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Abstract

Background: Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions.
When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of
changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may
offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to
determine how forest bird diversity has changed over time and whether those changes were associated with forest
disturbance.

Methodology/Principal Findings: We used North American Breeding Bird Survey data, a time series of Landsat images
classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community
structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We
document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and
all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes
in richness (,1 species per route for the 22-year study period) and modest losses in abundance (228.7–210.2 individuals
per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for
Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest
progressive similarity in the eastern United States.

Conclusions/Significance: Contemporary forest bird community structure is changing rapidly over a relatively short period
of time (e.g., ,22 years). Forest disturbance and forest regeneration are primary factors associated with contemporary forest
bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these
findings suggest some regions of the United States may already fall below the habitat amount threshold where
fragmentation effects become important predictors of forest bird community structure.

Citation: Rittenhouse CD, Pidgeon AM, Albright TP, Culbert PD, Clayton MK, et al. (2010) Conservation of Forest Birds: Evidence of a Shifting Baseline in
Community Structure. PLoS ONE 5(8): e11938. doi:10.1371/journal.pone.0011938

Editor: Andy Hector, University of Zurich, Switzerland

Received January 21, 2010; Accepted July 1, 2010; Published August 2, 2010

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public
domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: The NASA Biodiversity Program and Interdisciplinary Sciences Program (grant #NNX07AL14G) supported this work. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cdrittenhous@wisc.edu

Introduction

Armed with biological diversity information, scientists and

conservationists frequently ask questions about biological diversity

changes in response to habitat loss or fragmentation [1],

disturbance and land-use change [2], and climate change [3].

Tenable measures of biological diversity are essential to answering

these questions [4]. Biological diversity is commonly defined as

species richness (the number of species present in an area) and less

often as species diversity or community structure, the number of

species weighted by their abundance (e.g., evenness) [5]. Species

richness data do not require abundance data, the collection of

which requires investments of labor and time. However, the use of

species richness as the sole basis for quantifying changes in

biological diversity is limited when there is species turnover

(change in species composition), a large change in species

abundance, or a difference in sampling effort over space and

time [6]. In addition, comparisons of changes in biological

diversity between samples adjacent in time (i.e., successive change)

may mask substantial shifts in diversity that accumulate over time

because short-term reference conditions are used to assess change

(i.e., the shifting baseline syndrome) [7].

The shifting baseline syndrome arises when environmental

conditions degrade over time, yet contemporary observers
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falsely perceive less change than perceived by historic observers

due to their limited time in the system [7]. For example, in the

fisheries literature, the shifting baseline syndrome is synonymous

with precipitous declines to the point that current communities

contain a small fraction of the number of species or species’

abundance that was present historically [8]. With respect to

community structure, the shifting baseline does not have an

inherently negative connotation; it simply means that similarity

of communities tends to decrease between two samples as the

time between samples increases (i.e., progressive change) [9].

Therefore, measures of progressive change in community similarity

may provide greater insight than richness or abundance when

community structure changes, especially over a long time

period.

Changes in avian community structure may occur from

successional changes in forest vegetation and from disturbance

events [10,11]. Forest disturbance can take several pathways, 1)

forest disturbance that results in forest loss with no change in

fragmentation (i.e., conversion of forest to non-forest); 2) forest

disturbance that results in forest fragmentation (i.e., conversion of

forest to non-forest, with a decrease in forest size and an increase

in isolation of remnant forest patches); and 3) forest disturbance

that alters vegetation structure and composition while maintain-

ing a forested state. Clearly, forest loss and forest fragmentation

contribute greatly to declines in forest avifaunal biodiversity [12].

What is less clear is the role of forest disturbance in avian

community structure. In general, one would expect forest

disturbance to increase or maintain bird species richness provided

the disturbance occurs at a frequency and intensity intermediate

with respect to the rate of vegetation recovery from disturbance

[13] and without conversion to a non-forested state (forest loss).

