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Eastern Europe provides unique opportunities to study changes in land use patterns,
because much farmland became parcelized in the post-socialist period (i.e. large fields
were broken up into smaller ones). Classification-based remote sensing approaches,
however, do not capture such land cover modifications and new approaches based on
continuous indicators are needed. Our goal is to develop a novel method to map farmland
field size based on image texture. We fitted linear regression models to relate field size to
Landsat-based image texture for a study area in the border region of Poland, Slovakia and
Ukraine. Texture explained up to 93% of the variability in field size. Our field size map
revealedmarked differences among countries and these differences appear to be related to
socialist land-ownership patterns and post-socialist land reform strategies. Image texture
has great potential for mapping land use patterns and may contribute to a better
understanding of land cover modifications in Eastern Europe and elsewhere.

Keywords: land cover modifications; land use pattern; land reform; transition econo-
mies; parcelization; agricultural fragmentation; Carpathians; land use change; image
texture

1. Introduction

Land use change is one of the primary drivers of global environmental change (Foley et al.
2005; Turner, Lambin, and Reenberg 2007). An improved understanding of how land use
decisions are made is urgently needed to better assess the consequences of land use change
for ecosystem services and human wellbeing (Rindfuss, Walsh, Turner, Fox, and Mishra
2004; GLP 2005). Institutions, laws, and political and socio-economic conditions form the
background for land use decisions and may increasingly outrank other factors as determi-
nants of land use (Kaimowitz, Thiele, and Pacheco 1999; Geist and Lambin 2002; Lambin
and Geist 2006). Linking land use change with its political and socio-economic boundary
conditions, however, remains a challenge (GLP 2005; Turner et al. 2007), partly because it
may manifest itself in both conversions (changes from one thematic class to another) and
modifications (subtle changes within a thematic class) of land cover (Lambin and Geist
2006). However, to date, most studies assessing broad-scale factors of land use change focus
on land cover conversions such as deforestation (e.g. Mertens, Sunderlin, Ndoye, and
Lambin 2000) or urbanization (e.g. Seto and Kaufmann 2003). This is problematic because
land cover modifications are widespread and possibly more important than land cover
conversions (Lambin et al. 2001). For example, the area affected by forest degradation in
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the Amazon (e.g. through selective logging) equals at least the area affected by forest
conversions (Asner et al. 2005; Foley et al. 2007). Agricultural intensification increased
the world’s food production substantially (Matson, Parton, Power, and Swift 1997; Bennett
and Balvanera 2007), but decreased farmland biodiversity (Donald, Pisano, Rayment, and
Pain 2002). Despite their importance, land cover modifications have so far been relatively
neglected (Lambin and Geist 2006) and there is a need to quantify their extent, and to assess
their relationship to broad-scale political, institutional and socio-economic conditions.

One prominent case of land cover modifications occurs when the size or configuration of
land management units within a land cover class is altered. Such dynamics in land use
patterns often take place when changes in politics or socio-economics trigger changes in land
use practices, land management policies or land-ownership structures (GLP 2005;
McConnell and Keys 2005). Central and Eastern Europe’s farmland provides a good
example of such a process (Swinnen and Mathijs 1997; Lerman, Csaki, and Feder 2004).
After World War II, socialist governments across Eastern Europe intensified agriculture and
shifted ownership from private citizens to the state (i.e. collectivization, Lerman 2001; Van
Dijk 2003). This transformation was accompanied by a widespread spatial reorganization of
land management units. Small pre-socialist farms were dissolved and large, state-controlled
agricultural enterprises managed almost all farmland (Lerman 2001).

Patterns of farmland changed again drastically after the breakdown of the Soviet Union
in 1990, when most Eastern European countries privatized and individualized land manage-
ment, leading to widespread land-ownership transfers and the downsizing of farms (Lerman
et al. 2004). Land use patterns changed in many areas, as socialist farmland fields were
subdivided (Sabates-Wheeler 2002; Van Dijk 2003). This physical fragmentation of farm-
land (hereafter called parcelization) has many economic and ecological consequences. For
example, parcelization decreases agricultural efficiency (Sabates-Wheeler 2002) and may
lead to abandonment of commonly used infrastructure (Penov 2004). However, parceliza-
tion increases farmland biodiversity (Benton, Vickery, and Wilson 2003) and soil stability
(Van Rompaey, Krasa, Dostal, and Govers 2003). Despite the significance of parcelization
for rural Eastern Europe, surprisingly little is known about Eastern Europe’s land use
patterns and how they changed since 1990.

This lack of information is unfortunate because studying land use patterns offers unique
opportunities to better understand the effects of changing institutions, politics and socio-
economics on land use decisions. Moreover, field size can be interpreted as an indicator of
land ownership and land management, particularly when comparing land use patterns
among different countries with similar environmental conditions. However, mapping field
size in Eastern Europe is challenging, because cadastral data are largely unavailable or of
unknown accuracy. Remote sensing is an alternative that can overcome some of these
problems.

Very few studies used remote sensing for automated assessments of field size. This is not
surprising, because most conventional image classification and change detection methods
stratify images into discrete classes (Southworth, Munroe, and Nagendra 2004; Lambin and
Geist 2006). Using classification-based methods to map field size requires classifying all
occurring crop types. Such detailed classifications are only possible for detailed time series
of satellite images or where crops have unique spectral properties, for example, in the case of
rapeseed (Elliott et al. 2004). In most cases, however, acquiring training data for detailed
crop type classifications is not feasible, and the spectral similarity of crops inhibits detailed
classifications. Field boundaries can also be delineated using image segmentation (Evans,
Jones, Svalbe, and Berman 2002; Lloyd, Berberoglu, Curran, and Atkinson 2004). Yet, this
is only possible where fields are much larger than the dimensions of a pixel, because mixed
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pixels result in poor boundary discrimination (Turner and Congalton 1998; Silleos, Perakis,
and Petsanis 2002; Ozdogan and Woodcock 2006). Small fields are common in Eastern
Europe because of farmland parcelization (Sabates-Wheeler 2002; Van Dijk 2003) and this
inhibits the use of image segmentation to delineate field boundaries.

An alternative is to characterize land cover using continuous variables, which can detect
subtle changes (Southworth et al. 2004; Turner 2005). A few such methods exist (e.g. change
vector analysis, spectral mixture analysis, Coppin, Jonckheere, Nackaerts, Muys, and Lambin
2004), but they are based on spectrally homogeneous land cover types (i.e. changes in the
signal are related to changes in land cover condition). This is problematic in the case of
farmland, where different crops and phenology result in high spectral variability. Moreover,
manymethods focus on the spectral domain only (Coppin et al. 2004; Southworth et al. 2004),
but the spatial domain also contains important information (Chica-Olmo and Abarca-
Hernandez 2000; Cihlar 2000). Methods based on continuous data that integrate the spectral
and spatial domains (Southworth et al. 2004; Turner 2005) and allow for mapping structural
modifications of land cover, such as farmland parcelization, are therefore needed.

Image texture measures tonal variations in the spatial domain by quantifying the
variability and spatial distribution of grey level values (Baraldi and Parmiggiani 1995;
Chica-Olmo and Abarca-Hernandez 2000). Because structural information can be important
to discriminate between land cover categories, texture measures have widely been used in
land cover classifications (Berberoglu, Lloyd, Atkinson, and Curran 2000; Presutti,
Franklin, Moskal, and Dickson 2001). For example, texture measures improve classification
of forests (Franklin, Hall, Moskal, Maudie, and Lavigne 2000; Coburn and Roberts 2004),
urban areas (Dekker 2003) and agricultural crops (Anys and He 1995; Lloyd et al. 2004).
Texture measures have much less frequently been used to derive continuous, quantitative
variables, and the existing studies have mostly assessed vegetation structure in natural
ecosystems (Wulder, Ledrew, Franklin, and Lavigne 1998; Asner, Keller, Pereira, and
Zweede 2002; Asner, Bustamante, and Townsend 2003). However, to our knowledge no
study used texture to map field sizes. This is unfortunate because small fields likely result in
high local heterogeneity because of the variability in crop types and phenology, whereas
large fields are locally homogeneous. Measures of spatial autocorrelation are sensitive to
these field-size-dependent textural characteristics (Lloyd et al. 2004; Ozdogan and
Woodcock 2006). Image texture, therefore, should be able to quantify differences in land
use patterns and provide an indicator of field size.

