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In the former “Eastern Bloc” countries, there have been dramatic changes in forest disturbance and forest recovery
rates since the collapse of the Soviet Union, due to the transition to open-market economies, and the recent eco-
nomic crisis. Unfortunately though, Eastern European countries collected their forest statistics inconsistently, and
their boundaries have changed, making it difficult to analyze forest dynamics over time. Our goal here was to con-
sistently quantify forest cover change across Eastern Europe since the 1980s based on the Landsat image archive.
We developed an algorithm to simultaneously process data from different Landsat platforms and sensors (TM
and ETM+) to map annual forest cover loss and decadal forest cover gain. We processed 59,539 Landsat images
for 527 footprints across Eastern Europe and European Russia. Our results were highly accurate, with gross forest
loss producer's and user's accuracy of N88% and N89%, respectively, and gross forest gain producer's and user's
accuracy ofN75% and N91%, basedon a sample of probability-based validationpoints.We found substantial changes
in the forest cover of Eastern Europe. Net forest cover increased from 1985 to 2012 by 4.7% across the region, but
decreased in Estonia and Latvia. Average annual gross forest cover loss was 0.41% of total forest cover area,
with a statistically significant increase from 1985 to 2012. Timber harvesting was the main cause of forest loss,
accompanied by some insect defoliation and forest conversion, while only 7.4% of the total forest cover loss
was due to large-scale wildfires and windstorms. Overall, the countries of Eastern Europe experienced constant
levels or declines in forest loss after the collapse of socialism in the late 1980s, but a pronounced increase in loss in
the early 2000s. By the late 2000s, however, the global economic crisis coincided with reduced timber harvesting
in most countries, except Poland, Czech Republic, Slovakia, and the Baltic states. Most forest disturbance did not
result in a permanent forest loss during our study period. Indeed, forest generally recovered fast and only 12% of
the areas of forest loss prior to 1995 had not yet recovered by 2012. Our results allow national and sub-national
level analysis and are available on-line (http://glad.geog.umd.edu/europe/) to serve as a baseline for further anal-
yses of forest dynamics and its drivers.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

European forests co-evolved with humans since the beginning of
the Holocene, and their current distribution, structure, and dynamics
represent a long history of clearing, alteration, andmanagement (Fuchs,
Herold, Verburg, & Clevers, 2013; Johann, 2004; Kalyakin et al., 2004;
Kaplan, Krumhardt, & Zimmermann, 2009, 2012). Shaped by human ac-
tivities, forests were a main sector of the economy providing food
(e.g., hunting, livestock grazing, and plant products), timber products
(e.g., lumber for construction and naval fleets, and pulp for paper),
fuel (e.g., firewood, and charcoal), and other important resources
(e.g., potash, and tar). The importance of forest resources, which can be
quickly exhausted by unrestricted use, provided the impetus for forest
mapping, inventory, and management. Forest mapping techniques
were developed concomitantly with land tenure systems, and the first
forest maps were already produced in the 14th century (Morse, 2007).
In North and Central Europe, exhaustion of timber resources for naval
ship building, lumber, and charcoal used for iron production, were the
main factors why forest inventories were established in the 19th century
(Eliasson, 2002; Tomppo, Gschwantner, Lawrence, & McRoberts, 2010).
Forest inventories and management expanded into Eastern Europe and
European Russia in the 19th and 20th centuries. In the 20th century,
national forest inventory and monitoring incorporated various instru-
mental measurement methods, statistical sampling, and, later, remote
sensing technology. As a result, the forests of Europe are among the
most well-monitored ecosystems of the world.

Despite the wealth of forest inventory data, this information is
unfortunately not readily available, nor well suited for region-wide
analyses. One problem is that forest definitions and inventory methods
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vary among countries and have changed over time, making cross-
national and multi-temporal comparisons complicated or even impossi-
ble (Seebach, Strobl, San Miguel-Ayanz, Gallego, & Bastrup-Birk, 2011).
The lack of accessibility to national forest data poses another complica-
tion because many countries in Eastern Europe treat forest maps and
precise forest statistics as either commercially sensitive or even a matter
of national security, and thus prohibit its distribution beyond govern-
mental agencies. Even where forest inventory information is in principle
available, it is often hard to obtain from national (or sometimes regional)
agencies where it is stored in a variety of formats.

Remote sensing (RS) data can provide an alternative data source to
quantify forest cover and change independent of official governmental
data sources. Information derived from satellite imagery, however, is
not equivalent to inventory data collected by forest managers. Optical
remote sensing data is suitable for mapping land-cover (tree canopy
cover, dominant tree species composition) while national forest inven-
tory data focuses on land-use (e.g., forest land). This means that while
tree canopy cover change can be readily observed with remote sensing
data, it is not directly comparable to harvested timber volumes reported
by the national forest statistics. As a result, remote sensing data are rare-
ly used as a primary source for national forest inventories, and statistical
reports due to differences between land-use and land-cover forest def-
initions (Tomppo et al., 2010). The recent expansion in remote sensing-
based forest monitoring products, however, highlights that these data
could be valuable for many applications. First, remote sensing-based
products can cover vast areas consistently, avoiding discontinuities
due to administrative and national boundaries (Hansen et al., 2013;
Kuemmerle, Radeloff, Perzanowski, & Hostert, 2006; Pekkarinen,
Reithmaier, & Strobl, 2009; Potapov, Turubanova, & Hansen, 2011).
Second, long-term records of satellite observations now available in
image archives allow forest change quantification over several decades
(Baumann et al., 2012; Griffiths, Muller, Kuemmerle, & Hostert, 2013;
Margono et al., 2012; Potapov et al., 2012).

Spatial and temporal consistency is an inherent property of remote
sensing-based forest cover and change products, alleviating the need
for harmonization procedures commonly applied to regional and
national forestry inventory data (Seebach et al., 2011; Tomppo et al.,
2010). Simple biophysical criteria such as forest cover (defined using
certain tree canopy cover thresholds without attribution to specific land
cover categories and land use) make remote sensing-based products
more suitable to assess carbon change than national forest inventories
that are based on land use definitions (DeFries et al., 2002; Harris et al.,
2012; Tyukavina et al., 2013). At the same time, remote sensing-based
forest cover change analysis requires less effort and time than ground
surveys, and can be performed in areas of limited ground access. This is
why remote sensing-based products are widely used for multi-national
forest assessments and change estimations, and their results serve
as a baseline for carbon modeling and socio-economic analyses as
well as for studies of landscape dynamics and biodiversity patterns
(Burgess, Hansen, Olken, Potapov, & Sieber, 2012; Griffiths et al., 2012;
Hansen et al., 2013; Harris et al., 2012; Kuemmerle, Hostert, Radeloff,
Perzanowski, & Kruhlov, 2007; Tyukavina et al., 2013; Wendland et al.,
2011).

While there have been prior assessments of forests in Europe with
remote sensing (e.g., Gallaun et al., 2010; Pekkarinen et al., 2009;
Schuck et al., 2003), none of them analyzed the full Landsat record for
all of Eastern Europe. The lack of a comprehensive analysis of forest
dynamics in Eastern Europe is unfortunate, because the region has
witnessed numerous changes in forest cover since the collapse of social-
ism. Several remote sensing-based forest cover change projects have
documented some of these changes (Baumann et al., 2012; European
Environment Agency, 2007; Griffiths et al., 2013; Kuemmerle et al.,
2009; Pekkarinen et al., 2009; Potapov et al., 2011). However, prior pro-
jects have several limitations precluding their use for analyses of forests
dynamics across Eastern Europe: (i) none of these products cover the
entire region; (ii) the methodologies used in different studies are not
compatible; (iii) validation results are inconsistent and hard to compare;
and (iv) with few exceptions (Potapov et al., 2011), products are not
readily available.

Our research goal here was to fill these gaps and to produce a forest
cover change product for all of Eastern Europe for nearly three decades
using a consistent set of remote sensing data, methodology, and defini-
tions. Our first objective was to develop a methodology that would
allow multi-sensor data integration and seamless forest cover and
changemapping. The methodology that we developed was then imple-
mented to map forest cover change in Eastern Europe from 1985 to
2012. Our second objective was to provide consistent and rigorous vali-
dation of the reported forest cover change. Lastly, our third objectivewas
the unrestricted sharing of the resulting product for further analyses
(http://glad.geog.umd.edu/europe/). While we provide here an over-
view of the results and discuss potential forest change factors, the in-
depth analysis of social and economic drivers of the observed forest
changes was outside the scope of this project.