For example, sustainable levels of tree harvest with maintenance

of core areas of mature forest, implemented in Missouri oak-

hickory forests, had minimal impact on late-successional forest

bird species, a case of intermediate intensity disturbance [14].

Similarly, a 24-year study of group-selection tree harvest in

Maine reported a short-term increase in abundance of early

successional bird species with little change in abundance of late

successional species in adjacent, unharvested forest, a case of

intermediate frequency disturbance [15]. However, infrequently

disturbed areas or highly disturbed areas may experience sharp

declines in richness or abundance following a disturbance event

[16].

Our objectives were to determine how avian community

structure has changed in forests of the conterminous United

States over a 22-year period and whether those changes were

associated with forest disturbance. We used North American

Breeding Bird Survey data and a time series of Landsat images

classified with respect to land cover change (Figure 1), and mixed-

effects models, to accomplish this objective. Given known

population declines for many species of birds [17], we expected

changes in avian community structure over time. We hypothesized

that species which share specific behavioral traits or functional

roles respond similarly to forest disturbance. Therefore, we

grouped species into guilds based on migratory habit (Neotropical

migrants, temperate migrants, or permanent residents) and nest

location (ground nesters, mid-story and canopy nesters, cavity

nesters, or interior forest nesters [18,19]; see Table S1 in

Supporting Information for scientific names and forest guild

memberships). We expected greater changes in Neotropical

migrant and temperate migrant guilds than the permanent

resident guild because the former may more readily relocate

following forest disturbance, whereas the latter tend to have more

general habitat requirements (making use of many forest

successional states) allowing them to persist in the face of

disturbance [20]. We also expected greater changes in the mid-

story and canopy and interior nesting guilds than for the ground

nesting guild because the former have reduced nest site availability

in canopy-removing disturbance events and when interior forest is

perforated by disturbance.

Figure 1. Location of the 122 Breeding Bird Survey (BBS) routes with sufficient data for analysis and corresponding Landsat scene
outlines.
doi:10.1371/journal.pone.0011938.g001
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Results

Changes in avian community structure
We found evidence of significant but subtle changes in richness

over the 22-year study period for Neotropical migrants (annual

trend of 20.036622 years = 20.79 species per route), permanent

residents (+0.84 species), and cavity nesters (+0.37 species) (Table 1;

Figure 2a,b). As expected, we found significant changes in

abundance over the 22-year study period for nearly all guilds

examined (Table 1; Figure 2c,d). Abundance of all forest birds as a

group decreased by 28.7 individuals. Temperate migrants had the

largest decrease in abundance (22.1 individuals) among migratory

habit guilds. Cavity nesters (6.6 individuals) and permanent

residents (11.2 individuals) had the only significant increases in

abundance among all guilds examined. Collectively, these changes

in richness and abundance did not produce significant trends in

successive similarity (year-to-year changes) for any guild except

Neotropical migrants, indicating that successive similarity was

constant over time (Table 1; Figure 2e,f). However, we found

differences in the inherent successive similarity values among

migratory habit and nest location guilds, as indicated by the

different intercepts (Figure 2e,f).

When estimating community similarity progressively, a signif-

icant pattern of decreasing similarity to the baseline structure over

time was evident for all migratory habit and nest location guilds,

and all forest birds as a group (Table 1). The 1985–1987 baseline

community for all routes combined contained 162 species with an

average 3-year abundance of 289 individuals. By 2006, the median

community similarity to that baseline had declined to 0.779 for all

forest birds (Figure 2g). Among all guilds in 2006, community

similarity was lowest for cavity nesters (0.648) and ground nesters

(0.728) and highest for temperate migrants (0.860) and mid-story

and canopy nesters (0.800) (Figure 2g,h).

Without widespread evidence for significant successive change

in forest bird communities, we proceeded with analyses of the

effects of forest disturbance using progressive change.

