

All fires 0.65 0.71 0.56 0.74
Large fires 0.72 0.71 0.53 0.61

Mississippi alluvial and SE coastal plains

All fires 0.65 0.66 0.64 0.68
Large fires 0.73 0.81 0.59 0.73

Ozark, Ouachita-Appalachian forests

All fires 0.78 0.75 0.74 0.74
Large fires 0.83 0.85 0.74 0.78

Southeastern plains

All fires 0.71 0.70 0.69 0.71
Large fires 0.76 0.75 0.76 0.77

Central plains

All fires 0.78 0.70 0.66 0.82
Large fires 0.50 0.50 0.50 NA

Mixed wood plains

All fires 0.82 0.79 0.83 0.86
Large fires 0.50 NA 0.50 NA

Atlantic highlands

All fires 0.77 0.79 0.81 0.71
Large fires NA NA NA NA

Mixed wood shield

All fires 0.77 0.75 0.73 0.78
Large fires 0.88 0.74 0.91 0.73

Tamaulipas–Texas semiarid plain

All fires 0.72 0.63 0.64 0.63
Large fires 0.75 0.25 0.69 0.69

Texas–Louisiana coastal plain

All fires 0.71 0.70 0.60 0.58
Large fires 0.72 0.72 0.56 0.58

South-central semiarid prairies

All fires 0.78 0.73 0.74 0.78
Large fires 0.79 0.78 0.69 0.74

West-central semiarid prairies

All fires 0.66 0.66 0.56 0.67
Large fires 0.77 0.69 0.71 0.60

Temperate prairies

All fires 0.77 0.69 0.77 0.76
Large fires 0.88 0.84 0.59 0.90

Chihuahuan Desert

All fires 0.74 0.66 0.67 0.67
Large fires 0.78 0.58 0.67 0.74

Sonoran and Mohave Deserts

All fires 0.76 0.92 0.85 0.92
Large fires 0.79 0.94 0.63 0.88

Western interior basins and ranges

All fires 0.74 0.72 0.77 0.76
Large fires 0.75 0.73 0.76 0.78

Mediterranean California

All fires 0.60 0.60 0.55 0.59
Large fires 0.72 0.77 0.55 0.74

Western Sierra Madre piedmont

All fires 0.79 0.65 0.69 0.70
Large fires 0.83 0.74 0.79 0.71
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fires. The presence of invasive species is correlated with

human development (Gavier-Pizarro et al. 2010, 2011,

Rogers et al. 2010) and may make fires more likely in

invaded areas near homes and roads (Brooks et al. 2004,

Keeley 2006). In Mediterranean California, the proba-

bility of fire increased with housing unit density in both

the all-fire and large-fire models. However, the relation-

ship between fire and distance from roads varied, being

negative in the all-fire models, but positive in the large-

fire models. In California, many fires are ignited directly

by humans or inadvertently caused by human presence

(Syphard et al. 2007b). Small fires were common and

scattered throughout this ecoregion and the negative

relationship with roads is most likely capturing small fire

activity in less developed areas. Large fires were less

common and tended to be concentrated in southern

California, where there is extensive urban and suburban

development. The relationships between people and fire

in all these ecoregions thus show a pattern where human

development has altered fire regimes either directly

through increased ignitions in some areas and suppres-

sion in other areas, or indirectly through invasive

species.

Model validation

The predicted patterns of fire probability shown in

our maps (Fig. 1) generally matched our expectations;

however, some results were surprising. We did not

expect the isolated hot spots of large-fire probabilities in

the south-central United States (i.e., the Flint Hills in

Kansas and parts of Oklahoma, Arkansas, and Louisi-

ana). Continuous grassland expanses allow fires to

spread quickly when fire weather conditions are extreme.

We were also surprised that the Upper Midwest and

Northeast had notably low probabilities for fire in our

predictive maps given that large fires do occur in places

like the Boundary Waters Canoe Area Wilderness in

northern Minnesota (Heinselman 1973). The low fire

probabilities in these areas may be a combination of the

short time-span over which MODIS fire observations

were collected and the generally low fire frequencies in

these regions (Cleland et al. 2004).