2. Data and methods

2.1. Study area

Our study area included the Eastern European countries that formed
the “Eastern Bloc” until the end of the 1980s, except the former German
Democratic Republic (aka East Germany, now part of Germany), and
Albania (which disassociated from the Eastern Bloc in 1961). The
study area included several former USSR republics (Estonia, Latvia,
Lithuania, Belarus, and Ukraine) and the European part of Russia
(Fig. 3A). The 2012 national and administrative boundaries of the coun-
tries were obtained from the Global Administrative Areas Dataset
(GADM v2.0, http://www.gadm.org/). Because of the large variability
in the hierarchy of administrative units as well as their size among the
countries in our study area, we performed the sub-national analysis
for administrative units only for the largest countries (Russia, Ukraine,
Belarus, and Poland). For Romania andBulgaria,we used the Eurostat ter-
ritorial units for statistics (NUTS level 2, GISCO — Eurostat, European
Commission; http://epp.eurostat.ec.europa.eu/) and the other countries
were analyzed at the national level. To simplify area estimation, all data
was processed in the Albers Equal Area projection with a spatial resolu-
tion of 30m per pixel. The total study area encompassed 600million ha,
or 6.7 billion pixels.

2.2. Landsat imagery process

We analyzed Landsat Thematic Mapper and Enhanced Thematic
Mapper Plus (TM/ETM+) imagery from the U.S. Geological Survey
(USGS) Earth Resources Observation and Science (EROS) Data Center
data archive. All imagery available in theUSGS archives as off November
2013 were used for our project. In total, we processed 59,539 Landsat
images, including 3436 from Landsat 4 TM, 26,400 from Landsat 5 TM,
and 29,703 from Landsat 7 ETM+. The selected imagery dataset included
all Level 1 Terrain corrected (L1T) growing season images from 1984
until the end of 2012 for the 527 Worldwide Reference System 2
(WRS-2) Path/Row scenes in our study area. We defined start and end
of the growing season using Moderate Resolution Imaging Spectro-
radiometer (MODIS)-based 16-day Normalized Difference Vegetation
Index (NDVI) profiles derived within MODIS-based forest cover mask
for each Landsat footprint (Potapov et al., 2011). Consistent with our
earlier research (Potapov et al., 2011), the growing season was defined
as the sum of all 16-day intervals having an NDVI equal to or above 90%
of the maximum annual NDVI.

All reflective bands (excluding ETM+ panchromatic band) of each
Landsat image were converted to Top of Atmosphere (TOA) reflectance
and the thermal band (high gain thermal band for ETM+)was converted
to brightness temperature (Chander, Markham, & Helder, 2009). We did
not conduct an atmospheric correction. A set of Quality Assessment (QA)
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Fig. 1. Landsat time series and multi-temporal metric sets.

Table 1
Multi-temporal metrics derived from Landsat time-series.

Metrics extracted from observations ordered by date
Computed independently for each Landsat spectral band (3, 4, 5, and 7), NDVI and
NDWI
First and last cloud-free observation
Median and mean of three earliest and latest observations
Slope of linear regression between reflectance value and observation date
Difference between maximal value and preceding/following minimal values
Difference between minimal value and preceding/following maximal values
Largest reflectance drop or gain between consecutive observations

Metrics extracted from observations ranked by band (index) value
Computed independently for each Landsat spectral band (3, 4, 5, and 7), NDVI and
NDWI
Reflectance (index) value corresponding to selected rank (minimum, 10%, 25%,
50%, 75%, and 90% percentiles, maximum)
“Symmetrical” averages for all values between selected ranks
(minimum–maximum, 10%–90%, 25%–75%)
“Asymmetrical” average for all values between selected ranks (minimum–10%,
10%–25%, 25%–50%, 50%–75%, 75%–90%, 90%–maximum)

Metrics extracted from observations ranked by corresponding NDVI, NDWI, or brightness
temperature

Computed for each Landsat spectral band (3, 4, 5, and 7)
Reflectance value corresponding to selected rank (minimum, 10%, 25%, 50%, 75%,
and 90% percentiles, maximum)
“Asymmetrical” average for all values between selected ranks (minimum–10%,
10%–25%, 25%–50%, 50%–75%, 75%–90%, 90%–maximum)
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models were applied to each image yielding land, water, and snow/ice
cover classes and probability of cloud, shadow, and haze contamination
at per-pixel level. We developed the QA algorithm in our earlier work
(Potapov et al., 2011), and improved it using additional input data. Each
QA model consisted of a set of seven bagged classification trees
(Breiman, 1996; Breiman, Friedman, Olshen, & Stone, 1984) derived
from 193 training images distributed throughout the study area. We
conducted a supervised classification for each training image to map
land/water classes and cloud/shadow contaminated pixels. Based on ini-
tial results, we parameterized a separate set of QA models for TM and
ETM+ sensors, and for scenes having a complete Shuttle Radar Topogra-
phy Mission (SRTM) elevation data coverage (one of the inputs for the
model; downloaded from CGIAR-CSI: http://srtm.csi.cgiar.org) and
scenes outside SRTM coverage, where Global Multi-resolution Terrain
Elevation Data 2010 (GMTED; Danielson & Gesch, 2011) were used. A
total of 75 TM images (40 with SRTM and 35 with GMTED) and 118
ETM+ images (45 and 73 with SRTM and GMTED, respectively) were
used to build four generic sets of QA models. Source data for the QA
models included all image spectral bands, a cloud-free 2000–2012
median reflectance composite for the red, NIR and SWIR bands (Hansen
et al., 2013), and Digital Elevation Model (DEM)-based variables. The
DEM-based variables included elevation, slope, aspect with respect to ac-
tual sun position, and illumination (Richter, 2010). Our shadowdetection
model used distance to detected clouds calculated using acquisition sun
azimuth. After we implemented the QA mask, each pixel was classified
as either clear-sky land, water, ice, or cloud/shadow contaminated. To
exclude pixels affected by light scattering from neighboring clouds, a
two-pixel area around clouds was also mapped as a separate QA state.

After the QA screening, we applied a normalization and a surface
anisotropy correction using global Top of Canopy (TOC) reflectance
from MODIS as reference. The relative normalization to the common
reflectance target (MODIS data) was applied to ensure consistency be-
tween sensors in time and space. We used the MOD44C (collection
5) standard product, which consists of 16-day composites of reflective
and thermal bands after atmospheric correction (Vermote, Saleous, &
Justice, 2002; Carroll et al., 2010) from 2000 to 2010 to compile a global
seamless cloud-free TOC reflectance dataset for red, NIR, and two SWIR
MODIS bands (Potapov et al., 2012). For each Landsat image, we created
a Pseudo-Invariant Objects Mask (PIOM) automatically. First, we
excluded all detected cloud/shadow contaminated pixels and water
from PIOM. Second, we excluded pixels with N5% difference in reflec-
tance betweenMODIS TOC and Landsat TOA.We computed the spectral
reflectance difference for Landsat red, NIR and SWIR (bands 5 and
7) and corresponding MODIS bands for all pixels within the PIOM, and
modeled the reflectance bias as a function of the Landsat scan angle
(Hansen et al., 2008; Potapov et al., 2012).Whenwe applied the derived
model to every pixel in the Landsat images, it resulted in normalized,
anisotropy-adjusted reflectance values. Shortwave Landsat spectral
bands (blue and green) were not normalized and not used for further
processing. Surface brightness temperature was used without normali-
zation. We also computed the NDVI and Normalized Difference Water
Index (NDWI; Gao, 1996) for every image as additional data layers.

2.3. Landsat time series and multi-temporal metrics

The Landsat imagery process resulted in a time-series of cloud- and
shadow-free normalized reflectance observations. From this time-
series, we derived a suite of multi-temporal metric sets for each 30-m
pixel, each metric set for a specific purpose (Fig. 1). Multi-temporal
metrics are useful transformations of image time-series for both coarse
resolution (DeFries, Hansen, & Townshend, 1995; Hansen, Townshend,
DeFries, & Carroll, 2005; Reed et al., 1994) and medium resolution data
(Broich et al., 2011; Hansen et al., 2013; Potapov et al., 2012), and facil-
itate land cover and land cover change mapping and characterization
both the state of biophysical variables such as biomass and height
(Pflugmacher, Cohen, & Kennedy, 2012) and the change in biomass
over time (Pflugmacher, Cohen, Kennedy, & Yang, 2014). For gross for-
est cover loss mapping, we derived two “long interval”metric sets: one
for 1985–2000, and a second for 2000–2012, identical to the recently
published global forest loss product (Hansen et al., 2013). These metric
sets had a 1-year overlap to insure that change around year 2000 was
correctly detected. To map tree canopy cover and ultimately forest
cover gain, we derived a 3-year “short interval” metric set for circa
year 1985 (1984–1986), 2000 (1999–2001), and 2011 (2009–2012).
In addition, a set of annualmetricswere produced to compliment longer
interval datasets and to assign the date of gross forest cover loss events.