Effects of forest disturbance on avian community
structure

Within Breeding Bird Survey route buffers in forested

ecoregions of the conterminous United States, the mean

proportion of disturbed forest was 0.014 (SE 0.0004, range

0.0001–0.105, n = 1315 route-year observations) and the mean

proportion of persistent forest was 0.479 (SE 0.017, range 0.109–

0.886, n = 122 routes). We found no significant trend in the

median proportion of disturbed forest over time (Spearman-rank

test, rs = 20.330, p-value = 0.144), indicating that the proportion

of disturbed forest was relatively constant over time (Figure 3).

However, we found evidence that forest disturbance rates and

changes in progressive similarity were influenced by initial forest

conditions. When ranked by amount of persistent forest in the first

year of each routes’ respective time series of images, the top 20

routes (range of proportion of persistent forest 0.72–0.89) had

lower rates of forest disturbance (Wilcoxon signed-rank test, p-

value,0.038) and lower progressive similarity values (Wilcoxon

signed-rank test, p-value = 0.020) than the bottom 20 routes (range

of proportion of persistent forest 0.11–0.29).

When placed within the spatio-temporal context of the mixed-

effects, repeated measures analysis we found support for current

and past forest disturbances affecting progressive similarity for

nearly all of the forest bird guilds examined (Table 2). Among

migratory habit and nest location guilds, disturbed forest was the

most-supported model for 2 guilds. When coupled with the

outcome of forest disturbance (i.e., regenerating forest or forest

loss), disturbed forest was present in most-supported models for 3

additional guilds. Forest loss was present in only 1 of the 8 most-

supported models.

Unexpectedly, the direction of the effect of forest disturbance on

progressive similarity was positive, indicating that forest distur-

bance maintained or increased similarity to the baseline

community for Neotropical migrants, permanent residents, ground

nesters, and cavity nesters (Table 3). Additionally, large areas of

post-disturbance non-forest and post-disturbance forest increased

progressive similarity for cavity nesters and ground nesters,

respectively. Progressive similarity for all forest birds as a group,

and for temperate migrants, and mid-story and canopy nesters

decreased with an increase in the amount of persisting forest

(Table 3).

In addition to forest disturbance, we found significant effects of

latitude and longitude on progressive similarity for many of the

guilds examined (Table 3). Moving from South to North,

progressive similarity decreased for permanent residents and

ground nesters, and increased for temperate migrants and mid-

story and canopy nesters. Moving from West to East, progressive

similarity increased for temperate migrants, permanent residents,

and mid-story and canopy nesters, and decreased for ground

nesters.

Discussion

In contrast to previous studies of shifting baselines utilizing .50

year datasets [8,21,22], our results indicate contemporary forest

bird community structure is changing rapidly over a relatively

short period of time (e.g., ,22 years). In fragmented forests, long

term changes in community similarity arise from turnover in

species [23] and from variability in species richness (i.e., local

extinctions with variable recolonization) [24]. Our observed

changes in community structure occurred despite little change in

species richness and were associated with forest disturbance and

forest regeneration. These findings suggest that forest disturbance

Table 1. Mean annual trends in forest bird community
structure over time for 122 Breeding Bird Survey routes
located in the forested ecoregions of the conterminous
United States, 1985–2006.

Community similarity

Guild Richnessa Abundance Successive Progressive

Migratory habit

Neotropical
migrants

20.036 20.465 0.0010 20.0068

Temperate
migrants

20.003 21.006 0.0006 20.0036

Permanent
residents

0.038 0.508 0.0014 20.0030

Nest location

Ground nesters 20.011 20.409 20.00001 20.0076

Mid-story and
canopy nesters

0.001 21.000 20.0005 20.0068

Cavity nesters 0.017 0.299 20.0006 20.0065

Interior forest
nesters

0.015 0.021 20.0013 20.0089

All forest birds 20.015 21.305 0.0004 20.0053

aBold denotes significance at p#0.05.
doi:10.1371/journal.pone.0011938.t001
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Figure 2. Changes in forest bird community structure by migratory habit (left column) and nest location (right column). Progressive
change in community similarity values compares proportional abundance of species for each route and year to the route’s baseline forest bird
community (1985–1987).
doi:10.1371/journal.pone.0011938.g002
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and forest regeneration are primary factors affecting forest bird

community structure, with forest loss playing a lesser role.

