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vironmental and economic problem, and exceeds in some countries the amounts
of legally harvested timber. In Eastern Europe and the former Soviet Union, illegal logging increased and
reforestation on abandoned farmland was widespread after the breakdown of socialism, and the region's
forest cover trends remain overall largely unclear. Our goal here was to map forest cover change and to assess
the extent of illegal logging and reforestation in the Ukrainian Carpathians. We used Landsat TM/ETM+
images and Support Vector Machines (SVM) to derive forest change trajectories between 1988 and 2007 for
the entire Ukrainian Carpathians. We calculated logging and reforestation rates, and compared Landsat-
based forest trends to official statistics and inventory maps. Our classification resulted in reliable forest/non-
forest maps (overall accuracies between 97.1%–98.01%) and high clear cut detection rates (on average 89.4%).
Forest cover change was widespread in the Ukrainian Carpathians between 1988 and 2007. We found forest
cover increase in peripheral areas, forest loss in the interior Carpathians, and increased logging in remote
areas. Overall, our results suggest that unsustainable forest use from socialist times likely persisted in the
post-socialist period, resulting in a continued loss of older forests and forest fragmentation. Landsat-based
forest trends differed substantially from official forest resource statistics. Illegal logging appears to have been
at least as extensive as documented logging during the early 1990s and so-called sanitary clear-cuts
represent a major loophole for overharvesting and logging in restricted areas. Reforestation and illegal
logging are frequently not accounted for in forest resource statistics, highlighting limitations of these data.
Combating illegal logging and transitioning towards sustainable forestry requires better monitoring and up-
to-date accounting of forest resources, in the Carpathians and elsewhere in Eastern Europe, and remote
sensing can be a key technology to achieve these goals.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction
Changes in forest cover havewidespread effects on the provision of
ecosystem services, affect biodiversity, and provide important feed-
backs to climate change and humanwelfare (Bonan, 2008; MA, 2005).
As human pressure on the planet rises, monitoring forest cover trends
from global to regional scales is therefore of growing international
concern (Hansen et al., 2008; Lepers et al., 2005). Official forest
resource statistics such as national inventories or the periodic Forest
Resource Assessments (FRA) of the Food and Agriculture Organization
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ll rights reserved.
of the United Nations (FAO, 2005) are the most frequently used
datasets to monitor forest trends.

The problem is that forest resource statistics often have uneven
quality in time and space, inconsistent survey methods, and utilize
varying definitions across nations (Grainger, 2008; Rudel et al., 2005).
Furthermore, official forest resource statistics frequently fail to
capture illegal logging, particularly in developing nations, where
illegal logging can exceed legal harvesting (e.g., N80% in Indonesia,
N50% in Central Africa, or N60% in the Brazilian Amazon, Greenpeace,
2008; WWF, 2002, 2004). Assessing the reliability of official forestry
statistics and the nature of forest cover trends therefore continues to
be a major challenge in many parts of the world and remote sensing
plays an important role by providing better estimates.

Illegal logging (i.e., timber harvesting in violation of national laws)
can take many different forms and there is no internationally accepted
definition of what is illegal (FERN, 2002). Two broad categories of
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illegal logging are usually distinguished (Bouriaud, 2005). Timber
thefts mostly satisfy local people's demands (e.g., for fuel wood) and
are often driven by poverty. On the other hand, unauthorized logging
represents timber harvests that deliberately exceed harvesting limits,
using corrupt means to gain access to forests, disobeying protected
areas and forest laws, or capitalizing on gaps in legislation (Bouriaud &
Niskanen, 2003; Brack, 2007). Thus, unauthorized logging is often
connected to failures in forest governance, weak institutions, or a lack
of law enforcement (Contreras-Hermosilla, 2002; Irland, 2008;
Morozov, 2000). In this article, we consider logging illegal if it is not
consistent with harvesting policies and forest laws for any of the above
reasons, and therefore not accounted for in official forest resource
statistics and inventory data.

Eastern Europe and the former Soviet Union experienced funda-
mental changes in their political, economic, and institutional
structures after the breakdown of socialism. This raised considerable
concerns about forest governance and illegal logging, because the
transition period was characterized by economic hardships, and
weakened institutions (Elbakidze & Angelstam, 2007; Kissling-Naf &
Bisang, 2001; Lerman et al., 2004). Shadow businesses and corruption
in the forestry sector have thrived in some countries, and illegal
logging has been reported for the Russian Far East (WWF, 2002),
Siberia (Vandergert & Newell, 2003), northern Russian Karelia
(Piipponen, 1999), Estonia (Hain & Aha, 2004), the Caucasus (Green-
peace, 2000), and the Carpathian Mountains (Turnock, 2002).
Substantial proportions of timber exports from Eastern Europe and
European Russia are illegal (Bouriaud & Niskanen, 2003;WWF, 2004).
However, the extent of illegal logging remains unclear, and available
estimates vary among different sources (Bouriaud, 2005).

The transition from planned to market-oriented economies in
Eastern Europe also resulted in widespread farmland abandonment
particularly on marginal sites (DLG, 2005; Ioffe et al., 2004;
Kuemmerle et al., 2008). Much of the abandoned land is now
reverting back to forests, but just like illegal logging, reforestation
(i.e., forest expansion via natural succession or planting) is frequently
not included in official forest statistics. This impedes assessing net
forest cover changes in Eastern Europe and the former Soviet Union,
hampers subsequent analyses such as carbon budgeting, and poses
serious challenges for policy makers aiming to implement sustainable
forest management plans.

Eastern Europe is also still rich in vast and relatively undisturbed
forest landscapes (Wesolowski, 2005). For example, the Carpathian
Mountains constitute Europe's largest temperate forest ecosystems
and are a biodiversity hotspot (UNEP, 2007). The Ukrainian region of
the Carpathians is particularly important, because it bridges the
northern and southern Carpathians, and includes some of Europe's
last and largest old-growth beech forests (Herenchuk, 1968; Holubets
et al., 1988; Wesolowski, 2005). Forest use has changed substantially
in the Ukrainian Carpathians after the country became independent in
1991. Forest harvesting increased in some areas (Kuemmerle et al.,
2007) and illegal logging occurred (Buksha et al., 2003; Nijnik & Van
Kooten, 2000). One the other hand, forest expansion on abandoned
farmland was widespread (Elbakidze & Angelstam, 2007; Kuemmerle
et al., 2008) and Ukraine issued a national forest planting program in
2002. These opposite processes raise questions about net forest cover
trends in the Ukrainian Carpathians in the post-socialist period.
Unfortunately, available statistical forest resource data provide vastly
differing numbers. For example, harvesting rates between 1991–1995
reported by Nilsson and Shvidenko (1999) are up to 60% higher than
Zibtsev's (1998) rates. Even the direction of post-socialist harvesting
trends is unclear with most studies reporting decreased harvesting
(Buksha et al., 2003; FAO, 2005; Nilsson & Shvidenko, 1999), whereas
others suggest increased logging during the early 1990s (Nijnik & Van
Kooten, 2000). Overall, net forest cover changes in the Ukrainian
Carpathians since the breakdown of socialism have only been
examined for small study areas (Kozak et al., 2007b; Kuemmerle
et al., 2007; Sitko & Troll, 2008) and no study has so far compared
actual forest cover change with official forest resource data.

