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Abstract: The Forest Inventory and Analysis (FIA) program of the USDA Forest Service alters plot locations before releas-
ing data to the public to ensure landowner confidentiality and sample integrity, but using data with altered plot locations in
conjunction with other spatially explicit data layers produces analytical results with unknown amounts of error. We calcu-
lated the potential error from using altered location data in combination with other data layers that varied in mean map unit
size. The incidence of errors associated with the use of altered plot locations exhibited a strong inverse relationship to the
mean map unit size of the other data sets used in the analyses. For a 30 m � 30 m resolution land cover map, plot misclassi-
fication rates ranged from 32% to 66%, whereas only 1%–10% of plots were misclassified for ecological subsection data
(mean polygon size 9067 km2). Housing density data derived from the US Decennial Census (mean polygon size = 5.7 km2)
represented an intermediate condition, with 5%–70% of data points misclassified when altered plot locations were used.
These analyses demonstrate the impacts of altering FIA plot locations and represent an important step toward making the
FIA database more helpful to a broad variety of end users.

Résumé : Le Service des forêts du département de l’Agriculture des États-Unis modifie la localisation des placettes avant
de rendre publiques les données de son programme d’inventaire et d’analyse forestiers pour préserver la confidentialité des
propriétaires fonciers et l’intégrité des échantillons. Mais l’utilisation de données provenant de placettes dont la localisa-
tion a été modifiée, conjointement avec d’autres couches de données spatialement explicites, produit des résultats analy-
tiques qui comportent des erreurs dont l’ampleur est inconnue. Nous avons calculé l’erreur potentielle reliée à l’utilisation
de données de localisation modifiées combinées à d’autres couches de données dont la taille moyenne de l’unité cartogra-
phique était variable. Il y avait une forte relation inverse entre l’incidence des erreurs associées aux placettes dont la local-
isation avait été modifiée et la taille de l’unité cartographique des autres données utilisées dans les analyses. Pour une
carte de couverture végétale avec une résolution de 30 m � 30 m, le taux d’erreur de classification variait de 32 % à 66 %
alors que pour les données de sous-sections écologiques dont la taille moyenne des polygones était de 9067 km2, seule-
ment 1 %–10 % des placettes étaient mal classées. Les données de densité résidentielle dérivées du recensement décennal
américain, dont la taille moyenne des polygones est de 5,7 km2, représentent une situation intermédiaire avec 5 % – 70 %
d’erreur de classification lorsque les placettes dont la localisation a été modifiée étaient utilisées. Ces analyses démontrent
les impacts de la modification de la localisation des placettes du programme d’inventaire et d’analyse forestiers et constitu-
ent un pas important pour rendre la base de données de ce programme plus utile à une grande variété d’utilisateurs.

[Traduit par la Rédaction]

Introduction

As contemporary organizations gather, analyze, and share
large quantities of personal and household data, maintaining
the privacy of their subject groups is becoming increasingly
important (Muralidhar and Sarathy 2005). In particular, the
confidentiality of personal information collected electroni-
cally by businesses, the medical industry, and the government
has become a topic of great concern (Chen and Rea 2004;
O’Herrin et al. 2004). Both private and public institutions

increasingly struggle to balance their obligation to protect the
privacy of the individuals who are the source of these data
against users’ needs for accurate information (Domingo-Ferrer
et al. 2004). To minimize the possibility of disclosing per-
sonal information, data-collecting institutions and agencies
may apply a variety of masking procedures (Brand 2002;
Domingo-Ferrer et al. 2004; Lechner and Pohlmeier 2004).
Data masking necessarily involves some information loss,
but the magnitude of such losses and their potential effects
on the accuracy of data analyses are unknown.

Received 20 October 2006. Accepted 8 March 2007. Published on the NRC Research Press Web site at cjfr.nrc.ca on 23 November 2007.

A.A. Sabor1 and V.C. Radeloff. Department of Forest Ecology and Management, University of Wisconsin, 1630 Linden Drive,
Madison, WI 53706, USA.
R.E. McRoberts. North Central Research Station, USDA Forest Service, 1992 Folwell Avenue, Saint Paul, MN 55108, USA.
M. Clayton. Department of Statistics, University of Wisconsin, 1210 Dayton Street, Madison, WI 53706, USA.
S.I. Stewart. North Central Research Station, USDA Forest Service, 1033 University Avenue, Suite 360, Evanston, IL 60201, USA.

1Corresponding author (e-mail: aasabor@wisc.edu).

