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Insect defoliation is a major disturbance force in for- between 1987 and 1993, but single date NIR in each year
was negatively correlated with budworm levels in 1993ested ecosystems. Monitoring outbreaks, and estimating
(r520.69 and 20.47). This was because hardwood treesthe areas affected, is therefore important for both forest
within jack pine stands caused higher NIR reflectancemanagers and forest ecologists. The objective of our study
but limited jack pine budworm populations. The 10%was to classify jack pine budworm defoliation levels in
NIR difference between pure and mixed jack pine standsLandsat TM imagery recorded previous to and during
outweighed the 3–5% increase in NIR due to defoliationthe 1990–1995 outbreak in our 450,000 ha study area in
and necessitated stratification of the satellite data by treenorthwestern Wisconsin (USA). Many previous studies
species. Spectral mixture analysis performed on pure jackcorrelated insect defoliation and remotely sensed imagery
pine stands resulted in a strong negative correlation be-with moderate to good success, but it often remained un-
tween the 1993 green needle fraction and the 1993 bud-clear if actual defoliation effects or other forest attributes
worm population data (r520.94). This study was, to ourcorrelated with defoliation were detected. For example, a
knowledge, the first that applied spectral mixture analysislarger deciduous component in mixed jack pine stands
for forest damage detection, and also the first to use insectwill limit budworm populations and thereby defoliation.
population measurements as independent field data. TheseThe deciduous component in stands is a determining fac-
methods, and the separation of determinants and effectstor for insect defoliation, whereas needle discoloration
of jack pine budworm defoliation, enabled us to detectand tree mortality are their effect. We used pre-outbreak
actual defoliation with high accuracy. Elsevier Sci-Landsat TM data (1987) to identify determining factors
ence Inc., 1999for jack pine budworm population levels and peak-out-

break imagery (1993) for detecting actual defoliation. Our
satellite data were atmospherically corrected using a radia-

INTRODUCTIONtive transfer model (5S). Spectral mixture analysis was
performed using spectrometer measurements of jack pine Insect defoliation is a major disturbance agent in forested
needles and bark as representations of surface materials ecosystems, a concern for resource managers, and an im-
(“endmembers”). The explanatory power of the resulting portant area of research for ecologists. Remote sensing
fraction images was evaluated using jack pine budworm has been widely used to monitor insect defoliation (e.g.,
population data collected at 33 sampling points. Near- Nelson, 1983; Buchheim et al., 1985; Mukai et al., 1987;
infrared reflectance (NIR) increased in defoliated stands Hopkins et al., 1988; Leckie et al., 1989; Muchoney and

Haack, 1994; Royle and Lathrop, 1997). Satellite imagery
provides managers with rapid assessment of current dam-

* Department of Forest Ecology and Management, University of age so that stands with high mortality can be salvaged.Wisconsin–Madison, Madison
It also provides scientists the opportunity to study insect† College of Natural Resources, University of Wisconsin–Stevens

Point, Stevens Point defoliation over large areas so that outbreak dynamics
Address correspondence to V. C. Radeloff, Dept. of Forest Ecol- can be related to other environmental parameters and

ogy and Management, Univ. of Wisconsin–Madison, 1630 Linden Dr., thus be better understood and possibly forecasted (Lu-Madison, WI 53706, USA. E-mail: radeloff@facstaff.wisc.edu
Received 2 September 1998; revised 7 January 1999. ther et al., 1997).

REMOTE SENS. ENVIRON. 69:156–169 (1999)
Elsevier Science Inc., 1999 0034-4257/99/$–see front matter
655 Avenue of the Americas, New York, NY 10010 PII S0034-4257(99)00008-5



Spectral Mixture Analysis of Insect Defoliation 157

Figure 1. Location of the Pine Barrens study area in northwestern Wisconsin, USA. The 33 jack
pine budworm sampling plots are shown as points. The rectangle encompasses areas of most
severe defoliation examined in detail in Figure 9.

The objective of our study was to detect defoliation was to increase our scientific understanding of this eco-
logical process.levels of jack pine budworm (Choristoneura pinus pinus)

in the Pine Barrens region of northwestern Wisconsin, USA
(Fig. 1). We used pre-outbreak (1987) Landsat Thematic Study Area and Jack Pine Budworm Ecology
Mapper (TM) imagery to identify forest attributes that The Pine Barrens region of northwest Wisconsin covers
can be remotely sensed to aid forecasting defoliation. about 450,000 ha and is characterized by sandy soils
Peak-outbreak imagery (1993) was analyzed to detect de- formed on a glacial outwash plain. Fire adapted species,
foliation and to correlate defoliation with other ecologi- most notably jack pine (Pinus banksiana), dominated the
cal parameters. vegetation under Native American land use before the

The motivation for our study was twofold. First, this late 19th century (Radeloff et al., 1998). Jack pine regen-
outbreak resulted in widespread salvage cutting of about erates strongly after stand replacing fires due to its sero-
30% of all mature jack pine (Pinus banksiana) in the study tinous cones (Johnson and Gutsell, 1993). The cones re-
area (Radeloff et al., in press) raising management con- main closed until a fire melts a resin bond and releases
cerns because of economic losses (Weber, 1995). Second, the seeds on the open forest floor. In the absence of fire,
understanding natural disturbance processes is necessary succession may lead to oak (Quercus spp.) or red pine
for future ecosystem management of the Pine Barrens (P. resinosa) dominated forests. Jack pine budworm is
(Borgerding et al., 1995). Jack pine budworm defoliation part of the natural disturbance cycle of the Pine Barrens

and appears to be well adapted to its host (Weber, 1995).is part of the natural disturbance regime, and our goal
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Jack pine budworm-caused mortality of jack pine increases ous change detection methods have been developed and
applied to forests (Singh, 1989; Collins and Woodcock,the fuel load and thus the likelihood for a stand-replac-

ing fire after which jack pine will regenerate more 1996; Coppin and Bauer, 1996) and could be used to de-
tect insect defoliation. Relatively robust change detectionstrongly than its competitors.