While we are not aware of any image-texture-based study assessing field size in Eastern
Europe, two prior studies used different mapping approaches to map field size in Eastern
Europe from remote sensing images. Visual interpretation of a 1998 Landsat Thematic
Mapper (TM) image provided mean field size for six types of villages in southeast Poland
and showed that traditional villages had much smaller fields compared to villages with more
intensive land use (Angelstam, Boresjo-Bronge, Mikusinski, Sporrong, and Wastfelt 2003).
Similar visual interpretation in Albania revealed widespread parcelization between 1988 and
2003 (Müller andMunroe 2007). Thus, existing studies were confined to small study regions
within single countries. No study mapped field size from remote sensing images for larger
areas in Eastern Europe or has compared land use patterns among countries.

Our goal was to map field sizes in 2000 in a study area in Eastern Europe (the border
triangle of Poland, Slovakia andUkraine) using image texture. Our specific objectives were to:

(1) build a statistical model that relates field size and image texture;
(2) apply this model to our study area to map field size; and
(3) compare land use patterns among countries in our study region.
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2. Study region

We studied field sizes in the border triangle of Poland, Slovakia and Ukraine (Figure 1). The
boundaries of the study region were based on the extent of one Landsat TM scene (path/row
186/26), landscape features such as rivers and valleys, and administrative boundaries. The
17,800 km2 study region is characterized by a moderately cool and humid climate (average
annual temperature of 5.9�C, mean precipitation of 1100–1200 mm, Augustyn 2004).
Bedrock is largely dominated by Carpathian flysh (sandstone and shale) (Denisiuk and
Stoyko 2000), but some andesite-basalts occur in the southwest of the study area (Herenchuk
1968). Dominating soils are cambisols together with podzols in the mountains, whereas
podzoluvisols, greysems, gleysols and fluvisols dominate the plains. The region has moun-
tainous topography (200–1480 m altitude). The three main altitudinal zones of potential
natural vegetation are: the foothill zone (,600 m) dominated by broad-leaved forest, mostly
beech (Fagus sylvatica) and oak (Quercus robur, Quercus petraea); the montane zone
(600–1100 m) characterized by beech, mixed with silver fir (Abies alba) and sycamore
(Acer pseudoplatanus); and alpine meadows with dwarfed beech above the timberline
(1100–1200 m, Denisiuk and Stoyko 2000).

Land use change has substantially altered the study region, particularly in the nineteenth
and twentieth centuries. Population growth and agricultural intensification resulted in
increasing agricultural area, mainly at the expanse of forests (Turnock 2002; Augustyn
2004). Today, the densely settled plains and the foothills of the study region are farmed
(Kuemmerle, Hostert, Perzanowski, and Radeloff 2006). Forests dominate the montane zone

Figure 1. Top: Study area in the border region of Poland, Slovakia and Ukraine in the Carpathians.
Bottom: Example of land use pattern in the three countries, namely Poland, Slovakia and Ukraine
(Landsat Enhanced Thematic Mapper Plus image from 30 September 2000; band combination: red =
band 4, green = band 5, blue = band 3). Available in colour online.
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(.60%, Kuemmerle et al. 2006), but farmland and pastures are widespread in mountain
valleys, particularly in Slovakia and Ukraine, where population density is much higher than
in Poland (Augustyn 2004). Growing season length varies with altitude (from more than 270
days below 500 m to less than 220 days above 800 m) (Zarzycki and Glowacinski 1970).
Dairy farming and cattle breeding are important agricultural activities. Cereals (e.g. winter
wheat, buckwheat), oil crops (e.g. rape, sunflowers), flax, corn and potatoes are cultivated in
the plains. Agriculture is an important source of income, but most of the agricultural goods
are produced for local markets. Moreover, many land owners depend on subsistence farm-
ing, particularly in Ukraine.

Almost all farmland in Slovakia and Ukraine was collectivized during socialism and
managed in large, state-controlled agricultural enterprises. In Slovakia, cooperatives pre-
vailed, and land owners retained property rights to their fields. In contrast, in Ukraine all land
was owned by the state (Lerman 1999; Csaki, Lerman, Nucifora, and Blaas 2003), but in
Poland, most farmland was never collectivized (Lerman et al. 2004). A special case were
some parts of the Polish region of the study area that were forcefully depopulated following
border changes between the Soviet Union and Poland in 1947, and these lands were
transferred into state ownership (Turnock 2002; Augustyn 2004). After 1990, Slovakia,
Poland and Ukraine launched land reforms to privatize farmland and to individualize land
use; yet, the countries chose diverse land reform strategies (Lerman et al. 2004). As a result,
the region has heterogeneous land use patterns and is particularly well suited to study how
changes in land ownership and land management manifest themselves in land use pattern,
and to explore the relationship between field size and image texture.

3. Data and methods

3.1. Data sets used

We acquired one Landsat TM (21 August 2000) and two Landsat Enhanced Thematic Mapper
Plus (ETM+) images (6 June 2000 and 30 September 2000) from path/row 186/26 to map
post-socialist field size patterns in our study area. Precise co-registering is necessary for
accurate analysis of multitemporal images (Coppin et al. 2004). We orthorectified the images
and registered them to the Universal Transverse Mercator coordinate system (World Geodetic
System 1984 datum and ellipsoid) (Hill andMehl 2003; Kuemmerle et al. 2006). Radiometric
correction based on radiometric transfer models was carried out to minimize the effect of
differing atmospheric and illumination conditions among images (Hill and Mehl 2003;
Kuemmerle et al. 2006). Thermal bands were not retained because of their lower spatial
resolution. Three IKONOS images and 12 Quickbird images available via Google Earth
(http://earth.google.com) were used to digitize farm fields as training samples (see Section
3.2). All images had been acquired between 2002 and 2006, and together covered an area of
2890 km2 (16% of the study area). The IKONOS images were georectified by us, whereas the
Quickbird images were already orthorectified. All images were pan-sharpened, with a spatial
resolution of 1 m for the Ikonos data and 0.67 m for the Quickbird images.

3.2. Sample of fields

To derive ground truth data, we digitized farm fields from IKONOS and Quickbird images
for 35 independent sample plots, where each sample plot consisted of many fields. Sample
locations were determined at random, maintaining a minimum distance of 1 km between
sample plots to reduce potential effects of spatial autocorrelation. This distance was chosen
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based on the range of positive spatial autocorrelation in semi-variograms of selected texture
measures (see Section 3.3). Variograms were based on 1000 random locations, directional
variograms were used to account for potential directionality, and Gaussian variogram
models were fitted to estimate the range.

Field size differed greatly in the study area (,0.1 to .100 ha) and deciding upon the size
of the sample plots carefully was therefore important. We defined a sample plot as a fixed
number of fields, rather than a fixed area because no single sample plot size would have been
well suited to all conditions. To determine the necessary number of fields, we evaluated how
mean field size changed as a function of the number of fields. We did so for two circular test
areas, one with very small fields (Poland, 151 ha, n = 331 fields), and one with large fields
(Slovakia 1787 ha, n = 173 fields). The locations of these test areas were determined based on
field visits and expert knowledge. Fields were consecutively added to the calculation of the
mean, based on their centroid’s distance to the centre point of the test area. The curves of both
test areas suggested that mean field size became stationary after approximately 30 fields were
included (data not shown). We therefore digitized the 30 fields from the IKONOS and
Quickbird images that were closest to the centre of each of our 35 sample plots. We used
less than 30 fields if sample plot size exceeded 200 ha (including the field necessary to reach
this limit). The area covered by a single sample plot ranged from 9 to 262 ha. Non-farmland
was not digitized and we digitized a total of 770 fields.