2313

Can. J. For. Res. 37: 2313–2325 (2007) doi:10.1139/X07-067 # 2007 NRC Canada



The Forest Inventory and Analysis (FIA) database of the
USDA Forest Service provides an excellent case study of
the conflicts that arise as agencies attempt to balance users’
needs while maintaining data privacy and sample integrity.
FIA collects georeferenced data on vegetation and other nat-
ural features on approximately 128 000 forested plots, pro-
viding the only comprehensive source of inventory
information on private and public forest land in the United
States. Data collected on each plot from the 1970s to the
present are available in tabular format on the Internet
(http://www.fia.fs.fed.us/tools-data/data/). This database is
of great potential value to land managers, consultants, re-
searchers, and others interested in the scale and pattern of
forest change over time and space. For example, FIA data
have been used to examine rates of timber harvest (Munn et
al. 2002), monitor the effects of climate change (Iverson and
Prasad 1998; Stolte 2001), predict tree species distribution
(Schwartz et al. 2001), and assess damage caused by natural
disasters (Faust et al. 1994).

Although the geographic coordinates and landowner infor-
mation included in the FIA database allow spatially explicit
analyses, the program has long been concerned that disclos-
ing precise plot locations could compromise sample integ-
rity. First, such disclosure may attract other activities that
either intentionally or unintentionally affect plot composi-
tion (e.g., damaged trees, trampled vegetation, and com-
pacted soils), thereby altering inventory results. Second,
disclosures of exact plot locations may make public certain
proprietary information on growth and yield or management
practices, resulting in landowners’ refusing to allow repeated
FIA assessments on their property (McRoberts et al. 2005).
In 2000, this concern was formalized when the US Con-
gress, as part of the Interior and Related Agencies Appropri-
ations Act (H.R.3423), mandated that FIA plot location and
ownership data receive confidential treatment. This language
prevents FIA from disclosing sample locations to individuals
outside the program in such a way that individual land own-
ership and other proprietary information could be deter-
mined with certainty. Moreover, the risk of revealing
landowners’ personal information has grown as the FIA pro-
gram increasingly works with state agencies, universities,
other federal agencies, and contractors to implement field-
work, analysis, reporting, and monitoring.

Because of the new legislation and the variety of program
partners, a new policy regarding the direct or indirect release
or disclosure of personal information pertaining to plot own-
ership had to be developed. Thus, the Web-available plot lo-
cations released by FIA are now altered in two ways. The
majority of FIA plots undergo perturbation, in which the plot
coordinate data are altered but still are located within a
1.6 km radius of the true plot location. A much smaller sub-
set of privately owned plots also undergoes swapping, in
which the plot location data are first perturbed and then ex-
changed with data from other plots similar in both ownership
and ecological condition (Lister et al. 2005). Users do not
have any way of discerning either the extent to which plot lo-
cations have been perturbed within the 1.6 km radius or ex-
actly which plot locations may have undergone swapping.

The FIA program’s intent is to maintain the ecological
validity of its data while decoupling plot–landowner infor-
mation by adding uncertainty to plot locations. Prior studies

concluded that perturbing and swapping have minimal ef-
fects on analyses of variables included in the FIA database
if the area of interest (AOI) is large enough. For example, a
study by Lister et al. (2005) showed that adding uncertainty
to FIA plot locations had steadily decreasing effects on mul-
tiplot estimates of board foot volume (1 board foot =
2.359 737 dm3) as circular AOIs increased from 5 to 20 km
in radius. McRoberts et al. (2005) similarly found that per-
turbing and swapping had negligible effects for design-based
estimation of forest attributes included in FIA when the radii
of circular AOIs exceeded 30 km. Many users, however, are
interested in examining the relationships between FIA data
and other spatially explicit data, either in raster format or
containing irregularly shaped polygons, on finer scales that
reflect typical private ownerships or correspond to commun-
ity interests in political or economic activities. Errors in-
curred when conducting such analyses using perturbed FIA
plot location data may or may not be similar to those in-
curred when using circular AOIs or when examining only
data included in the FIA database. For example, Coulston et
al. (2006) found that the extent to which perturbed FIA plot
locations influence the development and accuracy of linear
regression models is significantly affected by the cell size
and spatial autocorrelation among cells of the raster data
sets containing the independent variables. Thus, there are
many unanswered questions about the utility of altered FIA
plot location data for ecological research.