The lack of an area-wide forest change map is partly explained by
the challenges that large-area mapping of forest cover change in
mountain regions face. Phenology, illumination effects, and variability
in vegetation communities along altitudinal gradients frequently
result in spectrally complex thematic classes (i.e., multi-modal, non-
normal, Itten & Meyer, 1993; Seto & Liu, 2003). Non-parametric
classifiers are powerful tools in such situations, because they do not
assume specific a-priori density distributions per class (Friedl &
Brodley, 1997; Seto & Liu, 2003). Support Vector Machines (SVM)
perform equally well or better than other non-parametric approaches,
while requiring fewer training samples (Foody &Mathur, 2004b; Pal &
Mather, 2005). SVM discriminate classes by fitting a separating
hyperplane in the feature space based on training samples (Huang et
al., 2002) and have been successfully applied to map forest cover
changes over large areas (Huang et al., 2008; Kuemmerle et al., 2008).

The increasing availability of long image time series, such as the
Landsat data archive, now allows for moving from simplistic from-to
assessments towards detailed change trajectory analyses (Hostert
et al., 2003; Kennedy et al., 2007; Röder et al., 2008). Many change
detection methods exist to analyze image pairs (Coppin et al., 2004),
but tools for investigating dense time series of Landsat imagery are
largely lacking (Kennedy et al., 2007). The challenge is that the
complexity of a composite classification (Coppin & Bauer, 1996)
increases exponentially with every additional image (e.g., 256 change
classes for four land cover classes and four time periods). This
often inhibits the collection of a representative training sample. In
such situations, classifying images individually and assessing change
a-posteriori may be the better option, if accurate individual classifica-
tions can be achieved.

Our goal here was to assess the extent of illegal logging and
reforestation in the Ukrainian Carpathians by exploring whether post-
socialist forest cover trends mapped from satellite images differed from
those reported in official forest resource data and forest inventories. This
required us to derive the first area-wide forest cover changemap for the
Ukrainian Carpathians using Landsat Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) images. Our specific
objectives were to:

(1) map forest cover change in the Ukrainian Carpathians before
and after the system change (1988–2007) from Landsat TM/
ETM+ images using SVM,

(2) compare satellite-based forest trends with official forest
statistics,

(3) compare satellite-based logging maps with forest inventory
maps, and

(4) assess the spatial pattern of logging in relation to topography
and the visibility of logging sites.

2. Study region

As a study region, we selected the entire Ukrainian Carpathians
(Fig. 1). Study region boundaries were based on administrative
borders at the county (raion) level and we selected all raions that
were at least partly within the ecoregion (using the Carpathian
Ecoregion Initiative's boundary, www.carpates.org, Kruhlov, 2008).
The study region intersects with four provinces (oblasts): Cherni-
vetska Oblast, Ivano-Frankivska Oblast, Lvivska Oblast, and Zakar-
patska Oblast. It covers an area of 30,890 km2, and its total population
is about 2 million (UNEP, 2007).

The region is characterized by a northwest-southeast running
mountain range, predominately consisting of flysch and some volcanic
andmetamorphic rocks in the southwest. Altitude varies from N100m to
2061 m. The climate is temperate with a moderate continental influence
and varies significantly depending on topography (temperature range

http://www.carpates.org


Fig. 1. Study region in the Ukrainian Carpathians. Main frame: study region boundaries (red), topography (elevation range N100–2,060 m), and major population centers. Inset A:
location of the study region in Europe. Inset B: the four provinces (oblasts) comprising the Ukrainian Carpathians. Inset C: Major roads and railway tracks. Source: SRTM DEM
(elevation data); ESRI World Data and Maps Kit 2005 (national boundaries and population centers); Geodezkartinformatyka (1997) (oblast boundaries, roads, railways).
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between 20 °C to 6 °C in summer and−3 °C to−10 °C inwinter; annual
precipitation is 900–1200mm, Buchinskyi et al.,1971; Herenchuk,1968).
Four altitudinal zones of natural vegetation occur in the study region. The
foothills andadjacentplains (b300m)are coveredbybroadleaved forests
with pedunculate and sessile oak (Quercus robur, Q. petrea), often mixed
with European beech (Fagus sylvatica), linden (Tilia cordata), hornbeam
(Carpinus betulus), and ash (Fraxinus excelsior). The lower montane zone
(300–1100 m) consists of beech forests with silver fir (Abies alba),
Norway spruce (Picea abies), and sycamoremaple (Acerpseudoplatanus).
The upper montane zone extends up to the timberline (1500 m) and is
dominated by coniferous species, mainly spruce and Arolla pine (Pinus
cembra). Above timberline, mountain pine (Pinus mugo), green alder
(Alnus viridis), and juniper (Juniperus communis subsp. alpina) shrubs and
alpine grasslands prevail (Herenchuk, 1968; Kruhlov et al., 2008).

Land use has substantially affected the Ukrainian Carpathians.
Much of the region's forestland was converted to farmland during the
Austro-Hungarian Empire (1772–1918) and the foothill zone remains
dominated by agriculture. Since the early 20th century, forest cover
has been increasing slowly (Kozak et al., 2007a). However, forests
have also been excessively exploited since the 19th century, especially
under Soviet rule, resulting in an age distribution dominated by young
age classes, increased forest fragmentation, and widespread spruce
plantations (Irland & Kremenetska, 2008; Strochinskii et al., 2001;
Turnock, 2002). Mountain tops have traditionally been used for
grazing, resulting in lowered timberlines in some regions (Sitko &
Troll, 2008).

3. Datasets used and methodology

3.1. Satellite images and ancillary data

We acquired 19 mid-summer and early fall Landsat TM and ETM+
images for ∼1988, 1994, ∼2000, and ∼2007. Five Landsat footprints
covered the full extent of the study region (path/row 184/26, 184/27,
185/26, 185/27, and 186/26). Full cloud-free coverage of the study
region for a single year was only possible for 1994. For the late 1980s
and the most recent time period (2007) we used images acquired
±1 year, and two 2002 images complemented the 2000 imagery
(acquisition dates are listed in Table 2 in the results section).

Five of the images from the GeoCover dataset were already
orthorectified (Tucker et al., 2004). The remaining 14 images were co-
registered to the GeoCover dataset. To account for relief displacement,
we included the Space Shuttle Topography Mission (SRTM) digital
elevationmodel, resampled to 30m. Tie points between GeoCover and
uncorrected images were gathered automatically based on image
correlation (Kuemmerle et al., 2006). All co-registered images had a
positional accuracy of b0.5 pixel (Tucker et al., 2004). Clouds and
cloud shadows were digitized and masked.