We first assessed model performance using AUC,

calculated using MODIS fire observations from the

model training period (2000–2006). An AUC value of

0.5 would indicate that model performance was essen-

tially random and an AUC value of 1.0 indicates perfect

model performance. Model performance for the all-fire

models was better than random and ranged between 0.6

and 0.82 (Table 3). Model performance for the large-fire

models were more variable and ranged from 0.5 to 0.88,

but tended to be greater than all-fire model perfor-

mance. In the Mixed Wood Plains and Central Plains

ecoregions, large-fire model performance was random,

most likely because the limited number of large-fire

observations precluded development of any valid model.

Excluding these ecoregions, large-fire model perfor-

mance was somewhat better than the all-fire models

and ranged between 0.65 and 0.88.

TABLE 3. Continued.

Training period
Validation years

Ecoregion and model 2000–2006 2007 2008 2009

Upper Gila Mountains

All fires 0.73 0.78 0.76 0.74
Large fires 0.73 0.72 0.66 0.69

Western cordillera

All fires 0.65 0.64 0.65 0.67
Large fires 0.65 0.70 0.68 0.64

Marine west coast forest

All fires 0.70 0.73 0.66 0.68
Large fires 0.75 0.75 0.60 0.53

Notes: AUC values for the training period were based on fire data from the years used to
parameterize the models. AUC values for the validation period were based on fire data from years
after and are independent from the training period. NA stands for ‘‘not applicable’’; i.e., in that
ecoregion and year, there were no fires that could be modeled.

TABLE 4. Predictor variables and number of times they
occurred in ecoregion models (N ¼ 21 ecoregions).

Variable group and name All fires Large fires

Human

Housing unit density 16 11
Median distance from roads 16 9

Vegetation

Grassland 7 7
Shrubland 6 5
Evergreen forest 10 5
Deciduous forest 3 1
max(NDVI) 20 12

Climate

Precipitation 19 15
Temperature 19 15

Topography

Elevation 15 14
Slope 9 7
Southwestness 8 5
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The performance differences between the all-fire and

large-fire models may be related to differences in the

drivers behind fire occurrence. Small fires are more likely

to be human-caused, and the lower predictive success for

these fires might reflect the variety and spatial variability

of different human activities that contribute to small fire

occurrence. These results may indicate that commonly

used human predictor variables of housing unit density

and distance from roads are not entirely capable of

capturing those patterns. Large fires on the other hand,

are more restricted to areas with large contiguous

patches of fuels or wildland vegetation and the locations

of these areas are well defined by the suite of predictor

variables we used, especially in the East and the Great

Plains.

Across the ecoregions that we analyzed, the predictive

power of both the all-fire and large-fire models tended to

be greatest in the East and Great Plains and lowest in

the West (Table 3). The processes of fire spread plays a

critical role in determining where large fires burn and

this is a difficult process to capture with statistical

models. None of our predictor variables quantified the

potential for fire spread. However, the sampling design

that we implemented to avoid spatial autocorrelation

required greater spacing among samples in the West

than in the East (see Appendix). This greater spacing

may be an indication of the uncertainty introduced into

model predictions because of potential fire spread and

these uncertainties are larger in the West where fires

tended to be much larger than in the East.

In addition to validating our models using fire

observation from the training period, we performed an

additional validation using fire observations from an

independent time period (2007–2009). For each year in

the independent period, we calculated AUC for each

ecoregion using the predicted fire probabilities from our

models and observed MODIS active fires. AUC values

reached up to 0.92 for the all-fire models and 0.9 for the

large-fire models, exceeding AUC values during the

training period. The results did show variability in

model performance among years, but single-year AUC

values for the validation period generally were centered

on AUC values calculated for the training period. This

variability was most likely a reflection of inter-annual

climate variability that was not represented in our

models. This analysis assumed that climate conditions

during the training period (2000–2006) and independent

validation period did not change substantially. Howev-

er, the results do show that our models were capable of

predicting near-term fire occurrence well.

There are few comparable national-level studies

examining fire occurrence. One recent study by Preisler

et al. (2009) used daily weather and satellite imagery to

calculate fire danger indices and related those indices to

fire occurrence. Unfortunately, they did not generate

model performance metrics comparable to ours. Anoth-

er recent study by Parisien and Moritz (2009) used a

habitat distribution model approach using Maxent and

boosted regression tree algorithms. They trained their

national-level model using fires greater than 121 ha (300

TABLE 5. Predictor variable groups ranked according to their contribution to total model fit.