3.3. Texture measures

Texture measures quantify heterogeneity in the spatial distribution of grey tone values
within a local neighbourhood, either based on the first-order (occurrence) or second-
order (co-occurrence) grey level histogram (Haralick, Shanmuga and Dinstein 1973;
Anys and He 1995). Different texture measures capture different aspects of spatial and
spectral variability. Their values also partly depend on the size of the moving window
used to calculate them (Anys and He 1995; Berberoglu and Curran 2004). We selected
13 texture measures that are relevant to describe land cover features (Anys and He
1995; Berberoglu and Curran 2004), including many with low collinearity (Baraldi
and Parmiggiani 1995; St-Louis, Pidgeon, Radeloff, Hawbaker, and Clayton 2006).
The set of texture measures that we chose included five occurrence measures (range,
mean, variance, entropy and skewness), and eight co-occurrence measures (second
mean, sum of squares variance, homogeneity, contrast, dissimilarity, second entropy,
angular second moment and correlation) (Haralick et al. 1973; Anys and He 1995).
The grey level co-occurrence matrix was calculated unidirectionally (135�), because
field visits and directional variograms did not suggest any particular textural orienta-
tion of farmland crops in our study area.

Texture measures were calculated for each of the six multispectral TM/ETM+ bands. We
calculated texture measures for the June, August and September images to test for phenology
effects. We calculated the 13 texture measures for seven window sizes (3, 5, 7, 9, 15, 21 and
51 pixels). In total, we calculated 1638 texture measures (18 bands [three images] · 13
texture measures · seven window sizes). To relate field size to texture measures at the
sample plot level, we summarized texture by calculating mean and standard deviation of all
pixels within a sample plot for each texture measure. The mean denotes the average texture
for each sample plot, whereas the standard deviation texture is a measure of variability of
texture per sample plot. All texture measures were calculated using ENVI/IDL image
processing software (RSI 2003).
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3.4. Statistical analysis

We fitted regression models to explore the relationship between field size and image texture.
As the dependent variable (Y), we usedmean field size per sample plot. Histograms and normal
quantile–quantile (QQ) plots suggested a lognormal distribution, andwe transformed field size
to a normal distribution using the common logarithm (log 10).We used sample plot level mean
and standard deviation texture as independent variables (Xj). Univariate and multiple regres-
sion models were fitted to determine texture measures that were good predictors of field size
according to

Y ¼
Xm

j¼1
Xj�j þ �; (1)

where � denotes the coefficient for variable Xj and � is the intercept. To fit models and to
select the best models, we used a best subsets method based on the leaps procedure and an
exhaustive search method (Miller 1990; R Development Core Team 2006). The best subsets
regression searches all possible combinations of n independent variables, where n is the
number of covariates in a model, and ranks models according to their goodness of fit.
Correlation matrices indicated strong collinearity between some input variables. To avoid
over-fitting, we limited the maximum number of covariates in a model to three (i.e. allowing
for one-, two- and three-dimensional models). Regression models were fitted for two groups
of variables: models that used mean texture only (group I models), and models that
incorporated mean and standard deviation of texture (group II). Best models were derived
for different selections of input variables. First, we selected best subsets for each window
size and image, using 78 variables (6 bands · 13 texture measures) for group I models, and
156 variables (78 · 2) for group II models. Second, we selected the best subsets per window
size when using input variables from all three images (78 · 3 = 234 for group I, 156 · 3 = 468
for group II) to assess whether combinations of texture derived from phenologically different
dates improved predictions. Finally, we fitted models for each image based on the texture
measures for all window sizes (78 · 7 = 546 for group I models, 156 · 7 = 1092 for group II
models) to investigate whether combinations of texture measures from different window
sizes improved predictions.

We derived the best one-, two- and three-dimensional models for each of the groups of
variables described above. Several combinations of texture measures were expected to
predict field size equally well because of collinearity among some of our input variables.
This collinearity is not necessarily disadvantageous when using a best subsets model
selection routine, because all possible models with n covariates are compared. Models
based on covariates with low collinearity likely explain more total variance than models
with collinear covariates. To compare among models, we calculated two measures of good-
ness of fit: the adjusted coefficient of determination (R2) and the Bayesian Information
Criterion (BIC, Schwarz 1978). Both measures account for the number of covariates in the
model, thus allowing comparison of models of different dimensionality. Given any two
estimated models, the model with the lowest BIC and the highest adjusted R2 was preferred.
We assumed that models performed equally well if their adjusted R2 values differed by less
than 0.02 (equalling a BIC difference of ,3). We also calculated the p-value for all
coefficients to evaluate their significance. To test the robustness of our models, we calculated
cross-validation prediction errors using a leave-one-out procedure and a five-fold cross-
validation for the best univariate and multiple regression models (Burman 1989). We also
controlled for the presence of spatial autocorrelation in the residuals in our best multiple
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regression models based on variograms and found no spatial autocorrelation. All statistical
analyses were carried out using R 2.4.1 (R Development Core Team 2006).

3.5. Applying the model to images

Once the best mean texture models (group I) were selected, we applied them to the entire
study area to derive a map of field size. Models that used standard deviation texture (group
II) performed better. However, we could not apply these models to full images, because the
different sizes of the sample plots inhibited the spatially explicit estimation of standard
deviation texture. All forests, water bodies and settlements were masked out using previous
land cover classifications (Kuemmerle et al. 2006; Kuemmerle, Hostert, Radeloff,
Perzanowski, and Kruhlov 2007). We excluded all areas above 1000 m elevation because
farmland does not occur above this altitude in the Carpathians. Clouds in the September
2000 image (0.02% of the study area) were masked out. The best mean texture models
(group I) were applied to all unmasked pixels to derive a map of field size for the year 2000.
Our pixel-based models do therefore not allow for mapping the size or boundaries of single
fields but rather estimate mean field size for the surroundings of a given pixel. Because field
size was log-transformed, outliers resulted in unrealistically small or large field sizes. To
account for this, we used a 5% cutoff at the extreme ends of the field size distribution.

4. Results

4.1. Statistical models

Texture measures explained the majority (i.e. up to 93%) of the variability in field size.
Generally, models based onmean and standard deviation texture (group II models) explained
more variability in field size than models based on mean texture only (group I models)
(Tables 1 and 2). Multiple regression models using two or three independent variables
predicted field size substantially better than univariate models. The increase in adjusted R2

was strongest from one- to two-dimensional models with an average of 0.17 (range:
0.09–0.29) for models that used mean texture (group I models, Table 1), and 0.12 (range:
0.04–0.24) for models using mean and standard deviation texture (group II models, Table 2).
Adjusted R2 values improved less when adding a third covariate (on average 0.07 for both
group I and group II models). All coefficients in the univariate models were highly
significant (p , 0.0001). The significance of some coefficients decreased in the two- and
three-dimensional models, but all coefficients were significant at p , 0.05 (Tables 1 and 2).

Some texture measures predicted field size better than others. First-order entropy was the
best single predictor of field size (Figure 2), and most of the best univariate models were
based on either first or second-order entropy, or angular second moment. The measures used
in the best univariate models were highly collinear (e.g. a correlation coefficient of 0.99
between first and second-order entropy). In the multiple regression models, these measures
were complemented by first and second-order mean, variance and correlation (Table 3).
Some texture measures were rarely included in the two- and three-dimensional models (e.g.
homogeneity, contrast, and dissimilarity). Texture measures included in one of the best
multiple regression models all displayed a low degree of collinearity (e.g. correlation
coefficients of ,0.10 between mean and entropy).

Goodness of fit varied strongly among Landsat bands used to derive the texture
measures, but model predictions were similar for collinear Landsat TM/ETM+ bands (e.g.
bands in the visual domain). Most texture measures included in our best models were based

92 T. Kuemmerle et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
u
e
m
m
e
r
l
e
,
 
T
o
b
i
a
s
]
 
A
t
:
 
1
7
:
2
6
 
2
0
 
F
e
b
r
u
a
r
y
 
2
0
0
9



T
ab
le
1.