Ground truth data were gathered based on approximately 120
Quickbird images from 2002 to 2007 available in Google Earth™
(earth.google.com), covering 43.3% of our study area. Overlaying
topographic maps and GPS tracks gathered in the field between 2004
and 2006 suggested that the positional accuracy of the Quicbird
images was comparable to that of the Landsat images. For each
Landsat footprint, we selected a random sample of ground truth
points within the Quickbird image footprints, overlaid points on the
Quickbird images in Google Earth™, and labeled each point as either
‘forest’ or ‘non-forest’ based on visual interpretation. A point was
considered forested if tree cover exceeded 60% (i.e., ‘closed tree cover’
in the Land Cover Classification System, Di Gregorio, 2005) and if tree-
dominated patches covered at least one Landsat pixel (30×30 m).
Thus, our forest definition included orchards, but not single trees,
treelines, and open shrubland. We only considered points where class
membership was stable between 1988–2007 (i.e. either permanent
forest or permanent non-forest), based on visual interpretation of the
Landsat images. Ground truth points with unclear class membership,
points in cloud areas, and points closer to forest/non-forest borders
than the remaining positional uncertainty (less than 15 m) were



Table 1
Rule set for delineating the forest cover change map based on the forest/non-forest
classifications for each time period (F=forest; NF=non-forest).

ID Class label Time period

1988 1994 2000 2007

1 Permanent forest F F F F
2 Permanent non-forest NF NF NF NF
3 Forest disturbance before 1988 NF F F F
4 Forest disturbance in 1988–1994 (a) F NF F F
5 Forest disturbance in 1988–1994 (b) F NF NF F
6 Permanent clearing in 1988–1994 F NF NF NF
7 Forest disturbance in 1994–2000 (a) F F NF F
8 Forest disturbance in 1994–2000 (b) F F NF NF
9 Forest disturbance in 2000–2007 F F F NF
10 Forest disturbance before 1988 and in 2000–2007 NF F F NF
11 Reforestation 1988–2000 or Forest disturbance

before 1988
NF NF F F

12 Reforestation 1988–2000–2007 NF NF NF F
13 Misclassification (a) NF F NF F
14 Misclassification (b) F NF F NF
15 Misclassification (c) NF NF F NF
16 Misclassification (d) NF F NF NF
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discarded (3% of a random sample atmost). Training samples of 300 to
500 ground truth points per class resulted in stable classification
accuracies and 1,400 random points per image provided this
minimum amount of points per class (Knorn et al., in press). For
three footprints (path/row 185/26,185/27, and 186/26), we also used
ground truth points mapped in the field between 2004 and 2006
(Kuemmerle et al., 2007, 2008). Points in overlap areas between
Landsat paths were used for both footprints. In total, we used a sample
of 5211 points (2373 forest, and 2838 non-forest) of which 4481
(1976, 2505) were mapped from Quickbird data and 730 (397, 333)
were mapped in the field (see Section 4, Table 2).

Administrativeboundaries at theprovince (oblast) anddistrict (raion)
level were digitized from topographicmaps at a scale of 1:100,000while
road and railway networks were extracted from the digital topographic
maps at a scale of 1:200,000 (Geodezkartinformatyka,1997). Roadswere
classified as highways, paved roads, or dirt roads, and railway tracks as
major tracks or narrow-gauge tracks. Country boundaries and major
population centers were obtained from the Environmental Systems
Research Institute's (ESRI) World Data & Maps Kit 2005.

Forest resource statistics at the oblast level were obtained from the
Statistical Yearbook of Ukraine for the years 1985–1987, 1990, 1995,
2000, and 2002–2007 (The State Statistics Committee of Ukraine,
2006, 2007). We extracted two indicators: (1) areas designated for
post-clear-cut forest regeneration (i.e., where forest regeneration
should have been carried out), and (2) areas dedicated for new forest
planting. We also acquired a digital forest inventory map at a scale of
1:10,000 covering all state-managed forests in Zakarpatska Oblast.
This map contains more than 89,000 polygons and provided detailed
stand-level information on forest management practices carried out
between 1999–2007. Polygons in this map represent the finest scale of
forest management units in the Ukrainian Carpathians. We categor-
ized all forest management practices into practices where forest cover
is retained, partly removed (e.g. single or group selection harvesting),
or fully removed (e.g., clear-cuts). Planned forest management
practices that had not yet been implemented were excluded. Where
several forest management practices had been carried out (e.g., clear-
cutting followed by forest regeneration practices), we considered only
the oldest practice where forest cover was fully removed (or partially
removed where forest cover was never fully removed). To assess the
accuracy of the forest inventory maps, we randomly selected 100
polygons designated as clear-cuts and checked them visually by
overlaying themwith the Landsat images. Each polygon was assigned
to one of the three classes ‘No forest cover removal’, ‘Partial forest
cover removal’, or ‘Complete forest cover removal’.

3.2. Forest cover change mapping using support vector machines

Image classificationwith SVM is based on fitting a separating linear
hyperplane between two classes in themultidimensional feature space
(Foody & Mathur, 2004a; Huang et al., 2002). The optimal hyperplane
is constructed bymaximizing the margin between training samples of
opposite classes. Thus, instead of using all available training data to
describe classes, SVM use only those training samples that describe
class boundaries, the so-called support vectors (Foody & Mathur,
2004b, 2006). To separate classes with non-linear boundaries, kernel
functions are used to transform training data into a higher-dimen-
sional space, where linear class separation is possible (Huang et al.,
2002). This allows SVM to effectively handle complex class distribu-
tions (i.e., non-linear, multi-model) while requiring relatively few
training samples (Foody & Mathur, 2004b; Pal & Mather, 2005). A
detailed mathematical description of SVM concepts is found in Burges
(1998). Detailed introductions in a remote sensing context are
provided by Huang et al. (2002) and Foody and Mathur (2004a).

We used SVMs to delineate forest/non-forest maps for each of the
four time periods and assessed forest cover change via post-classifica-
tion map comparison. This reduced the complexity of our classification
approach to a binary problem for which SVMwere originally developed
(Huang et al., 2002). As a kernel function, we decided to use a Gaussian
radial basis function (Huang et al., 2002), that requires setting the kernel
width (γ). Parameterizing the SVMalso requires setting a regularization
parameter C, that penalizes misclassified training data to control the
trade-off between maximizing the margin and training error (Pal &
Mather, 2005). Small C-values tend to emphasize the margin while
ignoring outliers, whereas large C-values may result in over-fitting.
Thus, the best-performing combination of γ and C depends on the
training data and is not know a-priori. We systematically tested a wide
range of parameter combinations (γ from 0.00001 to 100,000 and C
from 0.1 to 1000) by fitting individual SVM to each parameter pair and
comparing models based on cross-validation errors (Janz et al., 2007;
Kuemmerle et al., 2008). This allowed us to identify optimal parameter
combinations for each image individually.