Defoliation levels vary spatially, and it has been sug- methods are image differencing (Vogelmann and Rock,
1989; Muchoney and Haack, 1994) and ratio differencinggested that defoliation is stronger on poorer sites (We-

ber, 1995), but the opposite was found by McCullough (Green et al., 1994), but they do not adequately address
differences in Sun elevation angles, atmospheric condi-et al. (1996). Another possible factor is stand composi-

tion. Pure jack pine stands may exhibit higher defoliation tions, or phenological changes between images recorded
at different dates (Singh, 1989).levels than mixed stands (Weber, 1995). The same rela-

tionship has been demonstrated for spruce budworm (Su More sophisticated change detection methods perform
transformations of the image space such as in Gramm–et al., 1996). The accurate detection of defoliation levels

using satellite imagery would allow us to investigate Schmidt transformation (Collins and Woodcock, 1994),
these questions in the future. principal component analysis (Fung and LeDrew, 1987;

Gong, 1993), and Tasseled Cap transformation (Collins
and Woodcock, 1996). Other change detection methodsRemote Sensing of Insect Defoliation
were based on changes in canopy cover estimates de-The detection of insect defoliation using remotely sensed
rived from a Li–Strahler canopy reflectance model (Ma-imagery has a long history (Nelson, 1983; Buchheim et
comber and Woodcock, 1994), and change-vector analy-al., 1985; Williams and Nelson, 1986), and recently a
sis (Lambin and Strahler, 1994).study was published that employed satellite data to fore-

cast susceptibility and vulnerability of forests to insect
Challenges in Detecting Insect Defoliationoutbreaks (Luther et al., 1997). A special research focus

has been defoliation caused by gypsy moth (Lymantria Despite all these efforts, insect defoliation classifications
dispar) (Nelson, 1983; Williams and Nelson, 1986; Joria have been only moderately successful. Reliable insect de-
et al., 1991; Muchoney and Haack, 1994), and spruce foliation monitoring has often been limited to three classes
budworm (C. fumiferana and C. occidentalis) (Ashley et (e.g., heavy, medium, and light) with accuracies around
al., 1976; Buchheim et al., 1985; Leckie et al., 1989; 70–80%. Low defoliation levels remain difficult to detect.
Leckie and Ostaff, 1988; Ahern et al., 1991; Leckie et Three problems make it difficult to monitor insect defoli-
al., 1992; Franklin and Raske, 1994; Franklin et al., ation with satellite imagery.
1995). Other studies looked at damage caused by hem- First, plant–herbivore interactions are dynamic and
lock looper (Lambdina fiscellaria fiscellaria) (Franklin, periods where defoliation can be detected are often
1989), hemlock woolly adelgid (Adelges tsugae) (Royle short. For example, hardwoods respond to defoliation by
and Lathrop, 1997), pear thrips (Taeniothrips inco- gypsy moth with a second leaf flush in late spring. This
sequens) (Vogelmann and Rock, 1989), pine bark beetles restricts the time period when defoliation can be de-
(Dendroctonus ponderosae) (Mukai et al., 1987; Ahern, tected to about 2 months from late June to mid-August
1988; Sirois and Ahern, 1989), and tent caterpillar (Mala- (Williams and Nelson, 1986). Furthermore, the reflec-
cosoma disstria) (Hall et al., 1984). At least two studies tance of defoliated trees changes over time even without
examined jack pine budworm defoliation (Hopkins et al., direct plant responses. For example, current spruce bud-
1988; Hall et al., 1993). Reasonably accurate satellite im- worm defoliation is visible as chlorosis (red discoloration)
age classification results were obtained by classifying sin- due to dead needles remaining in the canopy. Over time,
gle images (Buchheim et al., 1985; Hopkins et al., 1988; these needles fall to the ground due to rain and wind,
Franklin and Raske, 1994), but change detection using and previous defoliation is apparent as needle loss and a
multitemporal imagery has generally achieved higher higher visibility of bark and branches (Leckie and Ostaff,
classification accuracies (Mukai et al., 1987; Muchoney 1988). Again, the problem is the limited time period
and Haack, 1994; Franklin et al., 1995). Insect defolia- when the most apparent change (i.e., chlorosis) can be
tion has clearly been a major area of research in forest detected (mid-July to mid-August) (Buchheim et al.,
damage detection. 1985), because cloud-free imagery may not be available.

The second problem is that defoliation causes changes
Forest Damage and Forest Change Detection at the needle, branch, and canopy levels, and changes at

one level do not necessarily translate to similar changesSome of the methods used for detecting insect defolia-
tion were originally developed to detect “Waldsterben,” at others. Spectrometer measurements of in situ cano-

pies are complicated to make and most measurements offorest damage suspected to be caused by air pollution,
in remotely sensed imagery (Rock et al., 1986; Herrmann damaged foliage have only been taken at the needle level