G
oo

dn
es
s-
of
-f
it
m
ea
su
re
s
an
d
re
gr
es
si
on

co
ef
fi
ci
en
ts
p-
va
lu
e
of

th
e
be
st
m
od

el
s
ob

ta
in
ed

fo
r
di
ff
er
en
tc
om

bi
na
ti
on

s
of

m
ea
n
te
xt
ur
e
m
ea
su
re
s
an
d
w
in
do

w
si
ze
s
(g
ro
up

I
m
od

el
s
on

ly
).

#V
W
S

O
ne
-d
im

en
si
on

al
m
od

el
s

T
w
o-
di
m
en
si
on

al
m
od

el
s

T
hr
ee
-d
im

en
si
on

al
m
od

el
s

A
dj
.
R
2

B
IC

p-
V
al
ue

#B
M

A
dj
.R

2
B
IC

p-
V
al
ue
s

#B
M

A
dj
.R

2
B
IC

p-
V
al
ue
s

#B
M

Ju
ne

20
00

78
3

0.
59

-2
5.
15

**
*

1
0.
74

-3
8.
17

**
/*
**

2
0.
76

-3
8.
53

**
/*
/*
**

33
78

5
0.
58

-2
4.
58

**
*

1
0.
69

-3
2.
13

*/
**

*
11

0.
75

-3
8.
22

**
*/
**

*/
**

19
78

7
0.
56

-2
2.
91

**
*

2
0.
68

-3
1.
63

**
/*
**

8
0.
77

-4
0.
24

**
*/
**

*/
**

9
78

9
0.
55

-2
2.
26

**
*

1
0.
69

-3
2.
43

**
*/
**

*
6

0.
77

-4
0.
28

**
*/
**

*/
**

14
78

15
0.
49

-1
7.
73

**
*

1
0.
69

-3
2.
89

**
*/
**

*
2

0.
76

-3
9.
11

**
*/
*/
**

*
18

78
21

0.
46

-1
5.
73

**
*

2
0.
68

-3
1.
17

**
*/
**

*
2

0.
73

-3
4.
63

**
*/
a/
**

*
41

78
51

0.
45

-1
4.
71

**
*

1
0.
57

-2
1.
28

**
*/
**

*
1

0.
67

-2
7.
72

**
/*
**

/*
**

8
54

6
A
ll

0.
59

-2
5.
15

**
*

2
0.
74

- 3
8.
17

**
/*
**

4
0.
78

-4
1.
96

**
/*
**

/*
**

.
20

0
A
ug

us
t
20

00
78

3
0.
55

-2
1.
56

**
*

1
0.
64

-2
7.
04

**
*/
**

*
11

0.
74

-3
5.
55

**
/*
**

/*
**

b
4

78
5

0.
55

-2
1.
57

**
*

2
0.
65

-2
7.
86

**
*/
**

*
9

0.
69

-2
9.
68

*/
**

*/
*

25
78

7
0.
53

-2
0.
34

**
*

3
0.
65

-2
7.
95

**
*/
**

*
13

0.
69

-3
0.
04

a/
*/
a

85
78

9
0.
51

-1
8.
97

**
*

3
0.
67

-3
0.
37

**
*/
**

*
6

0.
74

-3
5.
82

*/
**

*/
**

*
6

78
15

0.
46

-1
5.
37

**
*

1
0.
66

-2
9.
04

**
*/
**

*
13

0.
69

-3
0.
14

*/
*/
**

*
69

78
21

0.
41

-1
2.
49

**
*

2
0.
64

-2
7.
54

**
*/
**

*
12

0.
68

-2
8.
50

a/
**

*/
**

*
76

78
51

0.
39

-1
1.
39

**
*

1
0.
60

-2
3.
23

**
*/
**

*
4

0.
66

-2
6.
38

*/
a/
**

*
35

54
6

A
ll

0.
55

- 2
1.
57

**
*

5
0.
73

-3
7.
69

**
*/
**

*
24

0.
79

-4
3.
52

**
*/
**

/*
*

93
S
ep
te
m
be
r
20

00
78

3
0.
52

-1
9.
38

**
*

1
0.
67

-3
0.
25

**
*/
**

*
9

0.
71

-3
2.
06

*/
**

*/
**

*
21

78
5

0.
52

-1
9.
62

**
*

2
0.
68

-3
1.
49

**
*/
**

*
10

0.
73

-3
5.
06

*/
a/
*

14
78

7
0.
52

-1
9.
49

**
*

2
0.
70

-3
3.
21

**
*/
**

*
8

0.
84

-5
2.
27

**
*/
**

*/
**

*
6

78
9

0.
51

-1
8.
62

**
*

2
0.
72

-3
6.
13

**
*/
**

*
6

0.
82

-4
9.
00

**
*/
**

*/
**

*
4

78
15

0.
48

-1
6.
72

**
*

4
0.
74

-3
8.
64

**
*/
**

*
4

0.
80

-4
5.
19

**
*/
**

*/
**

6
78

21
0.
46

-1
5.
65

**
*

3
0.
67

-2
9.
98

**
*/
**

*
8

0.
73

-3
4.
69

**
*/
**

*/
*

12
78

51
0.
43

-1
3.
88

**
*

2
0.
57

-2
0.
82

**
*/
**

*
12

0.
63

- 2
4.
22

**
*/
**

/*
**

10
54

6
A
ll

0.
52

-1
9.
62

**
*

7
0.
74

-3
8.
64

**
*/
**

*
35

0.
85

-5
4.
92

**
*/
**

*/
**

*
43

A
ll
th
re
e
im

ag
es

23
4

3
0.
59

-2
5.
15

**
*

1
0.
74

-3
8.
17

**
/*
**

2
0.
78

-4
2.
76

**
/*
**

/*
18

23
4

5
0.
58

-2
4.
58

**
*

1
0.
69

-3
2.
13

*/
**

*
37

0.
77

-4
0.
11

**
*/
**

*/
**

*
35

23
4

7
0.
56

-2
2.
91

**
*

2
0.
70

-3
3.
21

**
*/
**

*
22

0.
84

-5
2.
27

**
*/
**

*/
**

*
6

23
4

9
0.
55

-2
2.
26

**
*

1
0.
72

-3
6.
13

**
*/
**

*
8

0.
82

-4
9.
00

**
*/
**

*/
**

*
4

23
4

15
0.
49

-1
7.
73

**
*

3
0.
75

-4
0.
61

**
*/
**

*
9

0.
81

-4
6.
60

*/
**

*/
**

*
23

23
4

21
0.
48

-1
5.
73

**
*

5
0.
77

-4
0.
53

**
*/
**

*
14

0.
83

-4
6.
83

*/
**

*/
**

*
51

23
4

51
0.
45

-1
4.
71

**
*

2
0.
71

-3
4.
45

**
*/
**

*
6

0.
79

-4
3.
81

**
*/
**

/*
**

14

N
ot
es
:
B
es
t
m
od
el
s
fo
r
ea
ch

su
bg
ro
up

(o
ne
-,
tw
o-

or
th
re
e-
di
m
en
si
on
al
)
ar
e
in

bo
ld
.#

V,
nu

m
be
r
of

in
pu

t
va
ri
ab
le
s;
W
S
,w

in
do

w
si
ze
;
A
dj
.R

2
,a
dj
us
te
d
R
2
;
B
IC
,B

ay
es
ia
n
In
fo
rm

at
io
n

C
ri
te
ri
on
;
#B

M
,n

um
be
r
of

eq
ua
ll
y
go
od

be
st
m
od
el
s
(i
.e
.d

if
fe
re
nc
e
in

A
dj
.R

2
,

0.
02

to
th
e
ab
so
lu
te
be
st
m
od

el
).
S
ig
ni
fi
ca
nc
e:
**

*p
,

0.
00
01

,*
*p

,
0.
00
1,

*p
,

0.
01

,a
,

0.
05
.