Once optimal γ and C were found, we classified each of the 19
Landsat TM/ETM+ images based on the six multi-spectral bands. We
split all available ground truth points into training (90%) and
validation (10%) samples. Based on the validation sample, we then
calculated an error matrix, overall accuracy, user's and producer's
accuracy, and the kappa statistics (Congalton, 1991; Foody, 2002). We
also derived the F-measure, an indicator of overall classification
accuracy based on the weighted harmonic mean of producer's and
user's accuracy (Baeza-Yates & Ribeiro-Neto, 1999). To derive robust
error estimations, we classified each image 10 times for all 10 possible
splits, derived the accuracy measures, and then calculated mean error
estimates (Friedl & Brodley,1997; Steele, 2005). The final classification
was calculated using 100% of the ground truth data, and the mean
error estimate is thus a conservative estimator of the true accuracy
(Burman, 1989). The SVM parameter search, image classification, and
accuracy assessment were carried out with the software imageSVM
(www.hu-geomatics.de).

Wemosaicked the forest/non-forestmaps for each timeperiod.Maps
with higher accuracy were given priority in overlap areas and we filled
clouded areas with data from overlapping paths wherever possible.
Remaining clouds were masked from all mosaics (b1.0% of the study
region). Once mosaics for all four time periods were available, we
established a rule-set to derive a forest cover change map (Table 1).
Depending on the time of disturbance and the post-disturbance
regeneration,wedefinedeight disturbance classes. The termdisturbance
here refers to the complete or near-complete removal of forest cover by
anthropogenic processes (e.g., logging) or natural events (e.g., storms).

We assumed reforestation on abandoned farmland to take longer
than six years, because forest planting virtually stopped after the
system change and natural succession is slow in the Carpathians

http://www.hu-geomatics.de


Table 2
Landsat TM/ETM+ images used and classification accuracies [%] of the forest (F)/non-forest (NF) maps for each image.

Time
period

Path/row Acquisition
date

Sensor Overall
accuracy

Kappa User's accuracy Producer's accuracy F-measure Number of points

F NF F NF F NF Total F NF

1988 184/26 1989/07/08 TM5 98.72 0.97 97.87 99.08 97.50 99.18 97.69 99.13 1343 369 974
184/27 1989/07/08 TM5 95.43 0.90 96.59 93.26 96.59 93.10 96.59 93.18 1279 851 428
185/26 1988/08/21 TM4 97.94 0.96 97.64 98.20 97.41 98.31 97.52 98.26 1316 543 773
185/27 1988/08/13 TM5 97.59 0.94 94.56 98.83 97.00 97.82 95.76 98.32 1096 307 789
186/26 1988/07/27 TM4 98.05 0.96 97.85 98.22 97.00 98.67 97.42 98.45 1342 503 839

1994 184/26 1994/09/08 TM5 98.65 0.97 97.32 99.18 97.78 98.97 97.55 99.07 1343 369 974
184/27 1994/09/08 TM5 97.34 0.94 98.07 96.01 97.93 96.19 98.00 96.10 1255 826 429
185/26 1994/07/29 TM5 98.14 0.96 97.49 98.66 98.18 98.11 97.83 98.38 1297 552 745
186/26 1994/07/04 TM5 97.15 0.94 94.91 98.62 97.76 96.79 96.31 97.70 1309 490 819

2000 184/26 2002/08/21 ETM+ 99.40 0.98 98.65 99.69 99.17 99.48 98.91 99.59 1343 369 974
184/27 2002/07/04 ETM+ 96.61 0.92 96.34 97.30 98.61 92.86 97.46 95.03 1220 797 423
185/26 2000/06/03 ETM+ 96.34 0.93 95.89 96.90 96.82 95.86 96.35 96.38 1738 859 879
185/27 2000/08/22 ETM+ 96.55 0.92 93.47 97.98 95.23 97.12 94.34 97.55 1493 448 1045
186/26 2000/06/10 ETM+ 97.04 0.94 95.40 98.17 97.18 96.94 96.28 97.55 2003 785 1218

2007 184/26 2006/09/25 TM5 98.80 0.97 97.07 99.49 98.61 98.87 97.84 99.18 1343 369 974
184/27 2006/10/11 TM5 94.68 0.88 94.70 94.87 97.70 88.29 96.18 91.46 1103 746 357
185/26 2007/07/17 TM5 96.59 0.93 93.43 99.17 98.87 95.00 96.07 97.04 1296 531 765
185/27 2007/07/17 TM5 97.94 0.95 96.30 98.65 96.75 98.44 96.52 98.54 1364 403 961
186/26 2007/07/24 TM5 95.57 0.91 92.87 97.41 95.71 95.49 94.27 96.44 1311 491 820
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(Buksha et al., 2003; Kuemmerle et al., 2008). Farmland abandonment
was not widespread before 1988, and this means that forest
regeneration in 1988–1994 largely reflected pre-1988 disturbances,
and reforestation could not have occurred before 1994–2000. Initial
tests suggested that the reforestation classes contained some dis-
turbances where forest regeneration was slow. We therefore selected
all reforestation patches within forests (N80% relative border to
permanent forest or disturbances) and assigned such patches to the
pre-1988 disturbance class. Four of the possible 16 change classes
suggested two disturbance events within a 12-year period (Table 1).
Comparing these classes to high-resolution imagery revealed that they
almost exclusively represented misclassifications due to phenology
differences among images and all such patches were assigned to
‘Permanent non-forest’. These four classes together covered about 1.2%
of the study region.

To eliminate small disturbance patches representing mostly
misclassifications, small forest patches that were functionally not
forest (e.g., hedgerows, trees along roads and creeks, groups of trees
between fields, etc), and the salt-and-pepper effect common to pixel-
based classifications, we assigned patches with b7 pixels to the
dominating surrounding class. This thresholdwas selected because the
smallest forest management unit in Ukraine is 0.5 ha. We also selected
all disturbance patches fully surrounded by non-forest, disturbance
patches (but not reforestation patches) above the timberline (i.e.,
mean elevation of N1350 m and relative border to permanent non-
forest N0.8), and narrow disturbances along rivers (disturbance
patches with length/width ratios N4.5) and assigned them to
permanent non-forest, because field visits and high-resolution images
suggested these patches represented mostly misclassifications.
Table 3
Validation of disturbance detectability before 1988, in 1988–1994, in 1994–2000, and in 20

Reference data

Disturbances before 1988 Distur

Classified data Permanent forest 3.02 7.93
Permanent non-forest 8.98 0.82
Forest disturbance before 1988 83.49 0.29
Forest disturbance 1988–1994 2.35 87.67
Forest disturbance 1994–2000 0.14 2.73
Forest disturbance 2000–2007 0.32 0.57
Reforestation 1988–2000 0.14 0.00
Reforestation 1988–2000–2007 1.58 0.00

Numbers indicate relative abundance (in percent) of different classes mapped from the Lan
In addition to the accuracy assessment of the individual classifica-
tions, we conducted a validation of the detectability of disturbances.
We randomly selected 25 points and digitized the closest disturbance
for each of the four time periods based on the Landsat TM/ETM+
images. This resulted in a total of 100 disturbance polygons, together
covering an area of 877 ha, and we cross-tabulated these areas with
the forest cover change map.