Region and ecoregion

All fires Large fires

First Second Third Fourth First Second Third Fourth

East

Everglades topo. climate veg. human climate topo. veg. human
Mississippi alluvial and coastal plains climate veg. human topo. climate human veg.
Ozark, Ouachita-Appalachian forests climate human topo. veg. climate human topo. veg.
Southeastern plains climate topo. human veg. climate human topo. veg.
Central plains human climate topo.
Mixed wood plains human veg. topo. climate
Atlantic highlands climate veg. human
Mixed wood shield climate veg. human climate human topo.

Great Plains

Tamaulipas–Texas semiarid plain veg. topo. climate climate topo. veg.
Texas–Louisiana coastal plain climate veg. human topo. climate veg. human
South-central semiarid prairies climate veg. topo. human climate veg. topo. human
West-central semiarid prairies veg. topo. human climate veg. topo. climate
Temperate prairies climate topo. veg. human climate human topo. veg.

West

Chihuahuan Desert veg. human climate topo. veg. topo.
Sonoran and Mohave Deserts veg. climate human topo. veg. topo. climate human
Western interior basins and ranges veg. climate topo. veg. climate topo. human
Mediterranean California veg. human climate topo. veg. topo. human
Western Sierra Madre Piedmont veg. climate human topo. climate veg. human topo.
Upper Gila Mountains veg. climate human topo. veg. climate human
Western Cordillera topo. veg. climate human topo. human veg. climate
Marine west coast forest climate human veg. climate human topo.

Note: Abbreviations are: veg., vegetation; topo., topography. Empty cells indicate that no other predictor variable groups were
significant in the models; the number of predictor variable groups that were significant differed among the ecoregions.
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acres) in size from the federal fire occurrence database

from 1980 to 2003. In addition to potential vegetation

type and elevation, their predictors included a large suite

of climate summary variables than we used. Their

reported AUC values ranged up to 0.85 and 0.88 for

the Maxent and boosted regression tree algorithms

respectively, and thus, the performance of their models

was similar to ours. However, their models did not

capture fires on private lands well, because these are not

included in the federal fire occurrence database.

Limitations and uncertainties

Our models of fire occurrence successfully described

observed fire patterns and demonstrated the relative

importance of climate, vegetation, topography, and

human variables. However, there were a few limitations

to our approach and these limitations may have affected

the applicability of our models to address important

questions about fire occurrence and management in the

United States.

The MODIS active fire data present challenges to

monitoring and modeling fire occurrence. One impor-

tant limitation of these data is the lack of information

about the cause of fires, which is not easily determined

from satellite observations. Human-caused and natural-

caused fires may have different groups of driving

variables. For instance, there is large body of literature

documenting the influence of roads and development on

human ignition locations (Cardille et al. 2001, Syphard

et al. 2007b). Some inferences about ignition sources can

FIG. 3. Hierarchical partitioning results showing contributions of variable groups to model fit for models of (a) all fire
occurrence and (b) large fire occurrence.
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be made at the regional level (Stephens 2005) or using

ancillary data to predict the likelihood of different

ignitions sources (Bar Massada et al., in press a).

Additionally, our modeling approach did not examine

ignitions locations from where fires eventually spread,

and that may have limited the explanatory power of our

models, because ignition and spread are affected by

different factors (Calef et al. 2008, Syphard et al. 2012;

Bar Massada et al. 2011, in press b). Our ability to

understand the differences in the patterns and driving

forces behind human and natural-caused fires from

satellite fire observations could be improved by better

data sets of ignition locations and ignition types, which

are lacking at a national scale for the United States for

all types of land ownership.

Another limitation of our approach was the climate

data that we used. Inter- and intra-annual variability in

climate and weather play a large role in determining

when and where fires occur, influencing both ignition

and spread probabilities (Rothermel 1972, Bessie and

Johnson 1995, Rollins et al. 2002, Westerling et al. 2006,

Balshi et al. 2009, Cary et al. 2009). Our analysis used

short-term (6-year) climate averages of precipitation and

temperature. At this temporal resolution, our approach

may not fully account for the temporal variability in

climate and the potential influence on fire occurrence.