(Ahern, 1988; Leckie et al., 1989). Cell structure alter-et al., 1988; Vogelmann and Rock, 1988; Westman and
Price, 1988; Ekstrand, 1990; 1994). Furthermore, numer- ations and decreasing cell water-content influence reflec-
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tance change of desiccating needles, whereas canopy re- METHODS
flectance change is dominated by needle loss (Williams, Four steps comprised our satellite data processing to de-
1991). Heavily defoliated stands might also contain tect insect defoliation: a) atmospheric correction of a ref-
stronger understory reflectance (Franklin and Raske, erence satellite scene, b) radiometric matching of two
1994). Another aspect of this problem is the difficulty in additional satellite scenes, c) separation of mixed from
obtaining accurate field measurements of insect defolia- pure jack pine stands, and d) spectral mixture analysis
tion. Spectrometer measurements at the needle level are using spectrometer measurements to characterize the re-
not sufficient and at the canopy level often not feasible. flectance of endmembers.
Visual defoliation estimates are often limited to a few de- The fraction (proportion of each endmember) im-
foliation classes. ages resulting from the spectral mixture analysis of im-

The third problem is that determining factors and ages recorded at the peak of the outbreak (1993) were
effects of insect population levels are both recorded in correlated with population measurements of jack pine
satellite imagery. For example, younger balsam fir (Abies budworm at 33 sampling locations from the same year.
balsamea) stands are more susceptible to spruce bud- We also correlated 1993 budworm population data with
worm defoliation than mature stands. This makes satel- 1987 satellite data.
lite-derived age maps suitable for mapping a determining
factor of insect population levels useful in predicting fu- Atmospheric Correction Using 5S
ture outbreaks (Luther et al., 1997). At the same time, Our decision to use spectrometer measurements as rep-
the effects of insect defoliation, namely chlorosis, needle resentations of possible surface materials made it neces-
loss, and tree mortality, are apparent in satellite data sary to correct the satellite imagery for atmospheric ef-
(Hopkins et al., 1988; Leckie et al., 1989; 1992). When fects. We performed an atmospheric correction using a
an image at the peak of an outbreak is analyzed, it is radiative transfer model on the Landsat TM scene re-
unclear if an effect (e.g., cholorosis) or a determining corded at the peak of the outbreak (1 August 1993). This
factor (e.g., stand age) of the insect population drives the scene was also the one with the least visible atmospheric
satellite image classification. Determining factors and ef- disturbance in the three optical bands.
fects can both lead to a reasonable classification accuracy The 5S (Simulation of the Satellite Signal in the So-
when peak-outbreak satellite imagery is analyzed. Distin- lar Spectrum) model version used in our study was de-

veloped by Tanré et al. (1979; 1985) and modified byguishing determining factors and effects may not be im-
Hill (1993; Hill et al., 1995) to include pixel adjacencyportant for a forest manager mainly interested in a rapid
effects (Tanré et al., 1987). Topographic effects are notassessment of an insect outbreak. However, separating
taken into account, an assumption valid in our study areathe two, and being able to identify actual defoliation, is
because of the lack of steep terrain (Proy et al., 1989;crucial for a scientist who may want to study, for exam-
Radeloff et al., 1997).ple, the relationship between stand age and defoliation.

The most crucial step in the atmospheric correctionGiven these problems, and the limited success of
is to estimate the aerosol optical thickness at the time aprevious studies, we decided to employ another image
satellite scene was recorded. The aerosol optical thick-transformation technique, spectral mixture analysis, to
ness sa can be approximated for a given wavelength kdetect jack pine budworm defoliation levels during the
using Eq. (1):1990–1995 outbreak in our 450,000 ha study area in

northwestern Wisconsin. Spectral mixture analysis, to our sa5b·k2n (1)
knowledge, had not previously been employed to detect The 5S model derives the parameters b and n, the
insect defoliation. This technique decomposes the reflec- so-called Ångstrom parameters, that are related to the
tance of each pixel into the relative contributions of a concentration of aerosol optical particles. These parame-
limited number of surface materials, so-called endmem- ters are derived from the comparison of a spectral signa-
bers (Smith et al., 1990; Settle and Drake, 1993; Foody ture of a water body in the satellite image with a water
and Cox, 1994; Hurcom et al., 1996; Radeloff et al., reference signature measured with a spectrometer. No
1997; Wessman et al., 1997). It has been used success- spectrometer measurements of water bodies in or near
fully to estimate tropical forest cover (Cross et al., 1991; our study area were available. We tested two signatures
Foody et al., 1997), and to measure leaf area index (LAI) (“clear” and “very clear”) measured by Dekker and
and net primary production (NPP) in black spruce stands Donze (1994) that are incorporated in the version 5S
(Hall et al., 1995). Spectral mixture analysis has recently program employed in this study. Additionally, we used
been applied to forest change detection in an area of three reflectance measurements (site 23: 14 August
massive deforestation in the Amazon basin (Adams et al., 1983; site 28: 12 and 14 August 1983) taken by Hall et
1995). These studies suggested that spectral mixture al. (1992) from helicopters over lakes in the Superior Na-

tional Forest, Minnesota (Fig. 2). From the satellite im-analysis may be suitable to detect insect defoliation.
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These reflectance values and the difference between the
two dates were then correlated with the budworm popu-
lation data.

The correlation of the 1993 budworm data with the
1993 satellite data and with the difference between 1993
and 1987 addressed our first goal of detecting current
defoliation. Our second goal, to examine the potential of
pre-outbreak satellite data to predict later budworm pop-
ulations, was addressed by correlating the 1993 budworm
data with the 1987 satellite data.