While progressive similarity decreased over time for all forest

species as a group, we found considerable variation in progressive

similarity among migratory habit and nest location guilds

(Figure 2). Decreases in progressive similarity may be related to

declines in richness or abundance relative to the historic baseline,

or they may be related to increases in richness or abundance

relative to the historic baseline. Thus, it is important to note that a

decrease in community similarity may reflect degradation or

restoration of a forest community. Not surprisingly we found

evidence of changes in forest Neotropical migrant communities, as

have other studies [12] and toward which many conservation

efforts such as Partners in Flight are targeted. However, we found,

unexpectedly, that progressive similarity was as low for permanent

residents as for Neotropical migrants. This is in contrast to the

literature which indicates that permanent resident populations are

relatively robust to changes in landscape structure [25,26]. A

potential mechanism for the effects of forest disturbance on

community structure of permanent residents is extinction-

colonization dynamics as a function of population size, i.e.,

common resident species are most likely to exhibit local extinction

in small forests where population sizes are small [27]. Coupled

with this, resident species are also susceptible to local extinction

caused by environmental extremes, including severe winters with

heavy snow cover [28], heat waves [29], and drought [30,31].

Colonization dynamics of resident species may be driven by

dispersal capability, inter-patch distances, and the regional species

pool [32], all of which may be influenced by fragmentation [33].

Our analysis shows that forest permanent resident communities

have changed as rapidly as forest Neotropical migrant communi-

ties over the 22-year study period, perhaps because they are

exposed to habitat conditions in the local landscape throughout

their lifetime. Given this apparent sensitivity to the local

landscape, using progressive similarity of permanent residents as

a ‘‘canary in the coal mine’’ indicative of the stability of forest

conditions that broadly determine habitat conditions for all birds

(e.g., disturbance, fragmentation, range expansions, and climate

change) may be useful way to monitor trends among the full avian

community.

In contrast to our initial expectations, forest disturbance

maintained or increased progressive similarity of Neotropical

migrants, permanent residents, ground nesters, and cavity nesters.

Two lines of evidence may be used to place these findings in an

ecological context. First, we found that routes with low persistent

forest have higher rates of forest disturbance and higher

progressive similarity values than routes with high persistent

forest. Forest disturbance has the greatest effects on biodiversity

when it results in fragmentation or there is fairly little habitat

remaining [34]. While our landscapes remained largely forested

(mean proportion of persistent forest = 0.479), routes with low

persistent forest (range 0.11–0.29) may already fall below the

habitat amount threshold where fragmentation effects become

important predictors of species richness and abundance (approx-

imately 10–30% suitable habitat) [34,35,36]. Sustained forest

disturbance over the 22-year period of our study may maintain

habitat similarity and thus, progressive similarity on low persistent

forest routes. In contrast, routes with high persistent forest (range

0.72–0.89) may have more specialist forest species (i.e., late

successional species, interior forest species) and greater variation in

extinction-colonization dynamics of those species following

disturbance events and thus, lower progressive similarity values

[32].

Second, the intermediate disturbance hypothesis suggests that

species richness is highest in landscapes with non-catastrophic

disturbance events that occur at moderately frequent return

intervals [13]. The Breeding Bird Survey is a roadside survey [37],

thus all routes were established in landscapes that, due to initial

Figure 3. Median proportion of disturbed forest, post-disturbance forest (regenerating forest) and post-disturbance non-forest
(forest loss) within a 1200-km2 circular landscape surrounding Breeding Bird Survey routes located in forested ecoregions of the
conterminous United States. See Fig. 1 for locations of Breeding Bird Survey routes.
doi:10.1371/journal.pone.0011938.g003
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construction and ongoing maintenance activities, contain roadside

habitat held in a relatively constant successional and structural

state over the period of the study (Figure 3). Our results suggest

that forest disturbance maintains progressive similarity in eastern

forests of the United States, provided there is little to no forest loss.