The “long interval” metric sets (1985–2000 and 2000–2012) were
constructed from all cloud-free observations between the last available
observation before the start of the first year (1985 or 2000) and the last
available observation of the last year (2000 or 2012). The mean start
and end dates of the observations that we included were 26 April
1985 and 5 August 2000 for the 1985–2000 interval, 13 October 1999
and 8 August 2012 for the 2000–2012 interval. The average number of
cloud-free observations used to calculate metrics was 30 per pixel for
the 1985–2000 interval and 70 for the 2000–2012 interval.

To calculate themulti-temporal metrics, we implemented twomain
approaches: one based on time-sequential reflectance change, and
another based on reflectance ranking (Table 1). For the first approach,
we analyzed the spectral reflectance time-series and corresponding ob-
servation dates. For the second approach, we ranked the spectral band
reflectance from low to high (each band was processed individually),
or ranked observations by the corresponding NDVI, NDWI, and bright-
ness temperature ranks. In addition to metrics based on individual
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observations, we used annual median reflectance values to calculate
first and last yearmetrics and the slope of linear regression of the annual
median reflectance as a function of the year of observation.

The 3-year metric centered on years 1985, 2000, and 2011 included
only observations for the center year plus one year before and after. If no
cloud-free observations were available during these years, then we ex-
panded the search interval to ±2 years of the target date. The 3-year
metric sets were based only on reflectance ranking (selected percentiles,
“symmetrical” and “asymmetrical” averages). The annual metric set was
based only on observations within a single calendar year (if no observa-
tions were found, metric value was defaulted to “no data”), and included
minimal, maximal, and median spectral band reflectance, NDVI, and
NDWI values within the year.

2.4. Forest cover change mapping

We defined gross forest cover loss (“forest loss” hereafter) as any
disturbance event, be it a natural disturbance or a human disturbance
such as logging, resulting in complete or nearly complete tree removal
in a given 30-m Landsat pixel. Based on this definition,we treated forest
losswithin natural, managed forests and tree plantations the sameway.
Classifications were implemented at per-Landsat pixel level, with a
minimum mapping unit equivalent to 0.09 ha. We mapped forest loss
as a single dynamic class using a supervised bagged classification tree
algorithm (Breiman, 1996; Breiman et al., 1984). To balance between
model stability and computation timewe employed seven classification
trees in the bagged tree model. Training areas for 1985–2000 were
collected using visual interpretation of the first and last dates, andmax-
imum reflectance composites. We added training data iteratively until
we achieved the desired quality of the outputmap. In total, the manually
selected training polygons of forest loss and forest persistence included
21 million pixels. For each classification iteration, we sampled randomly
20% of source training data seven times to build seven bagged classi-
fication trees. Training data served as the dependent variable and the
1985–2000 time intervalmetrics as the independent variable in the tree
model.We applied our classification trees to the entire study area yield-
ing a forest loss map. For 2000–2012, a forest loss map was already
available as part of a global forest change assessment (Hansen et al.,
2013). However, the global classification model was a conservative es-
timate of forest loss, and thus had higher forest loss omission rates
than our 1985–2000 model. To improve product accuracy and consis-
tency across the entire time series,we performed a new regional change
classification for 2000–2012 using results of the global changemapping
as training data. Seven bagged classification trees were created using
0.1% sampling of no-change areas and 0.5% sampling of change areas
from the global product as dependent variable and 2000–2012 metrics
as independent variables (3.5 million training pixels per tree model in
total).

While forest cover loss usually results in a clear and immediate
change in spectral reflectance, gain of forest cover is a gradual process
with subtle annual change of spectral properties.We define gross forest
cover gain (“forest gain” hereafter) as areas where tree canopy cover
reached a certain threshold by the end of our study period. Instead of
mapping forest gain using a single classification model, as we did
when mapping forest loss, we decided to use a post-classification com-
parison of the tree canopy cover maps for circa 1985, 2000, and 2011,
which were produced using 3-year metric sets. The use of annual tree
canopy cover maps was not viable due to the data gaps and low tree
canopy cover model stability in “data poor” years and regions. We cre-
ated a bagged regression tree model using circa-2000 (1999–2001)
metric set and tree canopy cover training data from the global year
2000 product (Hansen et al., 2013). The global product, however,
overestimated tree canopy cover within peat bog areas in the northern
part of our study area. To address this problem, we manually added
training sites where the initial tree canopy cover results were incorrect.
A set of seven bagged regression trees were created incorporating 0.1%
random sample from global tree canopy cover product and manually
created training as dependent variables (3.5 million training pixels per
tree). The same regression tree model was implemented for all three
dates to insure consistent tree canopy cover mapping. To map areas
that changed in land cover from non-forest to forest during analyzed
time interval, we had to define “forest cover” using a tree canopy
cover threshold. A simple comparison of aggregated areas under canopy
cover classes with official forest area for each country (FAO, 2010) and
each Russian region (ROSLESINFORG, 2003) did not result in a single
consistent threshold. Instead, we used a previously published Landsat-
derived forest cover map for European Russia (Potapov et al., 2011).
The threshold of N=49% tree canopy cover resulted in the same forest
area as in the previously published map, and we used this threshold to
define persistent forest cover and to map forest gain from 1985 to
2012. Forest loss pixels were classified as “no forest gain”, “forest cover
established by year 2000”, and “forest cover established by year 2012”.
Mapping forest gain within areas that had no forest cover in 1985 was
based on a post-classification comparison of tree canopy cover for 1985,
2000, and 2012. Initial results based on a simple comparison showed
that sub-pixel image misregistration caused some false forest gain
along edges of forests. To remove these false changes, we increased
the minimum mapping unit for forest gain from a single Landsat pixel
(0.09 ha) to 0.45 ha, and removed all forest gain areas below this
threshold.
2.5. Forest cover change date attribution

We assigned the date for each forest loss event based on the time se-
ries of two annual products: minimum annual NDVI (within growing
season) and annual tree canopy cover. The first product was part of
the annual multi-temporal metric set, and annual tree canopy cover
was mapped using a separate bagged regression tree model. We used
stable forest areas in the circa year 2000 tree canopy cover product to
select 0.1% of the study area as training data, and annual metrics from
years where sufficient cloud-free data coverage existed (1986–1989,
1994, and every second year after 2000) as independent variables to
create the generalized treemodel. The resulting treemodel was applied
annually. At the pixel level, only pixels with at least one cloud-free ob-
servation within the year were processed, otherwise the pixel was
marked as “no data” for the given year. We then analyzed both tree
canopy cover and theminimum annual NDVI time series for each forest
loss pixel, and applied a set of heuristics to assign forest loss date with
high, medium or low certainty level. If a pixel had a tree canopy cover
above 49% for at least two successive years, and then tree canopy
cover dropped below 20% and did not increase for at least one year,
then loss event date was assigned with the high certainty. More than
52% of all forest loss pixels had this high level of certainty. However, if
no high certainty sequence was found, then the year with the highest
tree canopy cover drop was assigned as the loss date with a medium
level of certainty. If the tree canopy cover trend analysis did not produce
any results (1.4% of all loss pixels), then we used the date of the highest
NDVI drop instead, and assigned a low detection certainty. For pixels
where the loss date was assigned with low certainty, especially in the
case of mixed-pixels on the boundary of loss areas, the loss date may
be assigned incorrectly. Tofix these problems, we applied a 90-m radius
moving window filter for pixels where the loss date was detected with
low ormedium certainty, and assigned it as themajority of the loss date
for pixels in the neighborhood. This filtering process had the effect of
improving date assignments for edge or mixed pixels that were labeled
differently to adjacent pure change pixels. Themajorityfilter altered the
loss date for less than 10% of all forest loss pixels. In relatively rare cases,
a second loss event was assigned for a pixel. This occurred when a pixel
was mapped as forest loss during both time periods, 1985–2000 and
2000–2012. However, a second loss date was assigned only if both
first and second date were assigned with the highest certainty.
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Because the annual tree canopy cover products had temporal gaps
due to clouds and inconsistent data acquisition, the date of forest loss
detection was not always preceded by a year with cloud-free data. To
account for this effect, we recorded the number of years between a
loss event and the preceding cloud-free observation for each change
pixel andused it to allocate change area over time (see Section 3 below).

To analyze the annual trends of forest loss we performed a linear
regression model fit of the annual forest loss time-series. The slope of
linear regression between y= annual loss versus x=year was derived
using linear least squares method. The p-value of the slope per regres-
sion model was used to measure significance of the forest loss trend
within countries and regions.