Journal of Land Use Science 93

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
u
e
m
m
e
r
l
e
,
 
T
o
b
i
a
s
]
 
A
t
:
 
1
7
:
2
6
 
2
0
 
F
e
b
r
u
a
r
y
 
2
0
0
9



T
ab
le
2.

G
oo

dn
es
s-
of
-f
it
m
ea
su
re
s
an
d
re
gr
es
si
on

co
ef
fi
ci
en
ts
p-
va
lu
e
of

th
e
be
st
m
od

el
s
ob

ta
in
ed

fo
r
di
ff
er
en
tc
om

bi
na
ti
on

s
of

m
ea
n
an
d
st
an
da
rd

de
vi
at
io
n
te
xt
ur
e

m
ea
su
re
s
an
d
w
in
do

w
si
ze
s
(g
ro
up

II
m
od

el
s
on

ly
).

#V
W
S

O
ne
-d
im

en
si
on

al
m
od

el
T
w
o-
di
m
en
si
on

al
m
od

el
s

T
hr
ee
-d
im

en
si
on

al
m
od

el
s

A
dj
.R

2
B
IC

p-
V
al
ue

#B
M

A
dj
.R

2
B
IC

p-
V
al
ue
s

#B
M

A
dj
.R

2
B
IC

p-
va
lu
es

#B
M

Ju
ne

20
00

15
6

3
0.
59

-2
5.
15

**
*

2
0.
81

-4
9.
28

**
*/
**

*
6

0.
83

-5
0.
87

**
*/
a/
**

*
78

15
6

5
0.
74

-4
1.
11

**
*

1
0.
79

-4
5.
39

**
*/
**

24
0.
84

-5
3.
40

**
/*
**

/*
*

54
15

6
7

0.
78

-4
6.
19

**
*

3
0.
83

-5
4.
03

*/
**

*
14

0.
86

-5
8.
99

**
/*
**

/*
*

63
15

6
9

0.
78

-4
6.
97

**
*

1
0.
83

-5
3.
77

*/
**

*
15

0.
85

-5
6.
38

**
*/
*/
*

11
5

15
6

15
0.
72

-3
8.
80

**
*

1
0.
80

-4
7.
02

*/
**

*
4

0.
83

-5
1.
49

**
/*
**

/*
**

10
15

6
21

0.
68

-3
3.
31

**
*

1
0.
76

-4
2.
00

**
/*
**

6
0.
82

-4
9.
48

**
*/
**

*/
**

19
15

6
51

0.
68

-3
3.
31

**
*

1
0.
74

-3
8.
21

**
*/
**

18
0.
80

-4
6.
15

**
*/
**

*/
**

*
19

10
92

A
ll

0.
78

-4
6.
97

**
*

3
0.
84

-5
4.
67

**
*/
**

95
0.
89

-6
5.
63

**
*/
**

*/
**

*
12

7
A
ug

us
t
20

00
15

6
3

0.
59

-2
4.
94

**
*

1
0.
71

-3
4.
65

**
*/
**

*
2

0.
75

-3
7.
76

**
*/
**

*/
**

19
15

6
5

0.
67

-3
2.
90

**
*

1
0.
71

-3
4.
30

a/
**

21
0.
78

-4
2.
20

**
*/
**

*/
**

*
12

15
6

7
0.
67

-3
2.
54

**
*

1
0.
73

-3
6.
66

**
*/
**

*
14

0.
79

-4
3.
16

**
*/
**

*/
**

*
40

15
6

9
0.
63

-2
8.
79

**
*

1
0.
74

-3
8.
63

**
*/
**

*
10

0.
80

-4
4.
65

**
*/
**

*/
**

*
55

15
6

15
0.
54

-2
0.
78

**
*

2
0.
74

-3
8.
74

**
*/
**

*
10

0.
84

-5
2.
68

**
*/
**

*/
**

*
6

15
6

21
0.
50

-1
8.
05

**
*

3
0.
74

-3
9.
15

**
*/
**

*
8

0.
83

-5
0.
32

**
*/
**

*/
**

20
15

6
51

0.
50

-1
8.
05

**
*

3
0.
70

-3
3.
34

**
*/
**

*
4

0.
82

-5
0.
00

**
*/
**

*/
**

*
12

10
92

A
ll

0.
67

- 3
2.
90

**
*

2
0.
76

-4
2.
09

**
*/
**

*
10

5
0.
86

-5
8.
94

**
*/
**

*/
**

*
36

S
ep
te
m
be
r
20

00
15

6
3

0.
55

-2
1.
79

**
*

1
0.
67

-3
0.
25

**
*/
**

*
13

0.
75

-3
6.
99

**
/*
**

/*
*

34
15

6
5

0.
57

-2
3.
2

**
*

1
0.
68

-3
1.
5

**
*/
**

*
15

0.
77

-4
0.
06

**
/*
**

/*
*

11
15

6
7

0.
59

-2
4.
92

**
*

1
0.
70

-3
3.
21

**
*/
**

*
15

0.
84

-5
2.
27

**
*/
**

*/
**

*
6

15
6

9
0.
60

-2
5.
95

**
*

2
0.
72

-3
6.
13

**
*/
**

*
8

0.
82

-4
9.
00

**
*/
**

*/
**

*
4

15
6

15
0.
58

-2
4.
13

**
*

5
0.
76

-4
0.
73

**
*/
**

*
10

0.
82

-4
9.
95

**
*/
**

*/
**

39
15

6
21

0.
55

-2
2.
13

**
*

1
0.
75

-4
0.
32

**
*/
**

*
3

0.
80

-4
5.
99

**
*/
**

*/
*

28
15

6
51

0.
55

-2
2.
13

**
*

1
0.
72

-3
6.
18

**
*/
**

*
4

0.
82

-4
9.
95

**
*/
**

*/
**

10
10

92
A
ll

0.
6

-2
5.
95

**
*

3
0.
77

-4
3.
39

**
*/
**

*
66

0.
85

-5
6.
16

**
*/
**

/*
**

15
5

A
ll
th
re
e
im

ag
es

46
8

3
0.
59

-2
5.
15

**
*

3
0.
81

-4
9.
28

**
*/
**

*
6

0.
85

-5
4.
68

**
*/
**

*/
**

*
31

46
8

5
0.
74

-4
1.
11

**
*

1
0.
80

-4
8.
14

**
*/
*

22
0.
87

-6
1.
49

**
*/
**

*/
*

97
46

8
7

0.
78

-4
6.
19

**
*

3
0.
84

-5
4.
71

**
*/
**

36
0.
92

-7
7.
31

**
*/
**

*/
**

64
46

8
9

0.
78

-4
6.
97

**
*

1
0.
85

-5
8.
35

**
/*
**

17
0.
93

-8
4.
13

**
*/
**

*/
**

*
39

46
8

15
0.
72

-3
8.
80

**
*

1
0.
82

-5
1.
31

**
*/
**

*
19

0.
91

-7
5.
25

**
*/
**

*/
**

*
74

46
8

21
0.
68

-3
3.
31

**
*

1
0.
81

-4
9.
85

**
*/
**

*
10

0.
90

-7
0.
15

**
*/
**

*/
**

*
83

46
8

51
0.
68

-3
3.
31

**
*

1
0.
79

-4
5.
47

**
*/
**

*
7

0.
90

-6
8.
33

**
*/
**

*/
**

*
19

N
ot
es
:
B
es
t
m
od
el
s
fo
r
ea
ch

su
bg
ro
up

(o
ne
-,
tw
o-

or
th
re
e-
di
m
en
si
on
al
)
ar
e
in

bo
ld
.#

V,
nu

m
be
r
of

in
pu

t
va
ri
ab
le
s;
W
S
,w

in
do

w
si
ze
;
A
dj
.R

2
,a
dj
us
te
d
R
2
;
B
IC
,B

ay
es
ia
n
In
fo
rm

at
io
n

C
ri
te
ri
on
;
#B

M
,n

um
be
r
of

eq
ua
ll
y
go
od

be
st
m
od
el
s
(i
.e
.d

if
fe
re
nc
e
in

A
dj
.R

2
,

0.
02

to
th
e
ab
so
lu
te
be
st
m
od

el
).
S
ig
ni
fi
ca
nc
e:
**

*p
,

0.
00
01

,*
*p

,
0.
00

1,
*p

,
0.
01

,a
=

,
0.
05
.