FIA Spatial Data Services (SDS) was created to facilitate
the connection between user-generated geospatial data to
FIA’s true geospatial information to generate derived prod-
ucts that comply with the confidentiality law (USDA Forest
Service 2004). Although SDS Centers play a valuable role
in meeting the needs of those who wish to use FIA data,
many users will find SDS Centers too geographically distant
to visit themselves, and SDS will face limitations in their
ability to address all users’ requests within a reasonable
time frame. Therefore, our objective was to quantify the
amount of error introduced by using FIA data with altered
plot locations in conjunction with other data sets so that re-
searchers can evaluate whether perturbed FIA data are suit-
able for conducting certain kinds of ecological research or
answering management questions. To do so, we chose three
data sets that represent a range of map unit sizes, are widely
available, and are likely to be useful in answering a broad
variety of research questions: (i) a 30 m � 30 m land cover
classification, (ii) census partial block group data with poly-
gon sizes ranging from <0.01 to 1640 km2, and (iii) ecolog-
ical subsection data with polygon sizes ranging from 469 to
80 600 km2.

Methods

Study area
The study region includes Michigan, Minnesota, and Wis-

consin, an area covering 494 014 km2. This area is charac-
terized by cold, snowy winters and warm, humid summers
with precipitation evenly distributed throughout the year. A
gradual transition zone, defined by temperature, frontal
movement, and vegetation extends from north-central Min-
nesota to southeastern Wisconsin and then across the Lower
Peninsula of Michigan (Stearns 1997).
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Within the study area, approximately 210 000 km2 are
designated as forest land, defined by the USDA Forest Serv-
ice as a minimum land area of 0.41 ha in size that is at least
10% stocked by forest trees of any size or that formerly had
such tree cover and that is not currently developed for a
nonforest use (Bechtold and Patterson 2005). Predominant
forest types in these three states include maple–beech–birch,
aspen–birch, spruce–fir, and oak–hickory (Shifley and Sulli-
van 2002). This region encompasses a wide range of land
cover types, varies greatly in housing density, and includes
many ecological subsections, making it particularly suitable
for a study of this type.

Data sources

Forest attributes
Our analyses were conducted using FIA plot location data

collected from Michigan, Minnesota, and Wisconsin during
2000–2003. FIA field survey plots occur at an intensity of
approximately one 0.41 ha plot per 1200 ha in Minnesota
and Wisconsin and one plot per 800 ha in Michigan (McRo-
berts 2006). Field survey personnel collect quantitative and
qualitative data on stand condition, land use, ownership,
timber volume, tree species, and tree condition (Miles et al.
2001). We used FIADB version 1.7 downloadable data files
from the National FIA Database Retrieval Web site (http://
ncrs2.fs.fed.us/4801/fiadb/index.htm) to obtain the publicly
available perturbed and swapped plot coordinates. Exact
plot coordinates were obtained and analyzed at the USDA
Forest Service SDS Center in St. Paul, Minnesota.

Land cover
We used the USGS National Land Cover Data (NLCD)

derived from Landsat thematic mapper (TM) satellite im-
agery ca. 1992. The TM images, combined with supporting
information such as topography, census, agricultural statis-
tics, soil characteristics, and other land cover maps, have
been classified into a hierarchical, 21 class land cover
scheme applied consistently over the United States at a
30 m � 30 m resolution (Vogelmann et al. 2001). Eighteen
of the 21 cover classes occur within the study region, with
major land cover classifications in the study region includ-
ing herbaceous cultivated (36.3%), forested upland (27.0%),
water (20.8%), and wetlands (12.9%). Developed area ac-
counts for 1.7% of land cover, whereas all other cover types
account for less than 2.0% of the total surface area of this
region.

We also aggregated NLCD data into eight broader catego-
ries (e.g., coniferous, deciduous, and mixed forest all be-
came simply ‘‘forest’’) and calculated the mean area of all
patches of contiguous pixels formed by grouping pixels of
like classes into homogeneous landscape units using an
eight-neighbor rule. When we did this, the mean patch size
across all categories was 0.41 ± 96.35 km2 (mean ± SD).

Housing density
Housing density for the year 2000 was estimated using

US Decennial Census data at the partial block group (PBG)
level via methods developed by Hammer et al. (2004). Be-
cause of concerns about privacy and sampling error, certain
data are released only for aggregations of census blocks

(block groups). However, block groups are divided by a va-
riety of political boundaries, such as congressional districts
and minor civil divisions, which permit division into multi-
ple partial block groups. PBGs have a mean size one-tenth
that of block groups and, therefore, provide a much better
spatial resolution while including the complete array of pop-
ulation and housing attribute information available at the
block group level. Sizes of PBGs in the study region range
from <0.01 to 1640 km2 (mean = 5.7 km2), while housing
densities range from 0.0 to 16 945 units/km2 (mean =
71.45 units/km2).