However, we did not classify disturbance with respect to source;

thus we do not know whether forest disturbance from anthropo-

genic sources vs. natural sources contributed equally to community

similarity.

To our knowledge, we are the first to document spatio-temporal

gradients of higher progressive similarity in the eastern than in the

western United States. Latitudinal gradients in species diversity,

with highest diversity near the equator and declining towards the

poles, are well established [38]. However, longitudinal gradients in

species diversity are less well known for the conterminous United

States. Forest bird population responses to forest fragmentation

and landscape change are more difficult to detect in western than

in eastern forests [39,40] due in part to greater inherent variability

in nest predation rates and brood parasitism by cowbirds that may

mask responses to forest fragmentation in western landscapes

[41,42]. This east-west contrast also arises from differences in

matrix habitat – fewer forests in the West have been converted to

agriculture and urban than in the East [40] – and in the time

elapsed since fragmentation and development occurred in western

and eastern landscapes [42]. Additionally, western landscapes

have more variable fire history [43] and stronger elevation

gradients in moisture and temperature [44] than eastern

landscapes. Taken together, these studies and our results suggest

mechanisms explaining why western forest bird communities have

a stronger response to forest disturbance and forest regeneration,

with greater changes in progressive similarity, than eastern forest

bird communities.

While our empirical results are specific to forest birds, the pattern

of decay in progressive similarity that we identified raises important

issues regarding patterns of community diversity change over time for

other taxa. Many studies use annual monitoring to quantify changes

in richness or abundance of communities, yet few studies explicitly

test for progressive changes in community similarity. Both successive

and progressive similarity offer valuable information regarding

patterns of change in community similarity at different temporal

scales. For example, when a discrete instance of change in community

structure may be expected, such as following a large, intense

disturbance event, successive similarity may reveal a substantial

change in community structure [11]. However, successive similarity

may offer a false sense of security regarding the status of communities

when relatively small changes in richness or abundance values

accumulate over time, resulting in substantial long-term changes in

communities when compared to historic baseline conditions that

successive similarity cannot detect. For birds and other taxa,

progressive change over time should be expected and thus a longer

time horizon is needed to determine whether these changes warrant

concern or signal a problem. In this way, conservation or

management efforts may benefit from the use of metrics such as

progressive similarity that can quantify change in communities over a

long time period and reveal progressive change.

Methods

Assessment of changes in avian community structure
We assessed changes in avian community structure for the

period 1985–2006 using the North American Breeding Bird

Survey (BBS). The BBS is an annual, roadside survey of .4000

routes, each 39.4 km long, in the United States and Canada. Our

study included 122 BBS routes (1315 route-year observations)

representing nine forested ecoregions within the conterminous

United States (Figure 1). Volunteers conducted 50 three-minute

point counts at 0.8 km intervals along each route. Data consisted

of counts of individual birds seen or heard during each point

count, identified to species, and tallied by route. We further

grouped route-level richness and abundance data by guild for all

analyses.

A concern with studies of communities is the loss of information

that occurs when characterizing changes in diversity as a single

metric, whether richness, abundance, or community similarity,

because of species turnover and changes in species abundance over

time. This loss of information is inevitable and a property of any

Table 2. Support (Akaike weights) for models of progressive similarity and forest disturbance, by guild, on Breeding Bird Survey
routes located in forested ecoregions of the conterminous United States, 1985–2006.