3.3. Analyzing forest cover change

To compare forest change among different regions and time
periods, we calculated absolute and relative net forest cover changes
as well as annual disturbance and reforestation rates for the full study
region, for each oblast, and for each raion. Net change was calculated
as the difference in forest cover (in km2) between 1988 and 2007,
whereas relative net change (RNC) was calculated as:

RNC = FC2007 = FC1988 − 1ð Þ⁎100 ð1Þ

where FC denotes forest cover (in km2). Annual disturbance rates
(DR) were calculated for each time period j as:

DRj = Dj = FCBj

� �
⁎100= a ð2Þ

where D is the sum of disturbances in time period j, FCB denotes
forest cover at the beginning of time period j, and a is the number of
years between image acquisition. Because images from one time
period were not always from a single year, we intersected the Landsat
footprints from the beginning and end of a time period (considering
00–2007.

bances in 1988–1994 Disturbances in 1994–2000 Disturbances in 2000–2007

8.20 2.29
0.00 0.14
0.00 0.00
0.85 0.14

89.70 0.70
1.25 96.73
0.00 0.00
0.00 0.00

dsat TM/ETM+ images in each of the four disturbance categories of the reference data.



Fig. 2. Top: Forest cover changes between 1988 and 2007. Bottom: Comparison of the satellite-based forest cover changemap, stand-level forest managementmaps, and Landsat TM/
ETM+ images from 1994, 2000, 2007 for an area close to Rakhiv, Zakarpatska Oblast. Source: Ukrainian National Forestry University (inventory maps).
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Fig. 3. Remote-sensing-based disturbance and reforestation rates at the study region and oblast level and forest resource statistics at the oblast level from the Statistical Yearbook of
Ukraine (2006 and 2007). A: Annual disturbance rates for the full study region. B: Reforestation in the study region (relative to 1988-non-forest land). C: Annual disturbance rates
(DR) per oblast. D: Official trends in forest regeneration (i.e., clear-cut) area (CCA) per oblast. E: Reforestation rates (RR, relative to 1988-non-forest land) per oblast. F: Official trends
in forest planting area (FPA) per oblast. Source: The State Statistics Committee of Ukraine (2006, 2007) (forest resource statistics).
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how images had been mosaicked in overlap areas to adjacent
footprints). We then assigned the number of years between image
acquisition (a) for each segment, and calculated disturbance rates per
segment. To summarize disturbance rates at the study region, oblast,
and raion level, we calculated the area-weighted mean of disturbance
rates. Detection of older disturbances in temperate forest ecosystems
can be challenging because of forest regeneration (Healey et al., 2005;
Kennedy et al., 2007). We thus decided to use a maximum a of 6 years



Fig. 4. Disturbance rates (DR), reforestation rates (RR), and relative net change (RNC) rates at the raion level. A: Annual disturbance rates. B: Reforestation in the study region
(relative to 1988-non-forest land). C: Net forest cover change (relative to raion area). Source: Geodezkartinformatyka (1997) (oblast and raion boundaries).
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based on prior experience (Kuemmerle et al., 2007). Reforestation
rates (RR) were calculated as:

RRj = Rj =NF1988
� �

⁎100 ð3Þ

where R is the reforestation area per time period, and NF1988 denotes
all non-forest land (excluding disturbances) in 1988.
Fig. 5. Changes in disturbance rates
To assess whether forest cover change varied with altitude, we
stratified the DEM into 100 m strata and calculated mean annual
disturbance rates for each stratum and time period. Likewise, we
summarized disturbance rates for 9 slope classes using 5-degree
breaks. To compare the forest inventory map and the Landsat forest
cover change map, we summarized unchanged, disturbed, and
reforested areas from the change map for each forest management
by elevation (A) and slope (B).



Fig. 6. Disturbed area above and below 1,100 m elevation (A), and on slopes N20° and b20° (B). Proportions of forest and disturbances in areas visible or invisible from major roads
and railway tracks (C).
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practice and for each of the three aggregated forest management
categories (full, partial, or no forest cover removal).

New forest legislation prohibiting clear-cuts in beech-fir forest
above 1100 m and on steep slopes N20° was put in place in Ukraine in
2000 (Verkhovna Rada, 2000a,b). To assess how these policies
affected disturbance rates, we summarized the disturbance area
above 1100 m and on slopes steeper than 20° for each time period.
Because illegal logging is often hidden, we also assessed the
proportion of disturbances visible from highways, paved roads and
railway tracks using a viewshed analysis. We categorized our study
region into areas that were either visible or invisible from these
features and summarized disturbances for both categories and each
time period.
Table 4
Distribution of permanent forest, disturbances, and reforestation mapped from Landsat TM/
by the inventory map of Zakarpatska Oblast (in ha).

Forest inventory map

No forest management practices

Satellite-based forest
change map

Permanent forest 314,388.36
Disturbance before 1988 10,307.16
Disturbance in 1988–1994 4608.99
Disturbance in 1994–2000 3885.93
Disturbance in 2000–2007 3696.39
Reforestation 929.07
Sum 337,815.9
4. Results

Our SVM-based classification approach resulted in reliable forest/
non-forest maps for all Landsat TM/ETM+ footprints and time
periods. Overall accuracies of the individual classifications ranged
from 94.68 to 99.40% (kappa 0.88 to 0.98, Table 2).

Disturbances in 1988–1994, 1994–2000, and 2000–2007 were
captured with high accuracies (N87%, Table 3). Disturbances before
1988 were detected with a slightly lower accuracy (83%), due to
confusionwith permanent non-forest areas. The overall accuracy of our
change map, estimated as the product of the individual map accuracies
(Coppin et al., 2004), was 95.81% for the 1988–1994 period, 95.29% for
the 1994–2000 period, and 94.61% for the 2000–2007 period.
ETM+ imagery within different categories of forest management practices as indicated

Forest management without
forest cover removal

Partial forest
cover removal

Complete forest
cover removal

Sum

9,592.11 63,023.22 5698.26 392,701.95
373.23 4392.9 74.43 15,147.72

2491.56 3258.72 124.29 10,483.56
3516.84 1555.47 1877.4 10,835.64
605.61 2317.86 3369.6 9989.46
50.67 216 2.79 1198.53

16,630.02 74,764.17 11,146.77



Fig. 7. A: Distribution of permanent forest, disturbances, and reforestation mapped from the Landsat images for four forest management practices documented in the inventory map
(clear cutting, sanitary clear-cutting, selective logging, and sanitary selective logging) (A). Visual assessment of 100 forest management polygons designated as clear-cuts in the
inventory data. All polygons were checked against the Landsat images, whether forest cover was intact, partially removed, or fully removed (B).
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Forest cover changed substantially in the Ukrainian Carpathians
between 1988 and 2007 (Fig. 2, top)mainly due to disturbances,which
affected 6.83% of the study region (2072 km2). Forests had regenerated
on the majority (1365 km2) of these areas in 2007. Disturbances
occurred highly clustered. Before 1994 disturbance clusters were
mainly found in the northern and southwestern foothills, and close to
the Romanian border. After 1994, disturbance clustersmainly occurred
in the interior Carpathians. Reforestation occurred on 2.25% of all non-
forest land in 1988 (equaling 306 km2), mainly in the plains in the
Southwest and Northeast of the study region (Fig. 2, top). Overall,
forest cover increase slightly in the Ukrainian Carpathians between
1988–2007 (0.82% of the study region, equaling 250 km2).