Ecological subsections
The National Hierarchical Framework of Ecological Units

divides the country into progressively smaller areas of land
and water based on physical and biological characteristics
and ecological processes (Cleland et al. 1997). Ecological
subsection boundaries are typically delineated by discrete
changes in surficial geology (Great Lakes Ecological Assess-
ment 2004). For our analyses we used ecological subsections
as delineated by USDA Forest Service ECOMAP (McNab
and Avers 1994), which included 90 ecological subsections
ranging in size from 469 to 80 600 km2 (mean = 9067 km2).

Data analyses
Individual FIA plots were classified as perturbed or

swapped based on the linear distance between true and al-
tered plot locations. Those plots having a linear distance
of £1.6 km between true and altered plot coordinates were
categorized as perturbed, whereas those with linear
distances >1.6 km were considered swapped. This threshold
was chosen based on the maximum extent to which plot co-
ordinates are perturbed and was intended to ensure that the
subset of data categorized as swapped did not include any
data points that were merely perturbed. Information on land
cover type, housing density, and ecological subsection was
associated with each true FIA plot location and its perturbed
or swapped counterpart in a geographic information system
(GIS). Information on land cover, housing density, or eco-
logical subsection was missing from some plot locations be-
cause perturbation or swapping moved the plot location
outside the study region or into a water body. These plot re-
cords were eliminated, as were duplicate plot records, yield-
ing 21 498 records for perturbed plots and 491 records for
swapped plots. In general, perturbed and swapped data were
analyzed separately. In some instances, however, all 21 989
plots were analyzed together to determine whether there
were any differences in the results, because users will not
be able to differentiate between perturbed and swapped plot
location data when using FIA data available on the Internet.
In those instances, both the results from individual and com-
bined analyses are reported.

We graphed housing densities derived using true plot lo-
cation data against those derived using perturbed and
swapped FIA locations on a log–log scale to examine
whether there was a linear relationship between these two
sets of results. Data points that did not fall on a straight
line were examined on a map to determine whether the loca-
tions of these plots exhibited any distinctive spatial pattern,
such as clustering around public lands or water bodies. In
addition, we created residual plots comparing housing den-
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sities at true and altered plot locations to assess whether
there was any bias to estimates derived using altered plot lo-
cations. We used Pearson’s correlation coefficients and their
p values to evaluate the linearity and strength of the rela-
tionship between true, perturbed, and swapped locations
both by state and over the entire study area and performed
paired t tests to assess differences in mean housing density
values among these data. Correlation coefficients and paired
t tests for housing densities derived using perturbed plot co-
ordinates were analyzed at the county and ecological subsec-
tion level, but such analyses were not possible using
swapped plot locations because of insufficient sample sizes.

Because NLCD and ecological subsection data are catego-
rical rather than continuous, we could not perform the same
types of analyses on these data as on housing density. In-
stead, we calculated the percentage of changes that occurred
in our results when using either true or perturbed FIA plot
locations. In addition, we computed simple kappa (�) coeffi-
cients for NLCD and ecological subsection data. Kappa is a
measure of agreement between two categorical data sets that
assumes a value between 0 and 1, with 1 being complete
agreement between data sets. Kappa is positive whenever
the observed agreement exceeds chance agreement, with its
magnitude reflecting the strength of agreement (Cohen
1960). NLCD data were analyzed using both the full suite
of 18 land cover classes in the study region and the eight
broader aggregations of these 18 classes.

Results

In general, the magnitude of the effects of perturbing and
swapping FIA plot coordinates strongly depended on the
mean map unit size of the comparative data set used in the
analyses. Here, we review our results in order from finest to
coarsest scale data layers.

National land cover data
When we used the full set of 18 land cover types, 51.5%

of perturbed plots and 66.8% of swapped plots exhibited dif-
ferences in land cover when compared with those derived
using true FIA plot coordinates (Tables 1 and 2). When
compared with land cover types derived using true plot loca-
tions, kappa coefficients for perturbed data (� = 0.36) and
for swapped data (� = 0.16) indicated considerable lack of
agreement between these data sets. Although many of these
land cover type changes occurred between closely related
cover types, such as coniferous and deciduous forest, the
use of aggregated land cover categories still resulted in the
misclassification of 32.7% of perturbed plots (� = 0.50) and
51.7% (� = 0.36) of swapped plots (Tables 3 and 4), again
indicating a strong lack of agreement between these data
sets. Upon examining a map, we saw no spatial patterning
among plots that changed NLCD categories due to the added
uncertainty in the FIA plot coordinate data.