Separation of Mixed and Pure Jack Pine Stands
Figure 2. Spectrometer measurements of lakes Phenological changes between our spring (May) and sum-
tested for parametrizing the atmospheric correction. mer (June) imagery were utilized to reveal stands with

varying proportions of hardwood canopy. The increase of
near-infrared reflectance (NIR) between these two datesagery, we selected eight lakes and derived Ångstrom pa-
was significantly higher where hardwood was present. Anrameters, atmospheric thickness, and the correlation factor
analysis of our 33 budworm population sampling points(Hill, 1993) for 40 possible combinations between satel-
allowed the determination of a threshold of NIR increaselite and ground measurements. Out of these, we selected
above which we assumed that a pixel contained hard-the optimal combination based on the correlation factor
wood and had to be excluded from the analysis.and the Ångstrom parameters. A sensitivity analysis was

This threshold and the species-level forest classifica-performed using reflectances resulting from several com-
tion by Wolter et al. (1995) allowed us to create a maskbinations of b and n. Furthermore, we compared jack
of pure jack pine that was applied to all three satellitepine canopy reflectance in the satellite scene with mea-
images. Forest clear-cuts that occurred between 1987surements taken from helicopters during the BOREAS
and 1993 were eliminated from the change detection anal-(Boreal Ecosystem Atmosphere Study) field campaign in
ysis. A previous study identified clear-cuts based on theirCanada (C. Walthall, individual and unpublished data).
higher reflectance in TM5 (Radeloff et al., in press).

Radiometric Matching
Spectral Mixture AnalysisTwo additional satellite scenes (14 June 1987; 10 May

1992) were radiometrically matched to the atmospheri- The spectral mixture analysis of the satellite data was
cally corrected scene (Coppin and Bauer, 1994). We se- based on a linear demixing algorithm that involves the
lected signatures from pseudo-invariant image objects to simultaneous solution (using least squares) of two equa-
derive regression lines. Suitable areas included lakes, air- tions of the form shown in Eq. (2):
port runways, railyards, and polygons over the urban cen-

qb5o
N

i51
Fi·qi,b1Eb and o

N

i51
Fi51 (2)ter of Duluth, Minnesota. These dense urban areas are

not homogeneous, but they contain very limited amounts
The solution minimizes the errors E over all bandsof vegetation and exhibit little change over time. The ac-

b where qb is reflectance in the satellite image in bandcuracy of the radiometric matching was evaluated using
b, qi,b is the reflectance of endmember i in band b, Fi isa second set of independent pseudo-invariant image ob-
the fraction of endmember i, and N is the number ofjects and by comparing coniferous vegetation reflectance
endmembers (Smith et al., 1990). The error E gives anbetween the two summer scenes.
estimate of the fit of a given endmember set when ap-
plied to the satellite data.Budworm Population Field Data and Satellite

Data Correlations We collected 11 spectrometer measurements of four
different types of vegetative material (jack pine bark, dryThe budworm population field data were collected by
jack pine needle, green jack pine needle, and aspen leaf),entomologists from the Wisconsin Department of Natu-
and used their reflectance values in the Thematic Map-ral Resources (WDNR, R. Endreson, unpublished data).
per bands as input for the spectral mixture analysisThe number of early jack pine budworm larvae were
(Fig. 3). The measurements came from two sources. Anmeasured in late spring on 30 shoots on each of 33 ran-
extensive NASA study in the Superior National Forestdomly located plots. We visually defined polygons of ho-
(Hall et al., 1992) provided spectra for jack pine barkmogeneous jack pine stands surrounding the budworm
(Sample PB0B201R: bark 5), jack pine needle upper sur-sampling plots in the satellite imagery and measured re-
face (PB0N2T1R, PBLR: green needles 1 and 2), andflectance values in the satellite imagery previous to the

outbreak (1987) and at the peak of the outbreak (1993). aspen leaf upper surface (A25H29RF, A25M11RF, leaves
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Figure 3. Spectrometer measurements used to char-
acterize the endmembers for the spectral mixture
analysis: (a) jack pine bark and (b) dry jack pine nee-
dles, green jack pine needles, and green aspen leaves.

1 and 2), that were aggregated to the wavebands of Figure 4. Correlation factors for lake/reference spectra pairs
Landsat TM (Hall et al., 1992). We measured additional (circles) and estimated visibility (boxes) for different combination

of the Ångstrom parameters b (x-axis) and n (y-axis).spectra of dry jack pine needles (dry needles 1 and 2)
and jack pine bark (barks 1–4) using an ASD (Analytical
Spectral Devices) Spectroradiometer with a range of

rameters b50.156, n521.039. The atmospheric correc-350-2500 nm. A shade endmember was included assum-
tion appeared to be robust with respect to different com-ing zero reflectance in all channels. The limited dimen-
binations. Very different pairs of Ångstrom parameterssionality of Landsat TM images does not allow reliable
with almost equally high correlation factors resulted inuse of more than three or four endmembers. We tested

numerous endmember sets and evaluated them in rela-
tionship to our budworm population field data. The end- Figure 5. Reflectance of two coniferous stands after at-

mospheric corrections with different pairs of Ångstrommember set that exhibited the highest correlation with
parameters.the jack pine budworm population data was used to per-

form spectral mixture analysis of the satellite data of all
pure jack pine stands.