Persistent
forest

Disturbed
forest

Post-
disturbance
forest

Post-
disturbance
non-forest

Disturbance
and post-
disturbance
forest

Disturbance
and post-
disturbance
non-forest

Guild Full LL A B A B A B A B A B A B

Migratory habit

Neotropical migrants 0.00 0.00 0.10 0.00 0.45 0.00 0.16 0.00 0.16 0.00 0.06 0.00 0.06 0.00

Temperate migrants 0.04 0.00 0.07 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Permanent residents 0.00 0.07 0.00 0.01 0.00 0.54 0.00 0.04 0.00 0.02 0.00 0.20 0.00 0.12

Nest location

Ground nesters 0.00 0.01 0.01 0.01 0.07 0.00 0.31 0.00 0.04 0.00 0.52 0.00 0.03 0.00

Mid-story or canopy 0.07 0.00 0.04 0.85 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

Cavity nesters 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.37 0.00 0.00 0.00 0.61 0.00

Interior forest nesters 0.00 0.00 0.32 0.00 0.03 0.00 0.32 0.00 0.01 0.00 0.32 0.00 0.01 0.00

All forest species 0.00 0.00 0.94 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LL = Latitude and Longitude. A is model without Latitude and Longitude, B is model with Latitude and Longitude. Most-supported model within each guild bolded for
emphasis.
doi:10.1371/journal.pone.0011938.t002
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diversity measure. Thus, the choice of diversity measure should

depend on how much information is needed to answer the

question at hand. In our case, we used the Yue-Clayton index of

community similarity [45] because it is sensitive to changes in four

common measures of diversity: richness, abundance, composition,

and evenness [46]. We determined community similarity for each

route by guild as:

YCI~

Pn
i

piqi

Pn
i

pi{qið Þ2z
Pn

i

piqi

ð1Þ

where pi is the proportional abundance of species i in community

p, qi is the proportional abundance of species i in community q,

and n is the pooled count of species observed in communities p and

q [45]. To quantify community similarity successively (i.e., year-to-

year), p represented abundance for the community of a route in

year t and q represented abundance for the community of the same

route in year t+1. To quantify community similarity progressively

(i.e., year-to-baseline), we designated p as the abundance of the

initial community of a route, defined as the average abundance by

species for the years 1985–1987, and q as the community of the

same route in each subsequent year. The Yue-Clayton index

ranges from 0 (completely different communities) to 1 (identical

communities) and is identical to Jaccard’s index when proportional

abundance of two populations is uniform [45].

A second concern with studies of communities is the quality of the

initial diversity assessment (i.e., baseline) and subsequent annual

assessments, typically measured as completeness with respect to the

estimated or total species pool for a site. The baseline community

captured on average 72% of the total species pool observed across all

years (1985–2006) for each site. Had we defined the baseline

community as 1985 only, we would have captured on average 61% of

the total species pool. Thus, defining the baseline community as a

three-year average offered greater completeness than using only the

first year. Many factors affect the completeness of a survey, including

differences in sampling effort, observers, weather, or detectability of

species or individuals. Data screening procedures and sophisticated

modeling techniques (see Statistical analyses, below) can minimize or

control for these sources of variation in completeness. Thus, by

following these procedures and modeling sources of variation, we

assumed that changes in similarity that we found were due to changes

in bird community structure over time, and not due to incomplete

detections.

Association between forest disturbance and avian
community structure

We assessed land cover change for 22 study areas within the

conterminous United States from a series of annual or biennial

Landsat TM/ETM+ imagery for the period 1985–2006 [47]

(Figure 1). Each study area was approximately 185 km6185 km,

corresponding to the size of a Landsat image, and contained at

least 15% forest cover. For each image in the time series, we

quantified the probability of a pixel being a forest pixel using the

Integrated Forest Index:

IFIp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NB

XNB

i~1

bpi{�bbi

SDi

� �2
vuut ð2Þ

where �bbi and SDi are the mean and standard deviation of forest

training pixels within that image for band i, bpi is the band i

Table 3. Parameter estimates, standard errors, and t values
for attributes of the 1200 km2 circular landscape surrounding
Breeding Bird Survey routes that affect progressive
community similarity of forest birds.