Data analyses combining the perturbed and swapped plot
location data sets yielded results similar to those for per-
turbed data alone, with land cover type changes occurring
51.7% of the time when we used all 18 land cover types
and 33.9% of the time when we used aggregated land-cover
categories.

Housing density
Graphs of log-transformed housing density for true versus

perturbed or swapped coordinates demonstrated a distinctly
linear relationship but included considerable scatter (Figs. 1
and 2). When we mapped plot locations for those points that
fell along the axes (i.e., exhibited a housing density of zero
for either the true or perturbed or swapped locations but not
both), it was apparent that many of these plots occurred in
areas exhibiting high spatial heterogeneity in housing den-
sity, such as PBGs with no houses intermixed with PBGs
containing 5–64 houses/km2.

Residual plots for both perturbed and swapped plot loca-
tions (Figs. 3 and 4) exhibited the following lines of points:
(i) down the y axis due to instances in which actual housing
densities equaled zero and the value derived from altered
plot locations was greater and (ii) along the diagonal due to
instances where actual housing densities were greater than
zero, but the value derived from altered plot coordinates
was zero. There was no apparent bias in estimates based on
altered plot locations in cases where neither the actual or es-
timated housing density was greater than zero.

Housing densities derived using true FIA plot locations were
highly correlated (Pearson R = 0.68, P < 0.0001) with those de-
rived using perturbed locations. Approximately 85% of all
plots exhibited a housing density difference of £0.5 units/km2

between true and perturbed coordinates. In about 5% of cases,
however, differences of >10 housing units/km2 resulted
from using perturbed plot coordinates (Fig. 5). Similarly,
housing densities derived using swapped plot locations
were significantly correlated with those derived using true
coordinates (Pearson R = 0.41, P < 0.0001), although less
strongly than those derived using perturbed plot location
data. Swapping resulted in nearly 41% of all plots exhibiting
a housing density difference of £0.5 units/km2 and approxi-
mately 17% exhibiting differences of >10 housing units/km2

as compared with the housing densities derived using true
plot coordinates (Fig. 6).

Housing density data derived using perturbed or swapped
coordinates exhibited very similar distributions in relation to
true coordinates (Figs. 7 and 8). Paired t tests confirmed that
there were no significant differences between the means for
these data sets either when all plots in the study area were
included in the analysis or when tests were performed on
data for individual states. When aggregated at the county
level, housing densities derived using perturbed FIA plot lo-
cations were significantly different at the � = 0.05 level
from those derived using true plot locations only 3% of the
time. Likewise, when housing density was aggregated to the
level of ecological subsection, values derived using true plot
locations differed significantly only 7% of the time from
those derived from perturbed plot locations. When mapped,
there was no clear relationship between the amount or spatial
patterning of housing development that could explain the sig-
nificant differences in housing densities at the county level.

Data analyses combining the perturbed and swapped data
sets indicated that approximately 84% of all plots exhibited
housing density differences of £0.5 units/km2, a figure com-
parable to that for perturbed data alone. Similarly, paired
t tests showed no significant differences between mean hous-
ing densities using the combined perturbed and swapped data
sets versus true plot location data when examined across
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Table 1. Confusion matrix for 18 land cover categories using perturbed Forest Inventory and Analysis (FIA) plot locations (n = 21 498).

NLCD category for true plot locations

NLCD category for
perturbed plot locations OW LIR HIR CIT RSC QMG TB DF EF MF SL GH PH RC SG URG WW EHW