For forest cover gain, it is not meaningful to assign a specific year as
the year when the gain occurred, especially in boreal and temperate
forests where tree canopy cover and tree height gradually increase as
trees grow on previously open land. Instead, we assigned dates only
for 2000 or 2012, i.e., the years where we mapped tree canopy cover
using the 3-yearmetrics. This resulted in two nominal periods for quan-
tification of forest gain, 1985–2000 and 2000–2012.
Fig. 2. Forest dynamics types. Scale on the right represent tree canopy cover. A — Stable
non-forest; B — stable forest; C — forest gain over non-forest in 1985; D — forest loss;
E — forest loss followed by forest gain; F — repeated forest loss separated by forest gain;
G — forest loss on areas which gain forest cover after non-forest state in 1985.
2.6. Thematic attribution of forest cover loss and gain

Forest loss can occur due to a range of causes, and we separated
forest loss due to large wildfires and windstorms from all other types
of disturbance (including logging, conversion, and disease). The analysis
was based on visual interpretation and manual delineation of large-
scale natural disturbance. Only large disturbance areas (N20 ha) that
were unambiguously either fire or wind-damageweremapped. Smaller
natural disturbances and areas where wind-damage was immediately
followed by salvage logging were left in the “other” disturbance type
category.

In terms of forest gain in areas that were non-forest in 1985, we
separated reforestation, defined as forest gain after forest disturbance
(be it natural or due to harvesting) from afforestation, defined as forest
cover gain within abandoned agriculture lands. First, we applied a su-
pervised decision tree classification using 0.5 million training pixels
manually mapped as agriculture or other non-forest category in the
year 1985. The classification was complemented by extensive manual
correction of the resulting classification using visual interpretation of
1985 land-use within the forest-gain mask. This correction step was
especially important in the southern part of the region where spectral
signature of tilled agricultural areas and recent clear-cuts were very
close. Visual interpretation allowed us to employ other criteria, such as
the location and shape of the forest gain patch, to correctly map 1985
land-use.
2.7. Forest dynamics types

After compiling the forest loss and forest gain maps with the forest
cover extent for the year 1985 (defined using N=49% TCC threshold),
we produced a map of forest dynamics types (Fig. 2). We defined basic
types of forest dynamics to support further analysis and to generate sum-
mary statistics. Dynamics types A andBwere stable non-forest and forest,
where we detected no change events. Types C and G were areas where
forest cover gain occurred from non-forest in 1985. The difference be-
tween these two types is that the second type (G) experienced forest
cover loss after forest cover gain. Types D, E, and F represent forest
cover loss. Forest gain occurred after loss in areas of types E and F, and
with a second loss eventmapped for type F. In type Dwe did not observe
forest gain after loss, either due to a short time interval between the loss
event and the end of study period (2012), or because of permanent forest
clearing (in case of agriculture, settlement, or infrastructure expansion).
Figs. 3 and 4 illustrate Landsat image composites and classification re-
sults: forest dynamics types and the dates of forest loss.
2.8. Validation

We validated the accuracy of our forest loss and forest gain maps
using a probability-based stratified sample of individual 30-m pixels.
The sampling design followed Stehman (2012) and Tyukavina et al.
(2013), the accuracy assessment was performed according to Stehman
and Czaplewski (1998) and Olofsson et al. (2014), and the sample-
based area estimation was performed according to Stehman (2013).
The sampling and validation were done separately for forest
loss mapped for 1985–2000 and 2000–2012 to compare the accuracy
of the two analyses. We selected strata based on the assumption
that most of the commission and omission errors are tied to change
area boundaries (see Tyukavina et al., 2013). We identified a one-
pixel buffer outside and inside change areas as “peripheral no change”
and “peripheral loss”, and the remaining pixels were assigned to “core
loss” and “core no change” strata. The “peripheral” strata were
designed to target likely areas of change omission and commission
error.

We validated areas of forest gainwithin 1985 forest (thatwas subse-
quently lost) and 1985 non-forest areas separately. In addition, we
defined strata specifically to validate accuracy of land-use change map-
ping (reforestation on forest land-use lands vs. afforestation of agricul-
ture lands). The sample design (total number of pixelswithin study area
and number of samples) is presented in Table 2.

The total number of samples was selected to balance anticipated
standard error and available resources for image interpretation: 1000
for each of forest loss classifications and 500 for each of forest gain
classifications. Sample allocation for the forest loss validation was a
compromise between equal and proportional: more samples were allo-
cated to the “peripheral” strata where themajority of misclassifiedmap
pixels were anticipated to be found. In the case of forest gain within
1985 non-forest areas we also employed an intermediate allocation be-
tweenequal and proportional to target relatively rare forest gain classes.
Proportional allocation was used for forest gain following forest loss
where strata areas were comparable. We did not conduct a validation
of the forest loss thematic attribution (windstorms and wildfires) be-
cause this product was based on visual interpretation of clearly defined
patterns on Landsat imagery, and no independent validation data was
available.



Fig. 3. A. Circa year 1985 Landsat image composite for the entire region of analysis (SWIR-NIR-red RGB band combination). Areas outside region of analysis shown in white. B. A color
composite of stable forest cover in green (1), gross forest cover loss in red (2), and gross forest cover gain in blue (3). Magenta (4) represent areas with forest cover loss followed by forest
gain. For visualization purposes, we resampled the dataset to a 300-m pixel grid, and calculated the percentage of the pixel area with forest cover and forest change values. For the visu-
alization, each layer scaled independently to highlight geographic pattern of forest dynamics.
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The only reference data available to collect information for our vali-
dation sample for 1985 to 2012 were Landsat imagery. High spatial res-
olution imagery data over the study period are largely non-existent, and
only available since 2000. We decided against using different sources of
reference data for the 1985–2000 and the 2000–2012 accuracy assess-
ment, because this would make the validation results incompatible. To
create a consistent sample validation dataset, we complied annual
Landsat composites. All available annual median composites, together
with selected annual metrics and products, were visually examined
for every validation sample (Fig. 5). Our Landsat-based per-pixel visual
change detection method is similar to the TimeSync application devel-
oped by Cohen, Yang, and Kennedy (2010) to assess the accuracy of
Landsat-derived forest change products. Sample pixelswere interpreted
by a regional forest mapping specialist (S.T.), and ambiguous samples
were cross-validated by a second observer (A.T. or P.P.). Validation
results were used to report model accuracy measures and associated
confidence intervals following Olofsson et al. (2014). Sample-based
class areas were computed from error matrices using a stratified esti-
mator (Stehman, 2013).

We also conducted a limited field verification of our forest gain map
focusing on abandoned agriculture areas in several regions of European
Russia (Kirov, Nizhny Novgorod and Vladimir) during the summers of
2012 and 2013. We selected these regions because they had extensive
forest gain on former agriculture lands. Conducting field work through-
out our entire study area was unfortunately beyond the scope of our
project. In total, we collected 75 field points within different stages of
abandonment and afforestation. Point samples were randomly selected
within abandoned areas. For each point we visually assessed tree canopy
cover andmeasured tree canopy height using a clinometer. For 58 points
we alsomeasured the age of the oldest trees foundwithin the abandoned
area with an increment borer.

3. Results

The forest cover for year 1985 (sum of dynamics types B, D, E, F, see
Fig. 2 for explanation)was 216million ha (Table 3). By 2012, forest area
increased by 10 million ha (4.7%) and reached 226 million ha (sum of
types B, C, E). In total, there were 24 million ha of forest loss (including
areas that experienced forest gain after loss), which was substantially
lower than the 34 million ha of forest gain. Forest loss of 1985 forests
(sum of types D, E, F) represented 11% of the 1985 forest area, or 0.41%
of forest loss/year. The majority (58%) of the forest loss areas were
reforested by 2012. Indeed, by 2012, more than 15% of the total forest
area consisted of young forests originating within the previous 27 years.
Forest gain on 1985 non-forest lands represented 5.8% of the 1985 non-
forest land area (excluding permanent water). Forest dynamics types



Fig. 4. (A) and (B) — Landsat image composites for years 1985 and 2012, respectively (SWIR-NIR-red RGB band combination). (C) — Annual gross forest cover loss (stable forest cover
shown in gray). (D)— Forest dynamic types (see Fig. 2 for the definitions of the types. Forest dynamics types F and Gwere generally rare and not presentwithin the subset). Area centered
on 43°19′E 63°27′N (Russia, Arkhangelsk region).Within the subset, forest loss areas include clear-cut logging (large blocks), logging for infrastructure development (linear features), and
bark beetle damage (scattered small-scale loss events).
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that experienced a second loss event (F), as well as forest loss within
forest gain areas established over 1985 non-forest lands (G) were rare,
and generally reflective of specific land dynamics (e.g., we found type G
mostly within year 2010 burned areas in Russia, where fires affected for-
ests of all age groups).

The attribution of year to each forest loss event (Fig. 6) was affected
by the lack of cloud-free observations in some years (Fig. 10). Whenwe
examined the assigned date by itself (Fig. 6, a), then the annual change
area has high variance among years, especially during 1989–1998,
whichwas a period of low Landsat data availability in the USGS archive.
Table 2
Stratified sampling design for gross forest cover loss and gross forest cover gain validation.