Our Landsat-based forest cover change map differed markedly
from the forest inventory map (Fig. 2, bottom). Between 2000 and
2007, most disturbances mapped in the satellite images were
documented as clear-cuts in the forest inventory maps, although
clear-cuts were sometimes larger than documented. Conversely, there
were also clear cuts in the inventory data that appeared only partially
or not at all harvested in the satellite images. Before 2000, only a
relatively small proportion of the disturbances appeared in the forest
inventory maps, and disturbances were often substantially larger than
reported (Fig. 2, bottom).

Annual disturbance across the study region remained nearly
constant until 1994, but dropped markedly (by 39%) in 1994–2000
and increased again after 2000 (by 34%, Fig. 3A). Reforestation rates
were four times higher in 2000–2007 compared to 1994–2000
(Fig. 3B). Forest trends differed markedly among the four oblasts
(provinces). Disturbance rates in Ivano-Frankivska Oblast increased in
1988–1994 (by 52%), remained stable in Chernivetska Oblast, and
decreased in Lvivska and Zakarpatska Oblasts (Fig. 3C). In contrast to
the other three provinces, disturbance rates in Zakarpatska Oblast
decreased gradually in 1988–2007 (by 32%). Reforestation trends also
differed among oblasts. Reforestation rates in Lvivska Oblast and
Zakarpatska Oblast were about eight times higher in 2000–2007
compared to 1994–2000, but increased only moderately in Cherni-
vetska Oblast and Ivano-Frankivska Oblast (Fig. 3E). Overall, forest
cover increased by 1.29% of the oblast area (equaling 88 km2) in
Lvivska Oblast, by 0.83% (23 km2) in Chernivetska Oblast, and by 1.26%
(151 km2) in Zakarpatska Oblast, whereas there was a net forest cover
decrease of 0.14% (12 km2) in Ivano-Frankivska Oblast.
Disturbance rates also displayed marked heterogeneity at the raion
(district) level (Fig. 4). Raions in the interior Carpathians generally
exhibited increasing disturbance rates (e.g., Turka and Skole in Lvivska
Oblast, Rozhniativ and Bohorodchany in Ivano-Frankivska Oblast, or
Putyla in Chernivetska Oblast), but more peripheral raions generally
showed decreasing rates (e.g., Drohobych and Stryi in Lvivska Oblast or
Tiachiv and Vynohradiv Zakarpatska Oblast). Disturbance rates gen-
erally dropped in 1994–2000, but some raions displayed increasing
disturbances (e.g. in the East of ZakarpatskaOblast). And the2000–2007
increase in disturbance rates was most pronounced in the western
interior Carpathians (Fig. 4A). High reforestation rates were generally
associated with peripheral raions (Fig. 4B), and as a result, peripheral
raions dominantly increased forest cover, whereas almost all raions in
the interior Carpathians lost forest cover from 1988 to 2007 (Fig. 4C).

Disturbance rates also varied substantially with altitude. Before
1988, the highest disturbance rates occurred at lower elevations
(b500 m, Fig. 5A). After 1988 higher disturbance rates occurred at
higher elevations, and in 1994–2000, the highest rates were found
above 1000 m. The extent of disturbances above 1100 m did not vary
substantially until 2000, but dropped by about 50% after new forest
legislation became effective (Fig. 6A). Disturbance rates increased on
all slopes in 1988–1994, but there was a clear tendency towards
steeper slopes (N30°) in 1994–2000 (Fig. 5B). However, the extent of
disturbances on slopes steeper than 20° was similar before and after
2000 (Fig. 6B). Last but not least, the proportion of disturbances
visible from major roads and railway tracks changed markedly
through time. Already before 1988, the majority of disturbances
(53%) occurred in invisible areas. After 1988, the proportion of visible
forest area increased slightly, yet disturbances increasingly tended to
occur in invisible areas. This trend reversed in the time period from
2000–2007 when the proportions of forest and disturbances in visible
and invisible areas were approximately equal (Fig. 6C).

Forest cover trends mapped from Landsat images differed
markedly from official forest resource data at the oblast level.
According to official statistics documented in the Statistical Yearbook
of Ukraine, the area of clear-cuts was relatively low until 2000, and
increased in most oblasts after 2000. While the post-2000 increase in
the statistics was paralleled in our forest disturbance rates in all but
Zakarpatska Oblast, the relatively high disturbance rates we found
before 1994 in Lvivska and Chernivetska Oblasts and the marked
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increase in disturbance rates in Ivano-Frankivska Oblast after 1988
were not depicted in the forest resource data (Fig. 3D). Likewise, forest
planting trends in forest resource data differed markedly from
satellite-based reforestation trends (Fig. 3F).

Similarly, the vast majority of forest disturbances before 2000
mapped from the Landsat images were not documented in the
inventory map of Zakarpatska Oblast (Table 4). After 2000, about 34%
of all disturbances were detected in areas designated as clear cuts.
However, 23% (2,318 ha) of all disturbances in 2000–2007were found
in areas where the inventory maps indicated only partial harvesting,
and 43% (4302 ha) occurred where officially no forest management
had taken place. Also, more than 5698 ha of clear cuts in the inventory
maps remained unchanged forest based on the classified Landsat
images (Table 4).

In the inventory map, regular clear cuts and sanitary clear-cuts
were almost equally common (Fig. 7A). Sanitary clear-cuts are
harvests in response to tree mortality, mainly due to insect
disturbance. Selective logging was not very widespread and very
few disturbances occurred in such areas. However, sanitary selective
logging covered large areas and we found substantial forest
disturbances in sanitary selective logging sites. The majority of the
areas designated as clear cuts or selective logging sites in the
inventory maps were found to represent permanent forest based on
the satellite images (Fig. 7A). Visual comparison of clear-cut polygons
and Landsat images revealed that forest cover had been completely
removed in only 39% of these polygons. Forest cover had only partially
been removed in 49% of all polygons, and no disturbance could be
visually identified in 12% of all cases (Fig. 7B).

5. Discussion

5.1. Post-socialist forest cover trends and illegal logging in the
Ukrainian Carpathians

Forest disturbance and reforestation resulted in widespread forest
cover change in the Ukrainian Carpathians in 1988–2007. The vast
majority of disturbances in the study region were due to logging, and
forest harvesting trends mapped from satellite images thus differed
substantially from forest resource statistics and inventory maps in the
Ukrainian Carpathians. What are the reasons for this disagreement?
While our accuracy assessments confirmed the high reliability of the
Landsat-based change map (see Section 5.2 for a detailed discussion of
the mapping approach), the inventory data, from which higher-level
forest resource statistics are aggregated, exhibited considerable uncer-
tainty. We suggest this uncertainty is the main reason for diverging
patterns of satellite-based trends and forest resource statistics.