User’s
accuracy

OW 0.06 * * 0.01 0.01 0.01 <0.01 <0.01 0.01 0.02 0.21
LIR 0.02 0.34 0.26 0.11 * <0.01 * * * <0.01 <0.01 0.24 * * 0.32
HIR * 0.14 0.26 0.10 <0.01 * * * <0.01 0.09 * 0.27
CIT 0.01 0.07 0.13 0.22 * <0.01 * * 0.01 <0.01 * 0.06 <0.01 * 0.22
RSC * * * * 0.40
QMG * * 0.39 * * * * * * 0.52
TB 0.14 0.01 0.01 0.01 * * * * <0.01 * 0.13
DF 0.30 0.11 0.14 0.15 * 0.23 0.28 0.49 0.24 0.37 0.34 0.37 0.18 0.09 0.10 0.13 0.18 0.16 0.45
EF 0.09 * * * 0.09 0.05 0.31 0.13 * 0.06 0.02 0.01 * * 0.05 0.02 0.32
MF 0.07 * * * * 0.14 0.07 0.13 0.18 * 0.06 0.01 <0.01 * 0.05 0.02 0.18
SL * <0.01 * * * 0.01 * 0.08
GH * * * 0.02 0.02 0.01 0.20 0.01 <0.01 0.01 0.01 0.14
PH 0.13 0.08 * 0.09 * * 0.09 0.03 0.04 * 0.08 0.35 0.15 0.13 0.11 0.05 0.13 0.35
RC 0.10 0.12 0.07 0.18 * * 0.12 0.06 0.04 0.10 0.34 0.67 0.25 0.18 0.05 0.17 0.69
SG * * <0.01 * 0.01 0.01 0.38 * * 0.03 0.44
URG * 0.03 0.07 0.06 <0.01 * * <0.01 <0.01 * 0.15 * * 0.16
WW 0.14 0.04 * 0.03 * 14.00 0.11 0.15 0.17 0.23 0.07 0.04 0.02 0.04 * 0.53 0.17 0.51
EHW 0.05 * * 0.03 * * 0.02 0.03 0.02 * * 0.03 0.02 0.07 0.06 0.25 0.27
Producer’s accuracy 0.06 0.34 0.26 0.22 0.67 0.39 0.14 0.49 0.31 0.18 0.09 0.20 0.35 0.67 0.38 0.15 0.53 0.25

Note: Overall accuracy = 0.49. OW, open water; LIR, low-intensity residential; HIR, high-intensity residential; CIT, commercial or industrial; RSC, rock, sand, or clay; QMG, quarries, mines, or gravel
pits; TB, transitional barren; DF, deciduous forest; EF, evergreen forest; MF, mixed forest; SL, shrubland; GH, grassland or herbaceous; PH, pasture or hay; RC, row crops; SG, small grains; URG, urban or
recreational grasses; WW, woody wetlands; EHW, emergent herbaceous wetlands.
*Insufficient cell count to ensure confidentiality if reported.
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Table 2. Confusion matrix for 18 land cover categories using swapped Forest Inventory and Analysis (FIA) plot locations (n = 491).

NLCD category for true plot locations

NLCD category for
swapped plot locations OW LIR HIR CIT RSC QMG TB DF EF MF SL GH PH RC SG URG WW EHW

User’s
accuracy

OW * 0.00
LIR * * 0.00
HIR * * 0.00
CIT na
RSC 0.38 0.00
QMG * 0.00
TB * 0.00
DF * 0.44 0.48 0.46 * * 0.21 * * 0.24 * 0.57
EF 0.03 * * 0.08 0.05
MF * 0.05 * * * * 0.17
SL * * 0.00
GH * * * * 0.13
PH 0.14 * 0.28 0.16 0.13 * 0.12
RC 0.15 * 0.14 * * 0.31 0.32 * 0.13 * 0.19
SG * 0.00
URG * 0.00
WW 0.11 * * * * * 0.30 * 0.38
EHW * 0.04 * * * * * * 0.04
Producer’s accuracy 0.00 na na 0.00 na na 0.00 0.44 0.04 0.11 0.00 0.14 0.28 0.32 0.00 0.00 0.30 0.11

Note: Overall accuracy = 0.33. See Table 1 for abbreviations. na, not available.
*Insufficient cell count to ensure confidentiality if reported.
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the study area or by state. Mean housing densities for coun-
ties differed significantly at approximately the same rate
(3%) as when perturbed data were analyzed alone; however,

mean housing density was significantly different from that
derived using true plot locations approximately 13% of the
time.

Fig. 1. Housing density for true versus perturbed Forest Inventory and Analysis (FIA) plot locations (log–log scale, n = 21 498).

Table 3. Confusion matrix for eight aggregated land cover categories using perturbed Forest Inventory and Analysis (FIA) plot loca-
tions (n = 21 498).

NLCD category for true plot locations

NLCD category for
perturbed plot locations Water Developed Barren Forested Shrubland

Herbaceous
natural

Herbaceous
planted Wetland

User’s
accuracy

Water 0.06 * * 0.01 <0.01 0.01 0.21
Developed 0.04 0.53 * 0.01 * 0.01 0.01 0.52
Barren * 0.23 0.01 * * <0.01 <0.01 0.24
Forested 0.46 0.14 0.45 0.63 0.54 0.49 0.13 0.26 0.59
Shrubland * <0.01 * * <0.01 0.08
Herbaceous natural * * * 0.02 0.20 <0.01 0.01 0.14
Herbaceous planted 0.23 0.21 * 0.18 * 0.19 0.79 0.16 0.81
Wetland 0.20 0.10 0.21 0.15 0.26 0.09 0.06 0.54 0.53
Producer’s accuracy 0.06 0.53 0.24 0.63 0.09 0.20 0.80 0.54

Note: Overall accuracy = 0.67.
*Insufficient cell count to ensure confidentiality if reported.