Strata Total number of pixels Samples (30 m pixels)

Gross forest cover loss 1985–2000
Core loss 51,008,874 110
Peripheral loss 85,499,238 130
Peripheral no change 156,547,255 160
No change 6,378,510,240 600

Gross forest cover loss 2000–2012
Core loss 43,090,561 110
Peripheral loss 87,088,209 130
Peripheral no change 149,958,610 160
No change 6,391,428,227 600

Gross forest cover gain within gross forest cover loss
No change 113,044,410 210
Forest gain 153,642,472 290

Gross forest cover gain within non-forest areas of 1985
Reforestation (over logging/fires) 153,409,335 136
Afforestation (over ag lands) 71,544,209 64
No change (stable non-forest) 4,047,459,920 300
The majority of the forest loss was accordingly attributed to years 1999
or 2000, which is when Landsat 7 became operable. To reduce the
impact of image acquisition gaps, we allocated the change detected in
a given year equally over the time interval between the detection year
and the year with the last cloud-free observation before the change
detection (Fig. 6, b). This approach resulted in markedly different
annual forest loss totals during the decade with low image availability
(1988–1998).

The aforementioned allocation of change area, however, did not
fully suppress the disproportionally large change detected in year
2000, principally due to pre-2000 data gaps that precluded the
appropriate annual assignment of forest cover loss. To further reduce
the effect of data gaps, we calculated average annual change area for
multi-year intervals (1986–1988, 1989–2000, 2001–2006, 2007–
2012). Comparison of these intervals for the entire study area (Fig. 6,
d) showed that the annual forest loss decreased during the 1990s
by 26% compared to 1986–1988, and increased since the early
2000s, with average annual loss from 2007 to 2012 22% higher than
that in the 1986–1988 time interval. To validate this general trend,
we calculated the annual change area for only those pixels for which
the change date was allocated with the highest certainty (Fig. 6, c).
For these pixels, the number of available acquisitions did not affect
the loss date assignment, because they represent only pixels with the
strictest change date assignment criteria. The trends in annual forest
loss for these pixels were very similarly to those for the interval aver-
ages for all pixels (Fig. 6, d), including the decrease in the 1990s and in-
crease in the 2000s.

Of the total forest loss area, we attributed 1.3% to windfalls and 6.1%
to wildfires. The area attributed to these disturbance types increased
toward the end of the time period (Fig. 7). The upward trend was sta-
tistically significant for both wildfires (p b 0.015) and windstorms



Fig. 5.Validation data used for validation pixel interpretation. Upper part— available Landsat image composites (band combination SWIR-NIR-red). Cloud or shadow contaminated pixels
were removed. The sample pixel is outlined in red (location 24.4101 E, 55.1556 N). The graph at the bottom shows annual profiles of SWIR band reflectance (red line), tree canopy cover
(green line) and minimumNDVI (white line) for this sample pixel. In this example, forest loss occurred in 2007 without subsequent forest gain. Visualization images were automatically
prepared for all validation pixels using GDAL and R software packages.
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(p b 0.001). Forest loss due to wildfire was often detected with a one-
year lag though due to cloud and smoke contamination during the fire
year, which reduced image availability, and also because fires some-
times occurred after the last cloud-free Landsat acquisition for the fire
year. During an extreme fire year, large proportions of the total forest
loss may be due to fire. For example, in 2011, 29% of all forest loss was
due to wildfires. In comparison, windstorm damage did not contribute
more than 7% of total forest loss even during extreme years.

While forest loss was widespread, forest generally recovered fast
(Fig. 8). More than 60% of the total area where forest loss occurred
prior to 2007 had a tree canopy cover above 49% by 2012, and this
rate was more than 85% for pre-1988 loss areas. The highest rate of for-
est recovery occurred in European Russia (where forest loss rates were
Table 3
Area of forest dynamics types 1985–2012.

Forest dynamics type 1985
forest
cover

2012
forest
cover

Area, ha ∗
1000

No data 0.5
A Non-forest (stable) N N 364,272
B Forest (stable) Y Y 192,056
C Forest gain on 1985 non-forest N Y 20,111
D Forest loss Y N 9974
E Forest loss followed by forest gain Y Y 13,828
F Forest loss followed by forest gain, and another

forest loss (two loss events)
Y N 64

G Forest gain on over 1985 non-forest followed by
forest loss

N N 135

The “no data” areas represent several small Croatian islands that are outside the Landsat
processing area.
highest in the 1980s) and the lowest in Macedonia, potentially due to
dry climate conditions slowing tree regrowth.

The total forest gain on areas that were not forests in 1985 was over
20 million ha. Of this area, 68% (or 13.6 million ha) was due to forest
land-use dynamics (reforestation after pre-1985 forest loss), and 32%
(or 6.4 million ha) due to forest growth on former agricultural land.
The reforestation of forest disturbance happened largely before 2000
(72% were reforested by this date), while afforestation of former agri-
cultural lands occurred largely between 2000 and 2012 (53% of the
total afforestation area).

The trends of forest cover change and forest loss area at the national
level for the 20 countries in our study area were highly variable and
illustrated the diversity of forest land change dynamics in Eastern
Europe (Table 4). Forest cover area increased in all countries except
Estonia, Latvia, and Macedonia. Annual forest loss trends varied substan-
tially among countries, and among epochs: 1986–1988 (socialism),
1989–2000 (transition and post-socialism), 2001–2006 (before economic
crisis), and 2007–2012 (during and after economic crisis). These differ-
ences are discussed below in Section 4.3.

Across Eastern Europe, there were pronounced regional hotspots of
forest loss rates (Fig. 9A), and changes in annual forest cover loss area
(Fig. 9B), as well as of net forest cover area change (Fig. 9C), and forest
gain on former agricultural areas (Fig. 9D). Differences in these metrics
were pronounced among counties, and there was substantial variability
among administrative regions within Russia, Ukraine, and Poland.

3.1. Validation results

Our sample-based estimated accuracy assessment (Table 5) showed
reliable classification model performance for both forest loss and forest
gain classifications. The expert-driven model (forest loss 1985–2000)



Fig. 6.Annual gross forest cover loss area (ha ∗ 1000). (a) Areabydate of changedetection; (b) area of changedistributed over years between detection and the last cloud-free observation;
(c) average annual change area for intervals 1986–1988, 1989–2000, 2001–2006, 2007–2012; (d) area of change allocated with the highest certainty distributed over years between de-
tection and the last cloud-free observation.
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delivered balanced omission and commission errors, which was the
objective of our iterative classification approach. The forest loss 2000–
2012 model based on existing training resulted in a higher omission
rate, and hence a 6.96% difference between map-based and sample-
based area estimate. The high accuracy of forest gain after forest loss
can be explained by relative simplicity of the change event and small
total area of both classes (limited by forest loss). The forest gain detec-
tion within 1985 non-forest areas had the lowest accuracy of all of our
results. The comparison of sample-based and map-based estimates
showed that the post-classification approach that we employed for
the change detection failed to map 21% of the forest gain area.

The accuracy of the attribution of forest gain to either preceding
forest loss or agricultural land-use was assessed only for those pixels
that were correctly mapped as afforestation (182 samples). In total,
83.52% of those samples were allocated to the correct classes. The
majority of expert-interpreted forestry land-use samples were mapped
correctly (94.44%), while a substantial percent of agriculture land-use
pixels (32.43%) were falsely attributed as forestry land-use. Thus,
Fig. 7. Annual area (in ha ∗ 1000) of gross forest cov
the area of afforestation on former agricultural lands was possibly
underestimated.

Our validation of the forest loss date allocationwas based on a sample
of 887 forest loss pixels from forest loss 1985–2000, forest loss 2000–
2012, and forest gain after forest loss sample sets, where we could inter-
pret the reference date unambiguously. It should be noted that analyst
can interpret the date of change event only from available Landsat acqui-
sitions, and so this date may not represent the actual forest loss date but
the date of the first clear Landsat image after the change event. For each
sample, the date assigned by the automatic model was compared to
date assigned by visual interpretation of annual image composites. The
datewas correctly determined for 76.4% of samples; and 89.9% of samples
had a date difference of ±1 year. On average, the allocation model
assigned the date of forest loss of 0.26 years later compared to actual
change event date. Pixels for which the date was assigned with the
highest certainty had the lowest average difference compared to the
actual change event (0.17 years later). The highest difference in date
(almost 3 years on average) occurred in the case of samples with the
er loss attributed to windstorms and wildfires.



Fig. 8. Percent forest gainwithin forest loss areas as a function of the year of the forest loss.
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lowest certainty of the date allocation (i.e., where NDVI time-series was
used instead of tree canopy cover annual data).