94 T. Kuemmerle et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
u
e
m
m
e
r
l
e
,
 
T
o
b
i
a
s
]
 
A
t
:
 
1
7
:
2
6
 
2
0
 
F
e
b
r
u
a
r
y
 
2
0
0
9



on short wavelength infrared (SWIR) and visible bands (Table 3). The SWIR bands were
particularly important for the univariate mean texture models (group I); whereas texture
measures based on the visible bands were mostly included in the univariate group II and in
the two- and three-dimensional models. As expected because of the collinearity among
different texture measures and Landsat bands, several models performed equally well (i.e.
difference of adjusted R2 , 0.02). The number of similar models was generally lower for
group I models compared to group II models and increased with the number of covariates
allowed (Tables 1 and 2).

The goodness of fit of the regression models varied among window sizes and was best at
small window sizes (Tables 1 and 2). Our univariate models revealed that most texture
measures had a clear peak in goodness of fit at small or intermediate window sizes and R2

values decreased rapidly for larger window sizes (Figure 3). Combining texture measures
from different window sizes did not substantially improve model predictions (i.e. increase in
adjusted R2 , 0.02), both for group I models (Table 1), and for group II models (Table 2).

Comparing regression models based on texture measures from different images revealed
moderate differences in goodness of fit. For group I models, texture measures from the June and
September images yielded higher model predictions than models based on the August image
(Table 1), but combining texture measures from all three images did not increase goodness of fit
substantially. This was different for group II models. Goodness of fit was comparable among the
three dates, however, predictions improved when combining texture from different images

Figure 2. Example of an area characterized by heterogeneous land use pattern in high-resolution
Quickbird data (left), June 2000 Landsat ETM+ data (first principal component, middle), and image
texture derived from the Landsat image (first-order entropy of band 7 calculated at a window size of 3
pixels, right). The subset is centred on the village of Bezovce in Slovakia (21.15E, 48.63N).

Table 3. Example of the number of times each texture measure was included in the series of
regression models containing one (n = 1), two (n = 2 models) or three (n = 33) covariates that
performed equally well (i.e. difference in adjusted R2 , 0.02) for mean texture of June 2000 (window
size 3, total number of variables = 78).

RA M1 VA E1 SK M2 SS HO CO DI E2 SM CR

Blue 5 1 3 1 4 4 19
Green 8 1 6 1
Red 4 4
NIR 1 2 1
SWIR1 1
SWIR2 30 1 1 6

Notes: RA, Range ; M1, first-order mean; VA, variance; E1, first-order entropy; SK, skewness; M2, second-order
mean; SS, sum of squares variance; HO, homogeneity; CO, contrast; DI, dissimilarity; E2, second-order entropy; SM,
angular second moment; CR, correlation; NIR, near-infrared band; SWIR1, SWIR2, short-wavelength infrared bands.
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(Table 2). Our best model explained 93% of the variance and used three covariates: mean
angular second moment (September 2000 image, TM band 6), standard deviation of first-order
entropy (June 2000, band 1) and standard deviation variance (August 2000, band 3); all
calculated for a window size of 9 pixels (Table 4).

Among all the models fitted, we selected the best one-, two- and three-dimensional
models for group I and group II based on the adjusted R2 and BIC statistics, and chose only
models where all coefficients were significant (p , 0.1). In cases where several models
performed equally well (i.e. difference in adjusted R2 , 0.02), we selected the model that
was derived using a smaller selection of input variables, resulting in six best models

Table 4. Regression coefficients of the variables included in the best models and of the intercept for
each subgroup (bold models in Tables 1 and 2).

Regression coefficients

Best one-dimensional
group I model

-13.48 · WS3_June-SWIR2_E1 + 35.64

Best two-dimensional
group I model

0.84 · WS15_September-Red_M2 + 0.26 · WS15_September-Red_CR + 3.96

Best three-
dimensional
group I model

0.31 · WS7_September-Blue_VA + 1.35 ·
WS7_September-Green_CR + 0.62 · WS7_Sept-Red_M2 + 2.03

Best one-dimensional
group II model

24.30 · WS9_June-Blue_E1(s) + 0.27

Best two-dimensional
group II model

-0.11 · WS7_June-SIWR2_CO(m) + WS7_June-Blue_E1(s) + 8.90

Best three-
dimensional
group II model

24.23 · WS9_Sept-SWIR2_SM(m) + 14.20 · WS9_June-Blue_E1(s) +
0.00016 · WS9_August-Red_VA(s) + 6.91

Notes: Variable codes: WSx_B_TX(m/s) with WSx = window size, B = image band and TX = mean (m) or standard
deviation (s) texture measure (RA, Range; M1, first-order mean; VA, variance; E1, first-order entropy; SK, skewness;
M2, second-order mean; SS, sum of squares variance; HO, homogeneity; CO, contrast; DI, dissimilarity; E2, second-
order entropy; SM, angular second moment; CR, correlation; NIR, near-infrared band; SWIR1, SWIR2, short-
wavelength infrared bands).

Figure 3. Examples of the relationship between prediction accuracy (R2 of field size vs. texture
measures) and window size used to calculate texture measures. Mean field size was estimated using
mean texture (left) and standard deviation of texture (right).
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(Table 4). Cross-validation for these six models (bold models in Tables 1 and 2) showed that
the robustness of the multiple regression models was relatively high (Table 5). Prediction
errors of the multiple regression models were substantially lower than those of the univariate
models (by a factor of 2–3). Errors ranged from 0.20 to 1.41 (log field size) and were lower
for group II compared to group I models. The prediction errors were similar when using a
leave-one-out strategy or a five-fold cross-validation approach (Table 5).

4.2. Applying the model to images

We used the absolute best two- and three-dimensional mean texture models (group I) based
on the adjusted R2 to map field size in our study area. Because our ultimate goal was to
predict field size, we did not have to consider other equally good models. The optimal two-
dimensional model used two September 2000 texture measures calculated at a window size
of 15 pixels (second-order mean and correlation from band 3) and explained about 74% of
the variance in field size at the sample plot level (Table 1). The absolute best three-
dimensional mean texture model relied on three September 2000 texture measures derived
for a window size of 7 pixels (variance of TM band 1, correlation of band 2 and second-order
mean of band 3) and had an adjusted R2 of 0.84 (Table 1). Applying these best two- and
three-dimensional models to all unmasked pixels of the September 2000 image yielded field
sizes between 0.07–142 ha and 0.04–1565 ha, respectively (10th and 90th percentile of all
estimated pixels). The field size map revealed diverse spatial patterns of field size across our
study region, and maps from the two-dimensional and three-dimensional models were
highly similar (Figure 4). Large fields dominated the plains in the north and south, whereas
mountain valleys were dominated by small fields. Field visits and visual comparison with
the Quickbird and IKONOS images confirmed these patterns.

Field size patterns in Poland, Slovakia and Ukraine differed markedly. Poland had small
fields in most areas (Figure 5), but some large fields (.1 ha) occurred in the valleys along the
Polish–Slovak border and in the northwest of the study area (Figure 4). In Slovakia, field
sizes were substantially larger than in the other two countries (Figure 5). In particular, the
southern plains were characterized by very large fields, often exceeding 100 ha. Mountain
valleys had a mix of large and small fields, with valleys in the north exhibiting a higher
percentage of large fields than valleys in the south. Ukraine showed the most heterogeneous
patterns of field sizes. Although the overall distribution of field sizes was similar to Poland’s
distribution (Figure 5), small and large fields were much more clustered in Ukraine.
Mountain valleys were characterized by very small fields (,0.1 ha, Figure 4). Large fields
were mainly found in the northern and southern plain, but the pattern was more hetero-
geneous than in Slovakia, and clusters of large and small fields occurred next to each other.
Very small fields occurred often in the vicinity of larger settlements (Figure 4).