Table 4. Confusion matrix for eight aggregated land cover categories using swapped Forest Inventory and Analysis (FIA) plot loca-
tions (n = 491).

NLCD category for true plot locations

NLCD category for
swapped plot locations Water Developed Barren Forested Shrubland

Herbaceous
natural

Herbaceous
planted Wetland

User’s
accuracy

Water * 0.00
Developed * * 0.00
Barren * 0.00
Forested * * 0.54 * * 0.36 0.37 0.71
Shrubland * * 0.00
Herbaceous natural 0.02 * * * 0.13
Herbaceous planted 0.28 * * 0.51 0.27 0.47
Wetland * 0.15 * 0.11 0.32 0.33
Producer’s accuracy 0.00 0.00 0.00 0.54 0.00 0.14 0.51 0.32

Note: Overall accuracy = 0.48.
*Insufficient data to ensure confidentiality restrictions if reported.
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Ecological subsections
When we used perturbed coordinates, FIA plots changed

ecological subsection only 0.5% (n = 107) of the time when
compared with true plot locations. Among those plots that
changed subsection, 27% (n = 29) were moved to a differ-
ent section within the same province and about 6% (n = 6)
were moved to a different province. Changes in ecological
subsection also occurred relatively infrequently when
swapped coordinates were used, affecting only 10.3% (n =
43) of plots in this sample. Of this 10.3% of affected plots,
14% (n = 6) changed sections within the same province,
and 21% (n = 9) switched to a different province. Simple
kappa statistics also indicated strong levels of agreement
between ecological subsections derived using true, per-
turbed, and swapped plot locations, with � = 0.99 for per-
turbed data and � = 0.91 for swapped data. Analyses
combining the perturbed and swapped data provided results

similar to those obtained using only perturbed data, with
ecological subsection changes occurring at a rate of less
than 1%.

Discussion

FIA perturbs and swaps plot location data to comply with
the law and maintain the ecological integrity of their sample
plots while still providing useful data to outside users. Our
results suggest that perturbed and swapped FIA plot locations
may be used in correlative studies with other spatially explicit
data layers having a wide range of polygon shapes and sizes
without seriously compromising the quality of the informa-
tion conveyed in the results. However, the misclassification
rates associated with the use of altered plot locations exhibits
a strong inverse relationship to the mean map unit size of the
other geospatial data sets used in the analyses. Thus, we sug-

Fig. 2. Housing density for true versus swapped Forest Inventory and Analysis (FIA) plot locations (log–log scale, n = 491).

Fig. 3. Residual plot for housing density using true versus perturbed Forest Inventory and Analysis (FIA) plot coordinates (n = 21 498).

2320 Can. J. For. Res. Vol. 37, 2007

# 2007 NRC Canada



gest that users carefully evaluate the appropriateness of using
perturbed and swapped plot locations for any other geospa-
tial data set they wish to use in combination with FIA data.

When using coarse-scale ecological subsection data, we
found that relatively few data points were misclassified be-
cause of the inclusion of uncertainty in FIA plot location
data. Of those plots that were assigned an incorrect ecologi-
cal subsection, the majority (65%–67%) were assigned to a
different subsection within the same ecological section as
the correct subsection and usually immediately adjacent to
it. Because ecological subsections represent very broad eco-
tones rather than discrete ecological boundaries (Rowe
1996), the analytical consequences of occasionally misclas-

sifying the subsections in which FIA plots occur are prob-
ably negligible in most cases.