Updating problems (e.g., where management units were sub-
divided or merged) and deliberate misreporting cause errors and
ambiguity in inventory data (Gerasimov & Karjalainen, 2006;
Houghton et al., 2007). Even when analyzing only the 2000–2007
period, our results showed that almost 60% of the polygons designated
as clear cuts in the inventory map from Zakarpatska Oblast were only
partially harvested or not yet harvested (Fig. 7B), possibly because
forest management practices were only applied to a portion of the
area of the forest management unit.

Conversely, undocumented loggingwaswidespread in the Ukrainian
Carpathians. We found frequent harvesting in areas not designated for
harvests aswell as over-harvesting beyond the boundaries of designated
areas (Fig. 2, Table 4). While a lack of funding to update inventories may
have contributed to these patterns, we suggest illegal logging is themain
reason explaining the disagreement between remote sensing and forest
inventory maps. After 1991, Ukraine's economy collapsed, state control
diminished, and law enforcement, a prime factor in guarding forests
fromoveruse (Chhatre&Agrawal, 2008),wasweak.Overall, this resulted
in emerging shadow business in the Ukrainian forest sector (Buksha
et al., 2003; Nijnik & Van Kooten, 2000, 2006). Our results indicate that
illegal loggingmay have been especially widespread during the first half
of the 1990s, when the discrepancy between satellite-based trends and
forest resource statistics was greatest (Fig. 3), and at a timewhen funds,
machines, and fuelwere still available to keep forest enterprises running.

Ukraine has since then taken important steps to combat unsustain-
able forest use. Several protected areas were designated in the
Carpathians during the second half of the 1990s, the quality of forest
resource statistics improved after 2000, and a new forest code that
aims for multi-functional, sustainable forestry, forest certification, and
accounting of forest resources, was implemented in 1994 (with
important amendments in 2000 and 2006, Nordberg, 2007; Soloviy
& Cubbage, 2007). This clearly affected forest management practices,
such as the drop in harvesting above 1100 m and a decrease in
disturbances in invisible areas after 2000 (Fig. 6). Moreover, convic-
tions of corrupt forestry staff have recently become public, including
the imprisonment of a former head of a forestmanagement enterprise.

Despite these positive trends, corruption continues to be a major
problem in Ukraine (Corruption Perceptions Index 2.5/10 in 2007,
www.transparency.org). Most importantly, the misuse of the sanitary
clear-cut system has emerged as the principal means of illegal logging
since the late 1990s (e.g., harvesting of healthy stands, over-harvest-
ing, harvesting in protected areas and at high altitudes, full canopy
harvesting in areas designated for selective logging, etc.). Commercial
and sanitary loggingwere almost equallywidespread in 2000–2007 in
Zakarpatska Oblast. And whereas commercial selective logging
frequently did not show up as disturbance in our forest cover change
map, disturbances were widespread in sanitary selective logging sites,
likely because forest cover was fully removed in many of these sites.
Thus, the sanitary logging system represents a substantial loophole in
forest legislation (Contreras-Hermosilla, 2002) that is very difficult to
monitor. This is exacerbated by the fact that the Ukrainian forest code
allows sanitary clear-cuts to be larger than the maximum regular
clear-cut size (4 ha). While sanitary logging appears to have been
heavily misused, it is important to emphasize that there are also many
excellent examples of forest restoration via adequate sanitary logging
in the Ukrainian Carpathians.

So what was the extent of illegal logging in the Ukrainian
Carpathians after the breakdown of socialism? Uncertainties in the
forest inventory data, differences in satellite-based and statistical
indicators, and difficulties in separating legal and illegal sanitary
logging do not allow answering this question with a hard number.
However, four factors suggest that illegal logging may have been at
least as extensive as legal logging in the Ukrainian Carpathians. First,
forest statistics and satellite-based harvesting rates both showed
increased logging after 2000 (when reporting likely improved), but
our change map suggests up to 2.8 times higher logging rates before
1994 than documented in the forest resource data (Fig. 3). Second,
logging outside areas designated for clear-cuts in the inventory maps
was at least as high as in areas declared as clear-cuts. Third, there was
still substantial logging above 1100m, and high-resolution images and
field visits suggest that logging in beech-fir forests has not ceased after
it was banned. And fourth, substantially higher disturbance rates were
observed in areas that were hidden from roads and railways.

Large-scale natural disturbances could offer an alternative explana-
tion for the discrepancy between satellite-based forest trends and forest
resource statistics and inventory maps. Wind throw, root fungi, and
insect infestation occur in the Ukrainian Carpathians, but two major
factors suggest these processes cannot account for the extent of
undocumented disturbances we mapped in the Landsat images. First,
most natural disturbances in the Ukrainian Carpathians result only in
fine-scale forest cover changes, affecting only single trees or small
groups of trees, and our analyses does notmap such subtle disturbances
(see Section 5.2). Large-scale natural disturbances are overall rare
(Irland & Kremenetska, 2008; Lavnyy & Lässig, 2007). For instance,
storms represent the region's most frequent natural disturbance, but
affected mostly small areas during the last decades and only two

http://www.transparency.org
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extensive windthrow events (1989 and 1992) were documented
(Lavnyy & Lässig, 2007). Moreover, most large-scale natural distur-
bances are associated with spruce plantations that were established
during socialism and in Austro-Hungarian times, often on unfavorable
sites (Badea et al., 2004; Irland & Kremenetska, 2008; Nilsson &
Shvidenko,1999).Higherdisturbance rates in suchareas are thus at least
partly self-inflicted and not a result of natural disturbance regimes
(Irland & Kremenetska, 2008). Second, where large-scale natural
disturbances occur, forest management enterprises almost always
carry out salvage logging or sanitary clear-cutting (Irland & Kreme-
netska, 2008; Lavnyy & Lässig, 2007), and such disturbances should
therefore be documented in the inventory data. Thus, the vast majority
of forest disturbance events we mapped from the satellite images were
due to forest harvesting, butwe cannot exclude thepossibility that some
of these harvests were prompted by natural disturbance events.

Forests were already severely overexploited during socialism,
resulting in increasingly younger forests in many areas (Nijnik & Van
Kooten, 2000, 2006; Turnock, 2002).Our results showedaclear tendency
towards logging in more remote areas and a net forest cover decrease in
the interior Carpathians, likely reflecting an increasing scarcity of high-
value timber elsewhere. This raises significant concerns about the fate of
Ukraine's Carpathian forest, and especially of ecologically valuable older
stands, during the transition. Our results suggest that some regions
experienced a net forest cover decrease due to undocumented, illegal
logging. This drastically contrasts the popular claim of increasing forest
cover in the Ukrainian Carpathians, which recently sparked calls for
increased forest harvesting (Polyakov & Sydor, 2006).