Guild Estimate Std. Error t value

Neotropical migrants

Intercept 0.7791 0.0124 63.07

Year 20.0068 0.0005 213.30

Disturbed forest 0.2210 0.2652 0.83

Temperate migrants

Intercept 0.8482 0.0083 102.46

Year 20.0036 0.0005 26.52

Longitude 0.0032 0.0006 5.69

Latitude 0.0055 0.0021 2.67

Persistent forest 20.2110 0.0442 24.77

Permanent residents

Intercept 0.7642 0.0134 56.82

Year 20.0031 0.0007 24.44

Longitude 0.0031 0.0009 3.40

Latitude 20.0180 0.0031 25.76

Disturbed forest 0.9620 0.3846 2.50

Ground nesters

Intercept 0.7702 0.0146 52.89

Year 20.0048 0.0008 25.75

Longitude 20.0025 0.0010 22.58

Latitude 20.0114 0.0038 23.00

Disturbed forest 0.4861 0.4517 1.08

Post-disturbance forest 0.2207 0.1446 1.53

Mid-story and canopy nesters

Intercept 0.8192 0.0088 93.46

Year 20.0053 0.0005 210.26

Longitude 0.0031 0.0006 5.33

Latitude 0.0084 0.0022 3.88

Persistent forest 20.2001 0.4695 24.26

Cavity nesters

Intercept 0.7544 0.0113 66.67

Year 20.0069 0.0008 28.92

Disturbed forest 0.7639 0.4070 1.88

Post-disturbance non-forest 0.5205 0.1519 3.43

Interior forest nesters1

Intercept 0.7626 0.0156 48.88

Year 20.0062 0.0008 27.42

Persistent forest 0.2424 0.0793 3.06

Disturbed forest 20.5566 0.4442 21.25

Post-disturbance forest 20.3967 0.1320 23.01

All forest species

Intercept 0.8218 0.0077 106.82

Year 20.0053 0.0004 212.39

Persistent forest 20.1607 0.0377 24.27

1Values were averaged across top 3 competing models.
t values exceeding 1.96 meet significance threshold considering fixed effects
only [53].
doi:10.1371/journal.pone.0011938.t003

Forest Disturbance and Birds

PLoS ONE | www.plosone.org 7 August 2010 | Volume 5 | Issue 8 | e11938



spectral value for pixel p, and NB is the number of spectral bands.

Forest training pixels were defined by a peak (or threshold) in the

histogram of reflectance values from TM band 3 (red band) [48].

When calculated over multiple spectral bands (TM/ETM+ bands

2, 3, and 7), the Integrated Forest Index approximates the inverse

probability of a pixel being forested as the normalized distance to

the center of delineated forest training pixels within that image in

the spectral space. Small Integrated Forest Index values indicate

strong similarity with the spectral center of the forest training

pixels and a high probability of a pixel being forested.

We applied a vegetation change tracker algorithm to the

temporal profile of the Integrated Forest Index to identify six land

cover change classes: persistent forest, persistent non-forest,

persistent water, disturbed forest, post-disturbance forest, and

post-disturbance non-forest [48]. Persistent forest and persistent

non-forest remained forest or non-forest, respectively, from 1985

to 2006. Disturbed forest was synonymous with forest loss relative

to the previous image. Post-disturbance forest and post-distur-

bance non-forest represented the return to forest or retention of

non-forest cover, respectively, following disturbance. By definition,

post-disturbance forest and post-disturbance non-forest do not

transition to persistent forest or persistent non-forest as the latter

two classifications were undisturbed for the entire study period.

The accuracy of the forest disturbance maps, assessed for a

stratified random sample of pixels by visual comparison of Landsat

imagery and high-resolution aerial photography, ranged from

78% to 87% [49].