Consequently, our study may be underestimating the

importance of climate variability. However, similar

approaches have been used in previous studies (Parisien

and Moritz 2009) and, in spite of the lack of climate

variability, we still found climate variables to be among

the most important predictors of fire occurrence. Our

models could thus be used to project how fire occurrence

patterns may change under future climates but ideally

such models should consider incorporating inter- and

intra-annual climate or weather variables as predictors.

Implications

Humans have a significant influence on fire occurrence

across most of the United States. Although the relative

contribution of humans was often low in our models

compared to vegetation, climate, and topography,

human impacts have implications for both ecosystem

conservation and fire management. The cumulative

impacts of human influence on fire regimes have both

increased fire frequency (Veblen et al. 2000, Cleland et

al. 2004, Grissino-Mayer et al. 2004) and decreased fire

frequency (Keeley 2006, Syphard et al. 2006). In both

cases, this pushes disturbance regimes outside their

historic range of variability and that affects biodiversity

and ecosystem function. Consequences include changes

in plant community types (Lorimer 1977, Franklin et al.

2005, Scheller et al. 2005), exotic species invasions

(Brooks et al. 2004, Keeley 2006), landscape structure

(Baker 1992, Radeloff et al. 1999), and ecosystem

processes (Reed et al. 1999, Turner et al. 2004,

Smithwick et al. 2005). Our results also reiterated the

importance of climate and vegetation in determining fire

occurrence patterns. We used short-term climate sum-

maries as predictors of fire occurrence. Even though

year-to-year climate variability was not included in our

models, our results can help to project how patterns of

fire occurrence may shift with concurrent changes in

short-term climate averages. As future development

occurs (Hammer et al. 2007, Syphard et al. 2007a) and

as its impacts interact with climate changes (Flannigan

et al. 2000, Lenihan et al. 2003, Westerling et al. 2006,

Fried et al. 2008) to alter patterns of fire occurrence, we

can expect the challenges of managing fire to increase.

Fire management policies generally aim to reduce fire

risk. Fire risk is a function of both the probability of a

fire, and the amount of damage that a fire could cause.

Homes and other structures make up a major compo-

nent of the values at risk from fire. Our models predicted

fire occurrence, not fire risk, but it is interesting to

interpret them in the context of settlement patterns. In

the East, both development and fire occurrence were

widespread and, in these places, fire risk can be high

where vegetation types with potential for extreme fire

behavior exist. Relative to the East, fires in the West

tended to be larger, more variable, and more localized.

However, development is constrained by topography

and land ownership (Miller et al. 1996, Turner et al.

1996), and the localized nature of western development

is both good and bad from a fire management

perspective. On one hand, the limited footprint of

human development limits fire risk to houses, and thus

the area needing direct fire suppression. However, on the

other hand, large fires are by far the most challenging to

suppress, and when large fires do occur in or near

development, houses are also concentrated and losses

can be great.

In addition to the insight our results provide about the

relative influence of climate, vegetation, topography,

and human development on fire occurrence across the

coterminous United States, our models fill a critical gap

by providing a framework to compare the relative

probability of fire across the country. The probability

maps generate by our models could be combined with

housing locations and other social value maps to help

prioritize fuel treatment and fire management resources

across the country.

Humans influence fire occurrence differently in

different ecoregions. Culture, settlement pattern, public

lands, policy, and invasive species all interact with

climate, vegetation, and topography to determine where

fires do and do not occur. This leaves us with a complex

problem in a changing world. Topography is about the

only variable likely to remain constant. There is much

uncertainty in how our climate will change and where

future road and housing development will occur (Rade-

loff et al. 2005a, Hawbaker et al. 2006, Gonzalez-

Abraham et al. 2007, Hammer et al. 2007). Fire

occurrence will change concurrently, but the uncertainty

in climate change and development may challenge
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efforts to predict where fires will most often occur, and

limit the success of preventive policies.
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SUPPLEMENTAL MATERIAL

Appendix

Detailed model results by ecoregion (Ecological Archives A023-027-A1).
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