Field verification results (Table 6) confirmed that our tree canopy
cover threshold resulted in an accurate forest gain detection. Themajority
of plots withmore than 50% tree canopy cover in the field were correctly
mapped as forest gain. For broadleaf and pine tree forests growing on
abandoned lands in the central part of European Russia this threshold
corresponded to a median tree height above 6 m and an age older than
12 years. Our field-based results, however, are only valid for regrowth
on abandoned agriculture areas in the hemiboreal forest zone.

4. Discussion

4.1. Data availability

The USGS Landsat program is the oldest provider of operational
medium-resolution satellite data. The data record of Landsat TM/
ETM+/OLI instruments spans over last 30 years, and the free data
access and redistribution policy made it the best data source for the
analysis of long time-series of land cover change. The main problem of
the existing archive, however, is an inconsistent data acquisition record.
Table 4
Forest cover change and annual gross forest cover loss in each country.

Country Forest cover,
(thousand ha)

Net forest cover change (%

1985 2012

Belarus 7771 8253 6.2
Bosnia and Herzegovina 2299 2570 11.8
Bulgaria 3508 3902 11.2
Croatia 1954 2229 14.1
Czech Republic 2689 2801 4.2
Estonia 2409 2361 −2.0
Hungary 1411 1791 26.9
Kosovo 335 349 4.0
Latvia 3292 3164 −3.9
Lithuania 2008 2083 3.7
Macedonia 694 689 −0.7
Moldova 241 310 28.9
Montenegro 561 569 1.5
Poland 8470 9235 9.0
Romania 6978 7270 4.2
Russia (European Russia only) 156,996 163,289 4.0
Serbia 2246 2493 11.0
Slovakia 2176 2221 2.1
Slovenia 1214 1233 1.6
Ukraine 8671 9182 5.9
A dramatic decline in acquisitions occurred after the commercialization
of the Landsat 5 satellite in 1984, with a considerable amount of data
collected by international ground receiving stations.While data from in-
ternational ground receiving stations are currently being transferred to
the USGS EROS archive, the degree to which they may fill the existing
data gap over Eastern Europe was unclear when we conducted our
study. Another factor reducing data availability are problems with
Landsat 4 and 5 imagery calibration precluding the conversion to terrain
corrected L1T data. Together, these limitations cause low image avail-
ability before 1986 and between 1989 and 1998 (Fig. 10). This is unfor-
tunate, because the number of growing season images per footprint
determines the amount of cloud-free data available within the study
area. A nearly 100% annual cloud-free coverage is available only during
years for which there are seven or more images per footprint. However,
such a high number of acquisitions cannot be obtained by a single sensor
for the entire region. The growing season length (as defined using
MODIS data, see Section 2.2) is highly variable across the study area,
but only 80 days in tundra regions, 110 days in the temperate part of
the study area, and 160 days in the south. A single Landsat sensor with
an observation frequency once per 16 days will acquire only 5 images
in the tundra region, and less than 7 in the temperate zone. A constella-
tion of two sensors (e.g., Landsat 5 and 7) actively acquiring data (as was
the case in 2006, 2007, and 2009–2011) collects enough observations
for nearly complete cloud-free coverage sufficient for annual forest
change mapping and correct change date allocation. Similarly, the
acquisition frequency from both Landsat 7 and 8 platforms in 2013
(Fig. 10) provides data coverage sufficient for annual monitoring until
the decommissioning of Landsat 7.

4.2. Classification model performance

The approach that we present here, including the per-image calibra-
tion, per-pixel quality assessments, and time-sequential metric analyses
have been developed and tested before in both regional (Hansen et al.,
2008; Potapov et al., 2011, 2012) and global analyses (Hansen et al.,
2013). However, the work presented here extends these prior ap-
proaches, and introduces a number of improvements. First, all reflectance
and brightness temperature data were scaled to a 16-bit dynamic range,
preserving radiometric resolution of the source data and enabling future
Landsat 8 data incorporation. Second, the new QAmodels included addi-
tional input metrics such as illumination, distance to clouds, and median
reflectance cloud-free reference image composite. Third, we used
of 1985 forest) Annual forest loss (thousand ha)

1986–1988 1989–2000 2001–2006 2007–2012

30.6 37.7 48.0 44.1
2.6 3.8 3.4 2.2
9.8 6.7 12.1 9.9
3.3 3.7 5.6 4.9

13.7 10.6 17.1 27.1
7.2 11.2 22.1 26.3
7.3 7.7 13.6 11.5
1.8 1.1 1.6 1.4
9.9 20.3 39.7 46.7
8.7 11.3 16.9 20.6
2.3 1.8 3.1 3.7
0.4 0.2 0.5 0.4
1.7 1.1 1.3 1.1

26.1 31.6 57.5 71.1
16.1 16.8 28.7 29.7

704.4 536.6 600.5 687.2
3.6 2.7 4.2 3.8
4.2 6.1 10.9 18.1
0.8 1.1 1.9 2.4

28.1 32.8 58.8 61.3



Fig. 9. Regional comparison of forest loss and forest gain: (A) forest loss 1985–2012 as percent of forest cover 1985; (B) difference (in thousand ha) of annual forest loss between 2007–2012
and 1986–1988 intervals; (C) net forest cover change between 1985 and 2012 (in thousand ha); and (D) percent of forest gain on former agricultural areas relative to the total non-forest land
area in 1985.
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separate QA models for different sensor types and latitude ranges to in-
crease precision. Fourth, all QA and classification models were based on
bagged classification and regression tree algorithms to improve model
stability and reduce sensitivity to noise and errors in the training data.
Fifth, a number of multi-temporal metrics were increased to improve
class separability. Newly developedmetrics included reflectance rankings
based on corresponding NDVI and NDWI (which summarized spectral
properties for the peak of growing season), and brightness temperature
values (which, in particular, highlight spectral properties after forest
cover removal). Such metrics have been employed with high temporal,
low spatial resolution data sets such as MODIS, and improve the feature
spacewhenmapping land cover (Hansen et al., 2005). In addition, several
complimentary time-sequentialmetricswere used, including the slope of
the linear regression, difference between consecutive observations, and
maximal difference between consecutive minimal and maximal values.
Based on the forest loss classification tree model analysis, a subset of
these newmetrics (in addition to the first cloud-free observation reflec-
tance and elevation) was responsible for 50% of the total deviance de-
crease of the tree model.

The high forest loss accuracy (Table 5) confirms the importance of
QA, normalization, and metric processing approaches that we used.
We compared the accuracy for 2000–2012 forest loss of our product
and to the global assessment of Hansen et al. (2013) using the same
reference sample data. Our product delivered user's accuracy of 94%
and producer's accuracy of 88% while accuracy of global product was
considerably lower, at 65% and 68%, respectively. The higher accuracy
of our classification model is probably due to both a limited extent of
the study area (regional vs. global) and a more sophisticated metric
set with higher radiometric resolution.

The stratification aimed to target probable omission and commission
errors for the forest loss validation highlighted the importance of a sepa-
rate analysis for edge pixels. Because of the small patch size of many
forest clearings, especially in the southern regions of the study area, the
forest loss area comprised by edge pixels was larger than the area of
“core” forest loss (63% and 67% of total forest loss area, respectively for
1985–2000 and 2000–2012 intervals). Errors (disagreement with refer-
ence data) were found nearly exclusively within edges (only 1 out of 67
error pixels detected for both modes was found in the “core”). Using a
simple two strata design (loss/no loss)may result in an incorrect accuracy
assessment, because most of the errors found within “peripheral” strata
would be omitted.

The tree canopy cover mapping served an important role in the
change assessment, both for mapping forest gain and for the allocation
of the forest loss dates. We employed the year 2000 tree canopy cover



Table 5
Forest loss and forest gain map accuracy measures (including 95% confidence interval
boundaries).