We quantified the proportion of each land cover class within a

19.7 km radius circle of each BBS route centroid [19,26]. The

19.7 km buffer radius, in addition to being the shortest buffer

radius to encapsulate a BBS route, approximates the median

maximum natal dispersal distance of 22.9 km for 150 forest-

associated species of North American landbirds (C. Flather,

unpublished data) based on allometric relationships developed by

Sutherland et al. [50], providing an ecologically relevant scale to

link avian nesting and juvenile habitat to the landscape. We

included in the analysis only BBS routes for which .80% of the

area of this circular landscape was located within a study area (i.e.,

within the area of a Landsat scene).

Statistical analyses
Many factors are known to influence BBS counts including

environmental effects, species effects, and observer effects. Thus,

approaches for analyzing BBS data should be adjusted accord-

ingly. We followed standard protocols for minimizing bias due to

environmental effects by removing routes surveyed during

inclement weather or outside of the time standards [37]. We

minimized species effects by omitting unidentified species and

species with ,30 route-year observations within the continental

United States over the period of the BBS (accidental or low

occurrence species), and by summing counts among BBS-tracked

subspecies (e.g., red-shafted flicker, yellow-shafted flicker) to the

species level (e.g., northern flicker). We also adopted the standard

protocol of excluding routes surveyed by novice (first-year)

observers [51]. Observer effects also may be introduced with a

change in observer on a route over time due to inherent

differences in observers’ detection abilities [52]. If each observer

surveyed only 1 BBS route, the effect of observer would be nested

within the route effect. However, a substantial portion of BBS

observers conducted surveys on .1 BBS route, causing the

grouping factor of observer to lose the nesting property. Thus, we

modeled observer and route as separate (crossed) effects.

To assess changes in avian community structure over time, we

fit mixed-effects models by guild of richness, abundance, and

community similarity measured on BBS routes over time. The

mixed-effects model framework allowed random-effects terms that

characterized the variation induced in the response by the

different observers and routes in addition to fixed-effects terms.

The basic structure for the mixed-effects model was:

yijt~b0zb1t1zoizrjzeijt ð3Þ

Where yijt was richness, abundance, or community similarity for

the ith observer of route j at time t, b0 was the common intercept

term, t1 was the variable year and b1 the associated fixed effect of

year, which was identical for all groups, oi was the random effect

for the ith observer, rj was the random effect for the jth route, and

eijt was the error term, assumed to follow a multivariate normal

distribution.

To determine the association between forest disturbance and

community similarity, we added fixed effects of latitude, longitude,

and route attributes of land cover change class (persistent forest,

disturbed forest, post-disturbance forest, and post-disturbance

non-forest) to equation 3. We fit a global model of all fixed and

random effects using a penalized quasi-likelihood estimation

method to obtain restricted maximum likelihood estimates of

fixed-effects and covariance parameters. We used model selection

with AIC to rank models and to determine the most-supported

model for each guild. The candidate model set for each guild

included models of persistent forest, disturbed forest, post-

disturbance forest, post-disturbance non-forest, disturbed forest

and post-disturbance non-forest, and disturbed forest with post-

disturbance forest. We also included a model containing latitude

and longitude, as well as fit all land cover change class models with

and without latitude and longitude. The candidate model set

contained 14 models, including the global model.

We used a t-statistic to approximate variable significance,

specifying an upper bound for the degrees of freedom as the

number of observations less the number of fixed-effect parameters.

This upper bound may be anticonservative at small sample sizes

(e.g., ,100), meaning that p-values for some variables in final

models may be too small because random-effect parameters are

not considered when determining degrees of freedom for

significance tests. However, the upper bound is generally viewed

as acceptable for large sample sizes [53]. We fit all models using

the lme4 package within the R language and environment for

statistical analysis, version 2.8.1 [54].

Supporting Information

Table S1 Scientific names of forest bird species and guild

classifications by migratory habit and nest location.

Found at: doi:10.1371/journal.pone.0011938.s001 (0.38 MB

DOC)
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