RESULTS

Satellite Data Preprocessing
The atmospheric correction required choosing a set of
two water signatures; one measured in the satellite image
and one measured by a spectrometer. Different combi-
nations of five reference spectra and eight lake spectra
resulted in different estimations of the Ångstrom para-
meters b and n, correlation factors, and estimated visibil-
ities (Fig. 4). We chose the combination with the highest
correlation factor (r520.983) and average Ångstrom pa-
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Table 1. Regression Factors for the Radiometric Matching between the
Atmospherically Corrected Imagery (August 1993) and the Two Other
Satellite Imagesa

Jun-87 May-92

Mean Maximum Mean Maximum
r2 Error Error r2 Error Error

TM1 0.9876 0.0067 0.0200 0.9905 0.0032 0.0059
TM2 0.9929 0.0057 0.0168 0.9944 0.0030 0.0058
TM3 0.9942 0.0062 0.0169 0.9920 0.0076 0.0141
TM4 0.9929 0.0079 0.0153 0.9907 0.0063 0.0148
TM5 0.9976 0.0056 0.0107 0.9939 0.0053 0.0119
TM7 0.9975 0.0047 0.0103 0.9962 0.0035 0.0079

a Errors measured at independent control areas are given in reflectance scaled from 0 to 1.

similar estimates for the aerosol optical thickness. Ac- close enough to the ground to be free of atmospheric
effects (Fig. 6).cordingly, signatures of forest stands in the corrected sat-

ellite imagery always showed less than 1% difference in
Reflectance Changes Due to Defoliationreflectance when extremely different Ångstrom parame-

ters were tested (Fig. 5). Relative differences were high- The transformation of the satellite data into reflectance
est in TM Band 1, the blue band, where atmospheric allowed us to quantify changes caused by jack pine
effects are strongest, and in TM Band 4, the near-infra- budworm defoliation. We selected six stands that were
red reflectance band in which vegetation exhibits the heavily defoliated in 1993 and extracted their reflectance
highest absolute reflectance values. from the 1987 and 1993 imagery (Fig. 7). These defoli-

The radiometric matching resulted in strong correla- ated stands exhibited a reflectance increase in the near-
tions between the atmospherically corrected satellite im- and mid-infrared wavelength. The strongest change oc-
age and the two other scenes (Table 1). Average errors curred in TM Band 4 with a maximum of 8% reflectance
were always lower than 1% reflectance for all bands. increase (5% average).

Reflectance of six nondefoliated jack pine stands in This NIR increase seems to be contradicted by the
the northernmost portion of the Pine Barrens was mea- negative correlation (r520.47) between the 1993 bud-
sured in the satellite imagery from 1987 and 1993 (Fig. 4). worm population data and the 1993 satellite data (Fig.
No systematic changes occurred between these two dates. 8a). The negative correlation was even stronger between

1993 budworm populations and 1987 satellite data (r5Furthermore, the signatures correspond well with spec-
20.69; Fig. 8b). Correlograms with 95% confidence in-trometer measurements of jack pine canopies taken dur-
tervals showed no significant autocorrelation in the 1993ing the BOREAS project from helicopters that were
budworm data and the 1987 and 1993 NIR. The stratifi-
cation of the 33 sampling locations into mixed and pure

Figure 6. Reflectance of six nondefoliated jack pine jack pine stands (Fig. 8) revealed that highest NIR oc-
stands in the atmospherically corrected (1993) and ra-
diometrically matched (1987) satellite data, plus reflec-
tance of three jack pine stands measured with a spec- Figure 7. Reflectance of six heavily defoliated jack
trometer mounted on a helicopter during the pine stands in the atmospherically corrected (1993)
BOREAS field campaign. and radiometrically matched (1987) satellite data.
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Spectral Mixture Analysis
Comparisons of various three- and four-endmember mod-
els to the 1987 and 1993 imagery revealed that three-
endmember models always achieved a better fit and bet-
ter correlation with the budworm population data.
Therefore, only results for the three-endmember model
will be presented. We limited endmember combinations
to ecologically meaningful sets. These always included
one shade endmember, one endmember representing
nonphotosynthetic vegetation (NPV; bark or dry needle),
and one endmember representing green vegetation
(green needle or leaf), resulting in 28 possible combi-
nations.

The aspen leaf endmembers were included to test if
hardwood content could be separated, thus avoiding the
intermediate step of separating pure and mixed jack pine.
This test was not successful. Endmember sets with aspen
leaves representing green vegetation resulted in negative
fractions for the NPV endmember, and correlations with
the budworm data were always weaker compared to end-Figure 8. Relationship between bud-
member sets with green needle endmembers.worm population levels recorded at the

peak of the outbreak (1993) and NIR The comparison of average fractions calculated from
reflectance of forest surrounding the the reflectance values of the 10 pure jack pine stands sur-
sampling plots measured in the imagery rounding budworm sampling points showed highly vari-of a) 1993 and b) 1987. (j: pure jack

able results for different endmember sets (Table 2). Forpine stands; 1: mixed jack pine stands).
example, the average NPV endmember fraction in the
1993 scene varied from 0.110 (bark 4, green needle 1) to
0.338 (dry needle 2, green needle 1). Despite this vari-curs in mixed stands with low budworm population lev-
ability, there were some general trends. For each end-els. The NIR increase at our sampling points between
member set, the shade fraction decreases from 1987 to1987 and 1993 (max 3.5%) was overruled by the ,11%
1993 (average decrease of all endmember sets: 0.043),NIR range (max528%, min517%) exhibited by all pure
the green needle fraction increases (average: 0.035), asand mixed jack pine stands in 1987. The NIR increase
does the bark fraction somewhat (average: 0.008). End-between 1987 and 1993 was positively correlated with
member sets with a dry needle endmember always re-the budworm population levels, but the correlation was
sulted in a higher NPV fraction than sets with bark end-weak (r50.48).
members.