Reforestation compensated to some extent for high logging rates in
the post-socialist period, but mostly in peripheral regions of the
Ukrainian Carpathians where much land was managed by state farms
prior to 1991. The decreasing profitability of farming frequently
resulted in the bankruptcy of these farms, followed by widespread
farmland abandonment (DLG, 2005). Moreover, Ukraine established a
forest planting program in 2002, which may partly explain higher
reforestation rates we found between 2000–2007. By and large,
however, our results support earlier claims of a slow reforestation in
the Carpathians (Kozak et al., 2007a; Kuemmerle et al., 2008; Müller
et al., 2009), and only a minor proportion of the region's abandoned
farmland has so far reverted back to forests. Reason for this may be
that subsistence farming became increasingly important as a liveli-
hood strategy after 1991, particularly in the mountain valleys of the
interior Carpathians, and the inconsistent implementation of the
national reforestation program.

5.2. Change detection approach

Our change detection approach based on post-classification map
comparison of individual forest cover maps yielded a reliable forest
change map, which was confirmed by two independent validations
(n-fold cross-validation and our disturbance detectability assess-
ment). The n-fold cross-validation we used, widely accepted in other
communities (Burman, 1989; Burnham & Anderson, 1998; Guisan &
Zimmermann, 2000), has rarely been applied in remote sensing.
However, if ground truth is collected via random sampling, n-fold
cross-validation results in more robust and conservative error
estimates than simply splitting ground truth into a training and
validation set (Steele, 2005). It is important to note that training and
validation data are treated as fully independent datasets each time an
error is estimated (i.e., ground truth points used to fit an SVM model
are never used to estimate model robustness).

Disturbance detectability was highest in 2000–2007, possibly due to
increased logging in spruce plantations after the new forest code was
implemented in 2000. Clear cuts in such stands result in higher spectral
contrast than in beech/fir forests and are thus easier to map. Although
wall-to-wall data did not exist prior to 1988, detection accuracy was
similar to 1988–1994 and 1994–2000, suggesting that three post-
disturbance images allowed for robust forest regeneration detection.
Due to uncertainty in the inventory maps, we digitized disturbance
polygons for our validation directly from the Landsat images. While we
cannot completely rule out a positive bias, image-based approach
typically provide nearly identical results for stand replacement
disturbances compared to independent ground truth data (Cohen
et al.,1998), andmay often be the only option if historic land covermaps
are unavailable. Moreover, traditional ground truth sources (e.g., forest
inventory maps, cadastre maps, aerial photos, etc) may be connected to
substantial uncertainty, thus introducing a negative biaswhen assessing
the accuracy remote sensing analyses (Foody, 2008).

Our results suggest that post-classification map comparisons yield
a useful change map if individual classifications are highly accurate
and the SVM resulted in very reliable classifications. The non-
parametric nature of the SVM allowed us to directly extract thematic
classes without having to characterize the substantial spectral
variability that existed within these classes due to phenology,
illumination, and different land use systems. Long records of satellite
images are becoming increasingly available and our approach may
help to move from bi-temporal change detection towards the
mapping of trajectories of change. We suggest post-classification
map comparisons may be especially useful in cases where individual
classifications are simple (i.e., forest/non-forest), where gathering a
representative training set for an integrated multitemporal analyses is
not feasible, and where limited data availability precludes full time-
series analyses (Kennedy et al., 2007; Röder et al., 2008).

Although our change map was overall highly reliable, a few factors
may have contributed uncertainty. Some farmland abandonment may
have occurred during socialism (Turnock, 2002), which would have
inflated pre-1988 logging rates. Likewise, pre-1988 logging rates
would be overestimated if forest regeneration took longer than
6 years. However, field visits and prior work (Healey et al., 2005;
Kuemmerle et al., 2007) suggest this was not the case, particularly
when considering that post-clear-cut planting was carried out prior to
the breakdown of the Soviet Union (Buksha et al., 2003). Conversely,
we would have underestimated logging rates if regeneration was
substantially faster. Field visits render this also unlikely, but we cannot
rule out such underestimation completely. It is important to note that
underestimation would have affected all time periods similarly and
would thus suggest even higher illegal logging rates. Our sampling
scheme avoided ground truth points on forest/non-forest boundaries,
because positional uncertainty in the Landsat and Quickbird images,
and in the non-differential GPS points (b15 m) inhibited us from
labeling these points. This could have resulted in overestimated map
accuracy, if mixed pixels were widespread in the study region. Yet, the
number of discarded points was very low (b3% at most), forest/non-
forest boundaries are frequently sharp (even at the timberline) and
logging patches are large in the Ukrainian Carpathians, and our
validation based on disturbance polygons (which included boundary
pixels) confirmed the high accuracy of our maps. Last, our minimum
mapping unit of 0.5 ha could have masked fine-scale logging patterns
(e.g., fuel wood collection), but was important to remove salt-and-
pepper distortions common in pixel-based classifications. While
analyzing forest use of local people can give interesting insights
(Elbakidze & Angelstam, 2007), our focus here was on assessing large-
scale forest cover trends (both legal and illegal) which are almost
entirely connected to forestry enterprises operating at management
units N0.5 ha. Moreover, our minimum mapping unit helped to
excluded almost all natural disturbances from our analyses, thus
allowing us to separate legal and illegal harvesting.

6. Conclusions

Logging and reforestation on abandoned farmland resulted in
widespread forest cover changes in the Ukrainian Carpathians after
the breakdown of the Soviet Union. We observed a slight forest cover
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increase for the entire Ukrainian Carpathians, and the two converse
forest change processes led to substantial variability in fine-scale
forest cover trends. Peripheral areas, characterized by a high share of
pre-1991 farmland, experienced forest cover increase, whereas forest
cover decreased in many regions in the interior Carpathians. We also
found a clear tendency towards logging in more remote areas and at
higher altitudes in the post-socialist period.

Forest trends mapped from Landsat images differed substantially
from forest resource statistics and inventory maps. Logging rates did
not drop, as suggested by official statistics, during the first years after
the breakdown of socialism. To the contrary some regions experienced
increased logging. Agreement between satellite-based and statistical
indicators was better after 2000, when both sources indicated
increasing logging trends. Our analyses also showed that the reliability
of inventory maps was mixed.

We suggest that reporting and updating problems as well as illegal
logging are the main reasons explaining the mismatch between
satellite-based and statistical forest trends. Illegal logging appears to
have been especially widespread in the early years after the Ukrainian
independence and was likely at least as extensive as legal logging.
Ukraine has taken important steps towards sustainable forestry in
recent years, and reporting and forest monitoring have improved
significantly. Yet, the sanitary clear-cut system remains amajor loophole
in forest legislation that is almost impossible to control and likely
misused for illegal logging (e.g., more timber was logged on sanitary
clear-cuts than on commercial clear-cuts in 2000–2007). Overall, our
results suggest that unsustainable forest use from socialist times has
persisted in the post-socialist period, resulting in continued loss of older
forests and their services, and the ongoing fragmentation of some of
Europe's last large mountain forests. Transitioning towards sustainable
use of these forests and combating illegal logging requires betterandup-
to-date accounting of forest resources. Remote-sensing-based monitor-
ing can be key to achieving these goals in the Carpathians and elsewhere
in Eastern Europe and the former Soviet Union.
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