Table 5. Mean prediction errors of mean field size (log) for the one-, two- and three-dimensional
group I (mean texture) and group II (mean and standard deviation texture) models.

One-dimensional model Two-dimensional model Three-dimensional model

Leave-one-out Five-fold Leave-one-out Five-fold Leave-one-out Five-fold

Group I models 1.41 1.40 0.94 0.90 0.59 0.63
Group II models 0.80 0.84 0.61 0.58 0.25 0.26

Notes: Cross-validation was carried out for the best models per subgroup (bold models in Tables 1 and 2) using a
leave-one-out strategy and a five-fold cross-validation approach.
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Field size co-varied with altitude in all three countries (Figure 6). In Poland, fields were
smaller at low altitudes and increased with elevation. In Slovakia and Ukraine, field sizes
were much larger at lower altitudes compared to intermediate altitudes. At higher altitudes,

Figure 4. Field size map of the border region of Poland, Slovakia and Ukraine for the year 2000. Top:
map derived using the best two-dimensional mean texture model. Bottom: map derived using the best
three-dimensional mean texture model. The three-dimensional map is shown using the colour scheme
of the two-dimensional map for better comparison. Small map insert indicates pixel-level differences in
predicted field size between the two- and three-dimensional model (Coordinate System: UTM/Zone
34N; Ellipsoid/Datum: WGS84).
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areas of small and large fields occurring side by side in Slovakia, whereas field size
consistently decreased along the altitudinal gradient in Ukraine, and the highest mountain
valleys there displayed smallest fields (Figure 6). Three field visits (summer 2004, spring

Figure 6. Distribution of field sizes per elevation zone and country. Boxplot whiskers extend to 1.5
times the interquartile range.

Figure 5. Distribution of field sizes for the Polish, Slovak and Ukrainian region of the study area.
Whiskers indicate the 90th and 10th percentiles.
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2005 and spring 2006) included all three countries and confirmed the plausibility of the land
use patterns in our field size maps.

5. Discussion

5.1. Mapping parcelization using texture measures

We found a strong relationship between field size and Landsat TM/ETM+ texture measures
and we used our models to map field size patterns for our full study region. We therefore
suggest that texture measures bear considerable potential to map land use patterns and
changes therein. This may be especially important in areas that are undergoing rapid change
and where alternative data sources (e.g. cadastral maps) are not readily available or of
unknown reliability, such as in Eastern Europe and the former Soviet Union.

Our predictions of field size varied based on the texture measures used, but some clear
patterns emerged. As expected, the best predictors of field size were texture measures
related to the local heterogeneity of grey level values. However, different texture measures
quantify different aspects of this heterogeneity. We found measures that characterize the
‘orderliness’ of an image (i.e. regular distribution of grey values, Hall-Beyer 2007), such
as entropy and the second angular moment, to be most sensitive to variations in field size.
Entropy measures the degree of disorder of grey level values (first-order entropy) or grey
level value pairs (second-order entropy) (Anys and He 1995; Baraldi and Parmiggiani
1995; Anys, Bannari, He, and Morin 1998). Angular second moment (sometimes also
referred to as energy) is strongly, but inversely related to entropy, and measures the
uniformity of an image (Haralick et al. 1973; Gong, Marceau, and Howarth 1992;
Baraldi and Parmiggiani 1995). Farmland fields, patches of similar grey values, are
often organized in distinct geometric patterns (e.g. along valleys, or perpendicular to
roads to provide easier access to farmers). This likely explains why measures such as
entropy and angular second moment predicted field size best.

Variance, correlation, and first- and second-order mean were, in addition to the above
measures of orderliness, often included in the best multiple regression models (two or three
covariates). Variance describes the variability of grey level values within a given window
(Haralick et al. 1973). In other words, variance directly relates to our underlying hypothesis
that local heterogeneity is highest where small fields dominate. Correlation is a measure of
grey level linear dependency in an image (Haralick et al. 1973) and uncorrelated to the
measures of orderliness. Linear dependencies are characteristic for agricultural land use
patterns (i.e. farmland fields are often rectangular), thereby explaining the sensitivity of the
correlation feature towards field size. First and second-order mean (the average or expected
combination of two co-occurring grey level values within a window) both relate to purely
spectral rather than textural characteristics. In univariate models, these measures predicted
field size poorly. However, first and second-order mean based on bands from the visible
domain were frequently included in our best multiple regression models, likely because they
provided additional information for separating soil and vegetation patches (i.e. fields in
agricultural areas).

Some texture measures predicted field size poorly and were not included in any of the
best models. Particularly, measures that quantify image contrast (e.g. dissimilarity, contrast
or homogeneity) yielded lower predictions than those measures that quantify the organiza-
tion of contrasting features (i.e. image orderliness). The weak relationship between contrast
measures and field size was not surprising, because the degree of image contrast is not
related to particular land use patterns. Moreover, contrast measures are particularly sensitive
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to periodic features in an image (Baraldi and Parmiggiani 1995). In agricultural landscapes
with many different crop types and bare fields, such reoccurring patterns are scarce. Other
measures that were poor predictors of field size included statistical parameters that are not
related to the spatial organization of grey level values (e.g. histogram skewness).

Selecting an appropriate window size is a crucial step when characterizing image
features based on texture (Anys and He 1995). Texture measures calculated using inter-
mediate window sizes (e.g. 7, 9 or 15 pixels) yielded the best field size predictions (Tables 1
and 2). At such window sizes, many small fields (e.g. in areas of subsistence farming) are
found within a chosen window, and result in high local heterogeneity. Large fields, on the
other hand, were still relatively homogeneous at such window sizes. These differences
translated into distinct textural characteristics that were useful to map field size (Ozdogan
and Woodcock 2006). Most texture measures displayed a clear peak in predictions at these
intermediate window sizes, and decreased rapidly for larger windows. This also indicated
that the range of window sizes tested was sufficient.

Landsat bands in different spectral domains predicted field size differently. The SWIR
bands and the bands in the visible domain captured much of the variation in farm fields,
making texture measures calculated from these bands highly suited for field size mapping.
The SWIR bands are particularly sensitive to variations in moisture content, and are
important for mapping agricultural areas, for separating senescent and green vegetation,
and to differentiate soils types (Cohen and Goward 2004). The visible bands are especially
helpful to separate vegetation and bare soil. On the other hand, senescent vegetation and
soils are spectrally relatively similar in the near-infrared domain, thus explaining the lower
predictions from texture measures based on the NIR band. Predictions from texture measures
calculated from the SWIR and visible bands were fairly comparable, suggesting that
senescent vegetation/soil discrimination was more important than separating senescent
and green vegetation to map field size in our case.

Several combinations of texture measures, Landsat TM/ETM+ bands, and window sizes
resulted in comparable predictions of field size in both univariate and multiple regression
models. This was expected, because some Landsat TM/ETM+ bands are highly collinear
(Small 2004), several of our texture measures are strongly correlated (Baraldi and
Parmiggiani 1995; St-Louis et al. 2006), and texture measures calculated using similarly
sized windows did not differ substantially (Figure 3). Being conservative in the number of
covariates included in our models was therefore important. We used a maximum number of
three covariates and the best subsets procedure was effective in selecting only variable
combinations that displayed a low degree of collinearity (e.g. correlation coefficients among
the variables in the best three-dimensional mean texture (group I) model were 0.20, 0.31 and
-069). We suggest that the strong collinearity among some of our input variables did not
hinder our methodology, but simply led to a higher number of models that predicted field
size equally well. Predicting field size likely does not depend on the exact combination of
texture measures, window sizes and Landsat bands. This is an advantage for transferring our
methodology to other regions, because testing all possible combinations of input parameters
is not necessary to find a model with similar goodness of fit than the absolute best model. We
also suggest that reducing the dimensionality of the feature space (e.g. principal component
transformation) may not be necessary, because the leaps procedure effectively selects
variable combinations that explain the total variance best. We tested our models using the
first three principal components per image instead of the original six Landsat TM/ETM+
bands, but this did not improve model predictions (results not shown).