One criterion for the selection of endmember setsSeparation of Mixed and Pure Jack Pine Stands
was their fit (i.e., the errors associated with them). End-The effect of hardwood components on the reflectance
member sets with a dry needle spectrum consistently re-measurements made it necessary to separate mixed from
sulted in higher errors than endmember sets with a barkpure jack pine stands. The forests surrounding our 33
spectrum. Green needle 1 resulted in lower errors thanbudworm sampling points were used as calibration data.
green needle 2 when combined with any bark spectrum.We examined NIR in a spring (May 1992) and a summer

Our second criterion was the explanatory power of(June 1987) scene. Hardwoods flushed between these
the resulting fractions when correlated with the 1993two dates resulting in a strong increase in NIR of mixed
budworm data (Table 3). All endmember sets contain-jack pine stands between the two images (mean NIR in-
ing a bark spectra exhibited strong correlation factorscrease: 5.1%; standard deviation: 2.1%). Pure jack pine
(r,20.94) for their green vegetation spectrum. End-stands did not exhibit similar changes (mean NIR in-
member sets with dry needle spectra exhibited lowercrease: 1.6%; standard deviation: 1.3%). The NIR in-
correlation factors than those with bark spectra.crease of mixed and pure stands was significantly differ-

Correlation factors for the 1993 satellite imageryent (df515, p,0.005) and we employed a 3% NIR
were always higher than for the 1987 imagery. Fractionincrease threshold above which a pixel was assumed to
differences between the two images had low correlationcontain a significant hardwood component. Using this
factors. Within the endmember sets with bark spectra,threshold, 26% of the area classified by Wolter et al.
green needle 1 was better suited for the 1987 image, and(1995) as jack pine was eliminated from further analysis

due to hardwood mixture. green needle 2 for the 1993 image. We chose the end-
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Table 2. Resulting Fractions and Errors of Spectral Mixture Analyses with Various 3-Endmember Sets Always Containing
a Shade, a Nonphotosynthetic Vegetation (NPV), and a Green Vegetation Endmember a

Fractions

ErrorsPre-Outbreak (1987) Peak-Outbreak (1993)NPV Green Veg.
Endmember Endmember NPV Green Veg. Shade NPV Green Veg. Shade 1987 1993

Bark 1 Green needle 1 0.144 0.406 0.450 0.156 0.445 0.399 0.005 0.007
Green needle 2 0.104 0.293 0.602 0.112 0.321 0.566 0.007 0.010

Bark 2 Green needle 1 0.119 0.415 0.466 0.128 0.455 0.417 0.005 0.008
Green needle 2 0.085 0.299 0.617 0.091 0.327 0.582 0.008 0.011

Bark 3 Green needle 1 0.105 0.425 0.470 0.114 0.465 0.421 0.004 0.006
Green needle 2 0.075 0.303 0.622 0.082 0.331 0.587 0.007 0.009

Bark 4 Green needle 1 0.102 0.391 0.507 0.110 0.429 0.461 0.004 0.008
Green needle 2 0.120 0.309 0.571 0.129 0.338 0.533 0.008 0.010

Bark 5 Green needle 1 0.169 0.437 0.394 0.183 0.478 0.339 0.005 0.008
Green needle 2 0.120 0.309 0.571 0.129 0.338 0.533 0.008 0.010

Dry needle 1 Green needle 1 0.320 0.228 0.452 0.331 0.269 0.400 0.012 0.017
Green needle 2 0.255 0.196 0.549 0.252 0.232 0.516 0.011 0.015

Dry Needle 2 Green Needle 1 0.326 0.228 0.446 0.338 0.268 0.394 0.012 0.016
Green needle 2 0.262 0.194 0.544 0.261 0.229 0.510 0.010 0.014

a The spectral analysis was conducted over 10 pure jack pine stands surrounding jack pine budworm sampling plots.

member set with bark 2, green needle 2, and shade as atmospheric correction of the satellite data indeed re-
the final set for the spectral mixture analysis of the 1993 moved atmospheric effects. The only systematic differ-
satellite image (Fig. 9). This endmember set exhibited a ence was a lower NIR for the BOREAS measurement
good fit, a relatively high correlation for the 1993 NPV that could potentially be due to the lower leaf area index
fraction, and the highest correlation factor for the 1993 of the Canadian jack pine stands compared to those in
vegetation fraction. northwestern Wisconsin.

A possible source of error in the atmospheric correc-
tion process was the choice of a reference target lake andDISCUSSION
a reference water spectrum to estimate atmospheric

Satellite Data Preprocessing thickness in the 5S model. Some combinations exhibited
low correlation factors. The reason for this is that theThe satellite data preprocessing, atmospheric correction,
water of a given lake and a reference spectrum may haveand radiometric matching performed reliably as demon-
different properties (e.g., turbidity, nutrient content).strated by the results of our sensitivity analyses (Figs. 5
The literature contains few spectrometer measurementsand 6). The good correspondence among jack pine signa-
over lakes and further research in this area would be val-tures in the corrected satellite imagery, and as measured

during the BOREAS field campaign, indicated that the uable (Dekker and Donze, 1994). However, it is encour-

Table 3. Correlation Coefficients (r) of Different Fractions with the 1993 Budworm Population Data at 10 Sampling Points
in Pure Jack Pine Stands

Fraction Differences
Pre-Outbreak (1987) Peak-Outbreak (1993) (1987–1993)NPV Green Veg.