Forest loss 1985–2000

Forest loss user's accuracy 89.9 ± 3.8
Forest loss producer's accuracy 90.0 ± 23.0
Map overall accuracy 99.6 ± 0.3
Difference between sample-based and map-based forest loss area,
% of map-based estimate

−0.083 ± 0.005%

Forest loss 2000–2012
Forest loss user's accuracy 94.3 ± 2.9
Forest loss producer's accuracy 88.2 ± 22.0
Map overall accuracy 99.6 ± 0.4
Difference between sample-based andmap-based forest loss area,
% of map-based estimate

+6.96 ± 0.38%

Forest gain after forest loss
Forest gain user's accuracy 98.3 ± 1.5
Forest gain producer's accuracy 96.9 ± 1.9
Map overall accuracy 97.2 ± 1.5
Difference between sample-based andmap-based forest gain area,
% of map-based estimate

+1.43 ± 0.04%

Forest gain on 1985 non-forest
Forest gain user's accuracy 91.0 ± 4.0
Forest gain producer's accuracy 75.2 ± 16.3
Map overall accuracy 98.0 ± 1.4
Difference between sample-based andmap-based forest gain area,
% of map-based estimate

+21.00 ± 4.58%
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map produced by Hansen et al. (2013) as training data due to project
limitations that precluded collecting direct training from high spatial
resolution data. The resulting tree canopy cover map was used for
change detection and stratification of forest cover and non-forest
areas, but its accuracy is unknown.We suggest that this is not a problem
because our primary goal was not to map exact values of tree canopy
cover per pixel, but rather to produce a consistent time-series of tree
canopy cover for change analysis. Forest gain was mapped using post-
classification comparison of tree canopy cover layers, and forest loss
date was attributed based on the annual tree canopy cover time-
series. High accuracy of these final products, proved by our validation
results, confirms the viability of our approach, and the validity of the
input data that we used. Some problems remained, however. First, a
post-classification method is sensitive to image misregistration espe-
cially when there are mixed pixels along forest boundaries. We solved
this problem by increasing the minimum mapping unit, which, in
turn, increased forest gain omission error. Second, our annual tree
canopy covermodel was sensitive to time of the year for available annual
observations, which caused model instability in years with low image
availability. Our annual forest loss allocation algorithm employed a
Table 6
Field-based validation results for forest loss over abandoned agricultural areas.

Tree canopy characteristics Total samples Percent detected as forest gain

Height, m
b5 26 0
5–6 22 14
7–9 19 84
N9 8 100

Tree canopy cover, %
b10 19 0
11–30 13 8
31–50 17 18
N50 26 92

Oldest tree age, year
b6 4 0
6–12 33 12
N12 21 81
specific set of rules to control for “spikes” in the tree canopy cover
time-series.

Setting the correct tree canopy cover threshold to map the “forest
cover” class is another challenge.We defined forest cover class threshold
as N=49% tree canopy cover, based on a comparison with a previously
published Landsat-based forest map for European Russia (Potapov et al.,
2011). This threshold was used for both forest gain and “stable” forest
mapping. Comparing the area of forest cover derived using this threshold
for circa 2000 tree canopy cover with national forest area for year 2000
(FAO, 2010) we found that our results overestimated the area reported
by FAO by only 4.07%. At the individual country level, countries with
large areas of natural forests in relatively flat terrain (Poland, Estonia,
Latvia, Lithuania, Slovenia) FAO reported forest areas within 10% with
our forest cover estimate. However, our results overestimated forest
area by 14% in countries with extensive tree plantations, and mountain
areas (Romania, Bulgaria, Croatia). The same was true for the European
regions of Russia when we compared our forest area with official forest
cover statistics for the year 2003 (ROSLESINFORG, 2003). Our year 2000
product overestimated forest area by 4.04%, with most of the large for-
ested regions having an official forest area estimate within 10% of our
estimate. The largest difference was found in the southernmost forest-
steppe and northernmost forest–tundra administrative regions, where
forest cover is generally sparse. We concluded that while a forest
cover map based on a consistent threshold across Eastern Europe is
slightly different fromnational forest cover estimates, it provides a con-
sistent measurement of established tree cover without differentiating
land-use types and distinguishing trees in natural forests, plantations,
andmature orchards. The forest loss productwas created independently
of tree canopy cover. However, our forest loss training data were consis-
tent with our forest cover definition. Comparison of forest loss areas
after 2002 with tree canopy cover 2000 showed that more than 98% of
the forest loss areas had tree canopy cover of N=49% before the change
event. Field verification, although limited, also confirmed our choice of
the tree canopy cover threshold for the forest gain mapping. Based on
these comparisons we concluded that our forest cover and forest cover
loss and gain definitions were consistent between our products, and
the resulting area statistics are close to national forest cover standards.

4.3. National and sub-national dynamics of forest cover

Timber harvesting is the main driver of forest cover dynamics in
Eastern Europe (Schelhaas, Nabuurs, & Schuck, 2003). The extent of
large natural disturbanceswas relatively low inour study, and comprised
less than 10% of the total forest loss area. It should be noted though that
we did notmap small-scale, scattered disturbance, such as treemortality
due to insect infestation, as well as salvage logging, as large natural dis-
turbance class. However, we assume that their relative extent is small.
Analyzing annual forest loss (excluding large-scale fires and wind dam-
age) per country revealed interesting parallels in forest disturbance
trends (Fig. 11). Most of the countries had a small increase or decline
in forest loss after the breakdown of the Soviet system in the late
1980s. However, some Central and Northern European countries more
quickly transitioned to market economies, and did not decrease timber
harvesting (Poland, Slovakia, Estonia, Latvia, Lithuania). Other countries
experienced a pronounced decline in timber harvesting due to the eco-
nomic crisis (Russia, Bulgaria, Romania) and armed conflicts (former
Yugoslavia countries) in the 1990s. During the first half of the 2000s,
timber harvesting increased in all countries (except Bosnia and
Herzegovina). However, the global economic crisis of the late 2000s
slowed down wood production in most countries, with exceptions of
Central Europe and Baltic states. In many countries forest loss was
lower in 2012 compared to pre-2007.

The total annual forest loss trend and the net forest cover area
change within the study area was largely driven by its largest region —

European Russia. Russia comprised 72% of the total forest area within
the study area andwas responsible for 69% of the forest loss area. Forest



Fig. 10. Left scale: L1T image availability per sensor/year over selected 527 WRS-2 Path/Row scenes. Right scale: percent of the study area covered with annual cloud-free observations.
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loss dynamicwithin the Russian part of the study area dependedmainly
on two factors: timber harvesting rates and natural disturbance events.
Timber harvesting experienced dramatic changes during the transition
from the Soviet planned economy to more open markets. After the
breakdown of the Soviet Union, timber production decreased by 29%
compared to 1990 (ROSSTAT, 2008). Since 2000 timber harvesting
increased slightly, but still remained lower than in the late 1980s. This
recent historical logging dynamic aligns well with our forest loss area
results at the national level (Fig. 11G). Forest loss trends other than
those attributed to large-scale natural disturbance in European Russia
did not exhibit a statistically significant increase from 2000 to 2012.

The regional variation of forest loss and forest gain within European
Russia was quite pronounced (Fig. 9). Forest loss rates (measured
as percent loss of forest area) was highest in Western (especially in
Fig. 11. Average annual gross forest cover loss (excluding wind and fire damage) as per-
cent of year 1985 forest cover; (A) Baltic countries (Estonia, Latvia, Lithuania);
(B) Central European countries (Poland, Czech Republic, Slovakia); (C) Hungary;
(D) Ukraine; (E) Belarus; (F) Black sea countries (Bulgaria, Romania, Moldova);
(G) European part of Russia; (H) former Yugoslavian countries (Bosnia, Croatia, Kosovo,
Macedonia, Montenegro, Serbia, Slovenia).
Leningrad) and Central regions, where it increased from the late
1980s to 2012. Logging and windfalls were responsible for the forest
loss increase in the West, while wildfires of 2002 and 2010 affected
Central regions. Forest loss rates in the Northern and Northeastern part
were lower, and decreased even further by 2012. As a result, most of
the territory experienced net forest cover gain, except the regions with
the highest population density around Moscow and Saint Petersburg
where extensive clearing for infrastructure and settlements occurred.
Central andNorthern European Russiawere the hotspots for the decrease
of agricultural area after the breakdown of the planned economy
(Alcantara, Kuemmerle, Prishchepov, & Radeloff, 2012; Prishchepov,
Radeloff, Dubinin, & Alcantara, 2012). Agricultural land abandonment
and subsequent afforestation was mostly located in the southern taiga
and hemiboreal forest belt, where poor soils and cold climate limit the
profitability of row crop production. Cropland area within the Russian
part of the study area decreased by 34% from 1990 to 2007, resulting in
28million ha of abandoned land (ROSSTAT, 2008). According to our re-
sults, only a small fraction of these abandoned croplands (4 million ha,
or 14% of total abandoned area) converted to forests, mostly due to
natural succession with seed sources from nearby forests. Other areas
are likely in the process of forest and shrub encroachment, but the
tree canopy cover on these lands did not meet our forest cover criteria
(N=49%) by year 2012. Of the total forest gain area on former agricul-
tural lands within the study area, 64% was located in European Russia.