Model predictions were fairly stable for comparable input variable selections from
different images throughout the year, particularly for multiple regression models that used
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standard deviation texture. For mean texture models, the autumn image (September) yielded
higher predictions, likely because of the presence of green vegetation, senescent crops,
harvested fields and bare soil. This spectral diversity of crop types resulted in higher local
heterogeneity where land use patterns are dominated by small fields, and therefore a possible
explanation for better predictions compared to the June and August images, where crop
types are spectrally more homogeneous. However, the difference in goodness of fit among
models from different images was relatively small (i.e. difference in adjusted R2 , 0.06).
Using combinations of input variables from different images did not improve model
predictions substantially. We therefore suggest that a single image suffices to predict field
sizes from texture measures.

Applying the multiple regression models fitted at the sample plot level to our full study
region was successful (Figure 4). Both the two- and three-dimensional models yielded
comparable patterns of field size for our study region. A disadvantage was the log-
transformed nature of the dependent variable, which exponentially amplified outliers in
the texture measures (e.g. because of errors of commission in the water and settlement
masks), particularly in the map generated from the three-dimensional model. Cutting the
extreme ends of the field size distribution partly addressed this problem, but this approach
requires expert knowledge regarding the possible range of field sizes. Unrealistically high
and low field sizes in the map generated from the three-dimensional model may also
indicate over-fitting. However, only a very small fraction of the study region was affected
(predictions of ,0.01 ha for ,3% of the study area; .300 ha for ,2% of the study area)
and the cross-validation results did not suggest over-fitting. The robustness of our multiple
regression models was also confirmed by the low cross-validation errors.

Our results show that image texture is a useful tool to map field size for areas with a high
proportion of mixed pixels as well as for areas with very large fields. The field size maps
proved useful to identify land use patterns and to compare these patterns among countries.
We therefore suggest that texture has significant potential to monitor agricultural intensifica-
tion and changes in land use patterns in Eastern Europe and in other regions of the world.
Because texture is easily derivable from raw image data, it may represent an important
variable (Southworth et al. 2004; Turner 2005) to assess landscape structure and land
dynamics based on the spatial domain, and to assess structural land cover modifications in
human-dominated landscapes. Moreover, land use pattern information is important to
understand the relationship between land tenure and land use change. Incorporating land
use patterns in land use change models has so far largely been based on cadastral maps
(Verburg 2006). Such data are unavailable in many regions of the world, particularly those
that experience rapid land use change, and field size variables based on image texture may be
a useful alternative.

5.2. Field size in the border triangle of Poland, Slovakia and Ukraine

We found marked differences in field size among the Polish, Slovak and Ukrainian region of
our study area. The study area was part of the Austro-Hungarian Empire for approximately
150 years before 1914. During that time, land management was relatively homogeneous
(Turnock 2002). Today’s differences in field size among countries therefore likely originated
in socialist and post-socialist times. In our case, these differences are related to land-
ownership patterns and land management in socialist times, combined with different
strategies to re-privatize farmland and individualize land use in the post-socialist period.

Poland had the smallest field sizes, particularly in areas below 500 m elevation. The
possible reason is that Poland was the only Eastern European country where collectivization
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failed (Van Dijk 2003; Lerman et al. 2004), small family farms persisted, and fields were
never aggregated (Lerman et al. 2004). However, the exceptions were Polish mountain
valleys, where border changes between the Soviet Union and Poland after 1947 led to a
depopulation and the establishment of large-scale, state-owned farms (Turnock 2002;
Augustyn 2004). After 1990, private farmland changed little, whereas state land was
auctioned off, set aside, or converted to forest (Augustyn 2004). Our results show the largest
fields in the Polish part of our study area at altitudes above 500 m, mostly clustered in the
mountain valleys close to the border with Slovakia (Figure 4).

In Slovakia, all farmland became collectivized in socialist times and small farms were
dissolved into large-scale, state-controlled agricultural enterprises (Lerman 2001; Csaki
et al. 2003). Although land owners retained the title to their land, land was managed by
the state (Van Dijk 2003; Lerman et al. 2004). After 1990, Slovakia privatized the agricul-
tural sector and restituted farmland to former owners, but this has not led to widespread
parcelization and farming often continues on large fields (Trzeciak-Duval 1999; Csaki et al.
2003). This is reflected in our results by the high share of large fields, particularly in the
southern plains. In such areas, socialistic land use patterns were effectively preserved
(Mathijs and Swinnen 1998). Likely explanations are the relatively slow pace of reform
(Csaki et al. 2003) and Slovakia’s land owners, who often chose to lease their land to the
successor organizations of the former cooperatives (Trzeciak-Duval 1999; Lerman 2001). In
Slovak mountain valleys, household fields occur next to fields managed by large-scale
agricultural enterprises. Moreover, farmland abandonment was widespread in Slovak moun-
tain valleys resulting in relatively large, homogeneous areas, thus explaining the occurrence
of very large fields in these areas.

In Ukraine, we found heterogeneous patterns of field size, and strong differences
between mountain valleys and the plains in the north and south. In socialistic times, all
farmlands in Ukraine were state owned and managed in large-scale farming enterprises (Ash
andWegren 1998; Lerman 2001). After the breakdown of the Soviet Union in 1991, Ukraine
chose to distribute farmland among the workers of the state farms and collectives (Lerman
et al. 2004). Land reform, however, was slow and much of the farmland is still managed by
large-scale successor organizations. As a consequence, we found clusters of large fields,
particularly in the plains. Parcelization occurred in some areas (Ash and Wegren 1998;
Lerman et al. 2004) and we found evidence of parcelization in the vicinity of larger
settlements, where people use farmland for subsistence farming, and land is accessible and
potentially more valuable. Mountain valleys were almost exclusively characterized by very
small field sizes, because Ukrainian mountain valleys have a high population density, and
many people depend on subsistence farming.

6. Conclusions

Field size is an important indicator of land use patterns and changes therein, but there is a
lack of methods to map field size from remote sensing images. Our results showed that
image texture may have great potential to fill this gap. We found a strong relationship
between Landsat-based texture measures and field size, and our models explained up to 93%
of the variability in field size. Our best models relied on entropy and the second angular
moment calculated at intermediate window sizes (7 · 7 to 15 · 15 pixel windows) on the
visible or SWIR bands, but field size predictions were relatively independent from the exact
combination of texture measures, window sizes and Landsat bands used. Our method
allowed us to map field size for our entire case study area and image texture may thus be a
reliable continuous indicator to map structural land cover modifications.

Journal of Land Use Science 103

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
u
e
m
m
e
r
l
e
,
 
T
o
b
i
a
s
]
 
A
t
:
 
1
7
:
2
6
 
2
0
 
F
e
b
r
u
a
r
y
 
2
0
0
9



Studying land use patterns in areas that are undergoing political and economic transitions
allows the assessment of the effects of changing institutions, land management policies, and
land ownership on land use. Land use patterns differed markedly among the Polish, Slovak
and Ukrainian regions of our study area. These differences were likely related to land
ownership and land management in socialist times as well as dissimilarities in land reform
strategies after the fall of the Iron Curtain in 1989. Land use patterns were highly fragmented
where land ownershipwas private during and after socialism (Poland) andwhere farmlandwas
distributed after the system change (Ukraine), but large fields dominated areas where farmland
had been restituted to former owners (Slovakia). Image texture, which can easily be derived
from raw remote sensing images, allows the quantification of these differences. Thus, image
texture may be an important variable to better understand the relationship between land tenure
and land use change and for incorporating land use pattern information in models of land use
change. This may be particularly valuable in areas of the world where cadastral maps are
currently unavailable. Image texture has large untapped potential to contribute to an improved
understanding of the spatial extent, causes and consequences of land cover modifications, such
as the post-socialist parcelization of farmland in Eastern Europe.
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