Endmember Endmember NPV Green Veg. Shade NPV Green Veg. Shade NPV Green Veg. Shade

Bark 1 Green needle 1 20.345 20.745 0.767 0.292 20.943 0.790 0.440 20.598 0.570
Green needle 2 20.215 20.748 0.727 0.420 20.941 0.599 0.469 20.597 0.758

Bark 2 Green needle 1 20.338 20.754 0.772 0.299 20.941 0.821 0.442 20.591 0.633
Green needle 2 20.216 20.751 0.741 0.417 20.943 0.676 0.465 20.606 0.768

Bark 3 Green needle 1 20.350 20.761 0.773 0.283 20.941 0.828 0.434 20.582 0.184
Green needle 2 20.233 20.765 0.751 0.407 20.938 0.706 0.467 20.577 0.727

Bark 4 Green needle 1 20.339 20.736 0.780 0.289 20.942 0.886 0.437 20.608 0.699
Green needle 2 20.216 20.766 0.684 0.420 20.936 0.430 0.469 20.573 0.746

Bark 5 Green needle 1 20.342 20.769 0.742 0.295 20.937 0.668 0.443 20.571 0.549
Green needle 2 20.216 20.766 0.684 0.420 20.936 0.430 0.469 20.573 0.746

Dry needle 1 Green needle 1 20.280 20.464 0.770 0.341 20.832 0.794 0.445 20.572 0.749
Green needle 2 20.163 20.514 0.637 0.455 20.850 0.322 0.470 20.572 0.712

Dry needle 2 Green needle 1 20.286 20.465 0.765 0.338 20.832 0.782 0.446 20.575 0.772
Green needle 2 20.174 20.510 0.632 0.446 20.849 0.311 0.467 20.577 0.752
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Figure 9. Color-composite of the images fractions (red: bark, green: green vegetation, blue: shade) for pure jack
pine stands in the central part of the Pine Barrens, where defoliation levels were highest (compare Fig. 1 for
the location of the map within our study area). Red and yellow areas (A) exhibited highest defoliation, character-
ized by a high bark and low green needle fraction, and were subsequently salvaged cut. The green areas (B)
contain the highest vegetation fractions. These stands were classified as jack pine by Wolter et al. (1995), and
thus included in our analysis, but field checking revealed that they had been falsely classified red pine. Red pine
was not defoliated and the spectral mixture analysis did distinguish these stands by calculating a very high green
needle fraction. The blue areas (C) are characterized by strong shade fractions. Defoliation in these areas was
lower, and these stands survived the outbreak.

aging that the results of the atmospheric correction were conifers and deciduous species showed a decrease of
robust in terms of the choice of input parameters such NIR in response to insect outbreaks (Ahern, 1988;
as water spectrometer measurements and target lakes in Leckie et al., 1989). Decreasing NIR was also observed
the imagery. in the case of other conifers damaged by air pollution

The reliability of the radiometric matching was indi- (Vogelman and Rock, 1988). However, NIR increase
cated by the magnitude of the correlation factors in the after defoliation was previously reported in a study of
regression equations, and the low variability measured over damaged pine in Germany (Herrmann et al., 1988). Jack
independent pseudo-invariant targets (Table 1). Highest pine needles damaged due to porcupine girdling showed
variability occurred in the case of signatures taken over higher reflectance at wavelengths .830 (nm), as did
urban centers. These signatures were nevertheless used eastern white pine (P. strobus) needles damaged by
to establish the regression equations because they pro- herbicide spraying at .840 (nm) (Leckie et al., 1989).
vided midrange values. Without them, the regression The underlying physiological reasons for this NIR in-
would have only been based on two types of targets, dark crease in different pine species are not understood. De-
lakes and extremely bright surfaces, such as runways, foliation in pine causes reflectance changes that differ
possibly inflating correlation coefficients artificially. from those in other conifers such as spruce and fir. This

may be the result of differences in crown architecture or
NIR Increase with Defoliation stand structure, or both. It has been suggested that the

NIR increase of pine at the canopy level might be dueOne surprising result of our study was the NIR increase
after jack pine stands were defoliated. Studies of other to chlorosis (the retention of dead needles in the crown;
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Herrmann et al., 1988). Another possible factor could be use a nonlinear algorithm. The noise inherent in Landsat
TM measurements most likely overrules nonlinear mix-an increasing contribution of the forest understory to the

reflectance measured in defoliated stands (Häne 1991). ture effects (Adams et al., 1995). Transmission is 50%
lower for needles compared to leaves thus reducing non-Pine forest canopies are often more open than spruce or

fir forest canopies. We were not able to conduct un- linear effects in conifers (Hall et al., 1992). Furthermore,
it was not our goal to derive absolute surface fractions,derstory measurements because all defoliated stands

were salvaged, and therefore the NIR increase cannot be but rather to transform the satellite data so defoliation
could be detected more reliably.explained at this point.

Even though the underlying reasons for the NIR
change are not understood, the increase has been repeat- Three Problems for the Remote Detection of
edly documented for defoliated pine. This suggests that Insect Defoliation
common vegetation indices may not be suitable for stud- We outlined above three major problems that complicate
ies of forest damage in pine forests. Indeed, preliminary satellite data analysis of insect defoliation: a) short time
tests with our data showed higher NDVI values after de- windows for detection, b) different responses at needle,
foliation and no significant correlation between NDVI branch, and canopy scales, and c) the separation of de-
and budworm population data. Similarly, higher degrees termining factors for, and effects of, higher insect popu-
of pine-needle discoloration due to air pollution in the lation levels. Our study of jack pine budworm defoliation
St. Petersburg region resulted also in higher NDVI val- addressed all three of these problems.
ues (Donchenko et al., 1998). Jack pine budworm defoliation was most apparent in

the second half of July as chlorosis, but cloud-free imag-
Spectral Mixture Analysis ery close to this date was only available for one year

(1993) during the six years of the outbreak (1990–1995).Spectral mixture analysis transformed the image space so
that the resulting fraction images correlated well with the Preliminary analysis of other satellite scenes (April 1991,

May 1992, May 1995) indicated that phenological differ-budworm population field data. This is encouraging be-
cause the field data exhibited a wide range of budworm ences between spring and summer scenes were stronger

than reflectance changes due to defoliation. Tracing de-population levels at the peak of the outbreak (Fig. 8).
However, the estimated fractions were quite variable for foliation annually was not possible due to the lack of

cloud-free imagery recorded at the time when defoliationdifferent endmember sets (Table 2). Our resulting frac-
tions cannot be interpreted as the percentage of dead effects were strongest.