Baltic countries represent hotspot of intensive forest use within the
region. These countries are characterized by the highest disturbance
rates, estimated as percent forest loss of 1985 forest cover (24% in
Latvia, 22% in Lithuania, and 18% in Estonia). Most of these disturbances
were due to timber harvesting. Wildfire and windstorms played a rela-
tively small role in these countries. Forest loss within these countries
did not decline during the economic transition period, and in fact expe-
rienced the highest rates of increase compared to the late 1980s (the
forest loss area increase was significant with p b 0.1e−6 for Estonia,
p b 0.1e−7 for Latvia, and p b 0.001 for Lithuania). As a result, Estonia
and Latvia experienced a net forest cover decline, by 2% and 4%, respec-
tively. Several factors may be responsible for the intensive logging and
net forest cover decline: land restitution and market opening, trade lib-
eralization after joining the EuropeanUnion, short distance to paper and
timber mills in Scandinavia and Poland, removal of Soviet forest
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protection restrictions, and the maturing of pine plantations established
immediately after World War II in areas of degraded and burned forests
(Brukas, Linkevicius, & Cinga, 2009; Lazdinis, Carver, Carlsson, Tõnisson,
& Vilkriste, 2004). Analysis of the relative importance of these factors
will require a separate socio-economic research. The forest gain rates
were also high in these countries, and young tree stands (established
after 1985) comprised more than 20% of total forest cover area in
Estonia and Latvia.

Overall, forest loss rates were high in Central European countries
(Czech Republic, Slovakia, and Western regions of Poland). The forest
loss area increased throughout the study period in Slovakia and
Poland, and in Czech Republic it increased after a brief decrease in the
1990s. For all of these countries, the forest loss increase trendwas statis-
tically significant (p b 0.001). Interestingly, the Central European coun-
tries did not experience a decrease in timber harvesting during the
economic crisis. We consider the growth of the Polish timber industry
a main factor for the forest loss increase in the Central and Baltic coun-
tries. From 1985 to 2012 fiberboard production in Poland increased by a
factor of 4 and paper and paperboard production doubled (FAOSTAT,
http://faostat.fao.org/). As of 2012, Poland had the second largest timber
processing industry in Eastern Europe (after Russia). Polish timber
processing uses wood from domestic sources and from neighboring
European countries. Windstorms, scattered bark beetle damage, and
consequent salvage logging in mountain conifer forests contributed to
forest loss in Slovakia and in Czech Republic (Seidl, Schelhaas, & Lexer,
2011). Despite high forest loss rates, forest gain dominated in these
countries though resulting in net forest cover gain compared to the
late 1980s.

In Hungary, forest loss increased from the late 1980s to the beginning
of the 2000s, but then decreased by 25% after 2007. Hungary had the
highest net increase of forest cover area (by 27%), partly due to extensive
conversion of cropland to tree plantations (Griffiths et al., 2013). Because
of the rapid expansion of plantations, the country had the highest per-
centage of young forest, i.e., forests established between 1985 and 2012
(36% of the total forest cover area) of any country in the study area.

Ukraine, Belarus, Romania, Bulgaria, and Moldova had moderate
rates of forest loss, except for the Northern and Carpathians regions of
Ukraine where forest logging intensity was high. Forest loss dropped
in Belarus and the Black Sea countries after 2007, but remained stable
in Ukraine despite the economic crisis. Our analysis showed relatively
low rates of afforestation on former agriculture lands in these countries,
with the exception of substantial forest gain on former cropland areas in
Northern Belarus and around the Chernobyl Exclusion Zone in Ukraine.
In Belarus, the stability of agricultural land is partly due to governmental
subsidies and regulations (World Bank, 2009). All these countries expe-
rienced small net forest cover area increase.

Former Yugoslavian countries were characterized by relatively low
forest loss rates. Slovenia and Macedonia had only a small increase of
annual forest loss area since the 1990s. Fore loss rates in all other coun-
tries dropped after 2007, and inBosnia andHerzegovina after 2000.Wild-
fire plays an important role in forest loss in Macedonia, Montenegro,
Croatia, and Bosnia, especially during extreme fire years of 2000 and
2007 (European Commission, 2011; Nikolov, 2006). According to our
data,wildfires comprised 8–15% of the total forest losswithin these coun-
tries. Extensive forest gain, including forest regrowth on abandoned crop-
lands and pastures, caused net forest cover to increase by more than 10%
relative to 1985's forest cover in Bosnia, Croatia, and Serbia. Due to the
economic crisis and population displacement after armed conflicts in
the 1990s, entire settlements and all surrounding cropland areas were
abandoned in Croatia and Bosnia, and there was widespread tree en-
croachment in these locations (Witmer, 2008). Because of their low forest
disturbance rates, Slovenia andMontenegro had the largest proportion of
mature forest stands (established before 1985) of total forest cover com-
pared to other countries within the study area.

While the fraction of large-scale natural disturbance (windstorms and
wildfires) was low, the extent and frequency of these disturbance events
did increase in the 2000s compared to 1985–1999. Large-scale natural
disturbances played an increasingly important role in European Russia
compared to other countries.Wildfirewas responsible for 8.1% of the for-
est loss area in European Russia, compared to 1.8% outside of this region,
andwindstormswere responsible for 1.6% in European Russia, compared
to 0.7% outside. The role of natural disturbance increased throughout the
analyzed time interval. The percentage of wildfire changed from 1.5% in
1986–1988 to 11.3% in 2007–2012 (annual trend statistically significant
with p b 0.01).Windstormswere responsible for less than 1% of the forest
loss until 2006, but up to 3.6% in 2007–2012 (trend statistically significant
with p b 0.001). Both types of natural disturbance aremore commondur-
ing extreme weather conditions. The drought and windstorm frequency
increased after 2000, whichmay be related to the overall temperature in-
crease and global climate warming (Schelhaas et al., 2003; Seidl et al.,
2011; Groisman & Soja, 2009), but past forest management, especially
the planting of spruce monocultures that are more susceptible to wind-
throw may have also exacerbated the effects of these storms. Extensive
windstorms affected the Czech Republic in the 1990s (JizeraMountains);
Slovakia in 2004 (Tatra Mountains); and European Russia in 2009 (Kirov
and Komi regions) and in 2010 (Leningrad, Novgorod, Yaroslavl, Vologda
regions) (Krylov, Malahova, & Vladimirova, 2012). Mediterranean forests
in the former Yugoslavia experienced fires predominantly during the
1990s. In European Russia extreme fire events occurred in 1997 and
1999 (West and Northwestern regions), 2000 (Northern regions), 2002,
and 2010 (Central regions). The forest loss area caused by European
Russia fires did affect the total fire-related annual forest loss trend
within the study area (Fig. 7). However, we stress that we mapped only
large-scale wind and fire damage. Smaller-scale burned areas, windfalls,
and forest dieback due to insect infestation were not mapped. Mapping
small-scale scattered disturbance type is a complicated task and should
be addressed in future research.

While most of the forest disturbance within the study area quickly
recovered, certain portions of forest loss had no signs of tree cover
gain (Fig. 8). For example, of the forest loss area that occurred between
1985 and 1995 almost 12% did not recover by 2005. There are two likely
causes for this. Some of these areas may represent permanent land-
cover conversion where forests were replaced by either settlements or
infrastructure. Other areas, especially in the northern boreal forests or
in dry climate, may represent slow forest regeneration.

5. Conclusion

Our analysis proved the feasibility of a Landsat-based, long-term (27
years) forest cover change assessment for a large region. Despite data
limitations, especially the incomplete Landsat archive for the 1990s,
our proposed approach for the mapping of gross forest cover loss and
gain events was successful and enabled the estimation of net forest
cover change. Our validation, which was performed using probability-
based sampling and specifically focused on classification errors within
edge pixels, showed high quality of the developed map products. Re-
sults can easily be aggregated from 30-m pixels to various national
and sub-national units to perform regional forest cover and change
analyses.

Our results at the national scale confirmed the forest cover increase
reported by FAO (2010). However, regional analysis showed substantial
variation of forest cover change, especially within large countries. Areas
with net forest cover loss, especially Estonia, Latvia, Saint Petersburg
andMoscow regions of Russia, are of concern as theymay represent ex-
amples of unsustainable forest use. The effect of recent socio-economic
changes, including the collapse of the planned economies, armed
conflicts in Balkan countries, changes in agriculture policy after EU
expansion, and the economic crisis of late 2000s, clearly manifested
themselves in our forest change data. The role of large-scale natural dis-
turbance and their increase in the recent decade was also notable. Our
results provide a baseline for further socio-economic research to select
dominant factors regulating forest cover changes at national and sub-

http://faostat.fao.org/


42 P.V. Potapov et al. / Remote Sensing of Environment 159 (2015) 28–43
national level. Providing our results as independent, consistent data
source for unrestricted use (http://glad.geog.umd.edu/europe/) enables
such analyses.

The constellation of multiple Landsat satellites (L5/L7 inmid-2000s)
allowed for nearly-complete annual cloud-free data coverage in some
years. While the existing constellation of L7/L8 is sufficient for such anal-
yses, single sensor constellations, e.g., a sole L8 after the decommissioning
of L7, will not be sufficient for annual data collection in our study area
given the short growing season and frequent cloud cover. Other solutions
such as the integration of L8 with the future Sentinel missions, and the
launch of a follow-on Landsat 9 sensor, are needed to fill this looming
data gap.
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