The spectrometer measurements of jack pine needlesneedles or the percentage of trees being defoliated. The
spectral mixture analysis provided a transformation of the available to us showed lower NIR for dry versus green

needles. However, NIR of jack pine stands increasedsatellite data feature-space specific to our research ques-
tion. Unlike principal component analysis, the use of with defoliation and this increase was positively corre-

lated to jack pine budworm population levels. It is notendmembers allowed the transformation of the satellite
data into fraction images related to ecologically meaning- understood why this increase occurs and why pines ex-

hibit the opposite reflectance change after defoliationful components of surface materials. Spectral mixture
analysis resulted in high correlation factors between our than spruce or deciduous stands. Spectral mixture analy-

sis offers a quantitative framework for using needle-levelfraction images and budworm population data (Table 3).
These high correlations are the ultimate test of our ap- spectrometer measurements as input for the analysis of

canopy-level satellite measurements. However, spectralproach. Each step of our satellite data analysis (atmo-
spheric correction, radiometric matching, and spectral libraries contain only few measurements of healthy and

desiccating vegetation. More research focused on reflec-mixture analysis) introduced potential errors. The high
correlation achieved by the final product makes it suit- tance changes over time, and on the underlying physio-

logical causes, is needed.able for studying jack pine budworm defoliation. The
RGB color composite of the three fraction images de- Determining factors and effects of higher budworm

populations were both apparent in our satellite imagery.tected defoliation well (Fig. 9).
The algorithm used for the spectral mixture analysis The hardwood component, revealed by a higher NIR in

the 1987 scene, was a determining factor for lower budw-assumed a linear relationship between surface materials
and the relative contribution of endmember signatures to orm population levels in 1993. The green needle fraction

in the demixed 1993 imagery detected the effect of highersatellite-measured reflectance. This assumption is prob-
lematic for vegetation, because of radiation transmitted budworm populations: actual defoliation. This raises the

question of what was detected by previous defoliation clas-through leaves and reflected by other surface materials.
This radiation exhibits a green peak and will inflate the sifications. High defoliation classification accuracy, or a

good correlation between insect populations and satellitegreen component in the spectral mixture analysis (Rob-
erts, 1993; Borel and Gerstel, 1994). We chose not to data, does not necessarily correspond to actual defoliation.
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This is less important for the rapid assessments of current resulting fractions were variable for different endmem-
ber sets. The nonphotosynthetic vegetation (NPV) frac-outbreaks. However, separating determining factors versus

effects of higher insect population levels is crucial for sci- tion images cannot be interpreted as the percentage of
dead vs. green needles, or the percentage of dead versusentific studies aimed at understanding the spatial dynamics

of insect outbreaks. living trees.
Whereas previous studies achieved highest accuracyTo our knowledge, this study was the first to use in-

sect population data as calibration data instead of visual in detecting defoliation using change-detection methods,
our approach was most successful when applied to singledefoliation estimates. Visual estimates introduce uncer-

tainty into the analysis and may be part of the reason date imagery recorded at the peak of the outbreak. How-
ever, we did not compare the results of the spectral mix-why previous studies could only derive a few defoliation

classes. Populations of defoliating insects are routinely ture analysis with change detection results based on
other image transformation techniques such as principalmonitored by resource management agencies. Correlat-

ing these data sets with satellite data may improve un- component analysis, or Tasseled Cap transformation,
which would be valuable future research.derstanding about the determining factors and the ef-

fects of insect populations.
The hardwood species component, apparent as higher J. Hill and P. Hostert (Remote Sensing Department, University

of Trier, Germany) provided software and gave most valuableNIR reflectance in the 1987 imagery, was negatively cor-
advice for the atmospheric correction and spectral mixturerelated with 1993 budworm populations. A similar rela-
analysis described herein. They also assisted in making thetionship has been found for spruce budworm (Su et al.,
spectrometer measurements of jack pine bark and dry needles1996). More diverse stand species mixture had been sug- in their laboratory. M. Smith provided spectral mixture analysis

gested as a management tool to reduce future jack pine software and gave important guidance in the initial stages of
budworm outbreak levels (Weber, 1995). The life history this project. F. Hall, D. Williams, and C. Walthall generously

provided spectrometer measurements taken during the BOR-of jack pine budworm provides a possible ecological rea-
EAS project and on the Superior National Forest. R. Endresonson for this relationship. Budworm populations spread
and S. Weber (Wisconsin Department of Natural Resources)spatially when the female moths disperse. The likelihood collected and S. M. Gorham entered the jack pine budworm

of a moth successfully dispersing into a stand is higher population data. T. Gower, R. Guries, P. Hostert, T. Lillesand,
when there is a high percentage of jack pine in the sur- and P. Pope made valuable comments on earlier versions of this

manuscript. J. Franklin and one anonymous reviewer providedrounding landscape.
a thorough and very helpful review. Our sincere thanks to all of
them. This research was funded by the Wisconsin Department of
Natural Resources, in part by funds from the Federal Aid inCONCLUSIONS
Wildlife Restoration Act, Pitman-Robertson Projects #W-160-P

Detecting and forecasting insect defoliation is important and W-160-R; and by the College of Agricultural and Life Sci-
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