Conversely, combining 30 m � 30 m pixel NLCD data
resulted in frequent misclassification of land cover type
when perturbed or swapped data were used. Even when we
combined land cover data into broader categories, many
points were still misclassified using perturbed and swapped
data. Although the mean patch size increased to 0.41 km2

when we aggregated contiguous cells with the same broad
land cover classification, a size more than 450 times greater
in area than a 30 m � 30 m pixel, these data still represent a
much finer spatial scale than the other data layers used in
this analysis. In addition, even when pixels were aggregated,

Fig. 4. Residual plot for housing density using true versus swapped Forest Inventory and Analysis (FIA) plot coordinates (n = 491).
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the incidence of single pixels averaged 44.2% across all land
cover categories. Although smoothing these data by merging
isolated pixels with their neighbors or by specifying a mini-
mum patch size would most likely result in fewer differen-
ces between true and perturbed or swapped locations, the
extent to which these practices would affect analytical out-
comes is beyond the scope of the present study. Based on
our results and the likelihood of relatively high levels of
misclassification in fine-resolution data such as NLCD, par-
ticularly in highly heterogeneous landscapes (Smith et al.

2003), we do not advise using data with such a small mean
map unit size in conjunction with perturbed FIA plot loca-
tions.

Housing density represents an intermediate situation, in
which a small to moderate number of data points are af-
fected by the inclusion of uncertainty in FIA plot location
data. The majority of all FIA plots showed differences
of £0.5 housing units/km2 regardless of whether true or al-
tered plot locations were used. These differences were not
statistically significant for the overall study region or indi-
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vidual states and only infrequently (3%–13% of the time)
significant when plots were aggregated at the ecological sub-
section or county level. Nonetheless, there are a small num-
ber (5%–17%) of instances in which using altered locations
resulted in differences of >10 housing units�km–2�plot–1.
These differences are most likely to occur in regions with
high levels of heterogeneity in housing densities, and thus,
researchers should use particular caution when associating
FIA and PBG data in such areas.

Our results both concur with and differ from those of
prior studies of the impacts of altering plot locations on

data analyses. Overall, our findings agree with those of Lis-
ter et al. (2005), McRoberts et al. (2005), and Coulston et al.
(2006) in concluding that analyses using fine-scale data are
more likely to reflect the effects of perturbation and swap-
ping in FIA plot location data (Fig. 9). Coulston et al.
(2006) indicated that perturbed plot locations should only
be used with fine-resolution (30–500 m) raster data with a
high degree of contagion (i.e., exhibiting generally clumped
patterns of landscape categories; cf. Li and Reynolds 1993;
Riitters et al. 1996). Our results reinforce their conclusions,
because we found extremely high rates of misclassification
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when using altered plot locations in conjunction with NLCD
data. The small mean patch size and high incidence of sin-
gle cells even after we aggregated pixels using eight catego-
ries indicate that these data do not exhibit high degrees of
contagion, thus explaining the minimal improvement in mis-
classification rates that we observed. Conversely, there were
few statistically significant differences between housing den-
sities calculated using altered and true plot locations despite
the relatively small mean size (5.67 km2) of housing PBGs.
Because the mean PBG size is much smaller than the mini-
mum circular AOI size that previous studies (Lister et al.
2005; McRoberts et al. 2005) have found necessary to miti-
gate the effects of altering plot locations, our results suggest
that it may be possible to use perturbed and swapped FIA
data in conjunction with finer scale data than was previously
supposed.

Although perturbed and swapped data exhibit similar
overall patterns of error, the magnitude of the error gener-
ated using swapped data is generally greater than that from
perturbed data. Thus, to obtain a particularly conservative
error estimate it would be desirable to treat all privately
owned plots as if they had been swapped. On the other
hand, analyses in which we combined both perturbed and
swapped data generally produced results most comparable
to those derived using perturbed data alone. We surmise
this is the case because only a small percentage of plots are
swapped, and therefore perturbed plots are more important
in influencing the outcomes of data analyses. Consequently,
we suggest that, in most instances. it will not be necessary
for users to treat privately owned plots as a separate case.
We also note that, although our threshold distance value en-
sured accurate categorization of all plots in the subset of
swapped data, it is likely that the subset of perturbed data
include some plots that are swapped because FIA has no cri-
terion specifying a minimum distance beyond which plots
must be swapped. Given that only a small proportion of
plots are ever swapped, however, we feel confident that the
number of such plots analyzed as perturbed is small and the
effects of their inclusion are negligible given the large sam-
ple size of perturbed data.

Our results, along with those of Coulston et al. (2006),
highlight the importance of landscape configuration and
contagion as well as map unit size. Although not a factor
explicitly addressed in our study, we found that analyses us-
ing NLCD data were not much improved when like pixels
were aggregated and that housing density was most likely
to be assigned incorrectly in areas where this attribute was
very heterogeneous. Landscape pattern is widely recognized
as an important component of ecological study (Turner et al.
2001), and thus we suggest users pay particular attention not
only to the size of their map units but to the configuration of
those units when deciding whether using altered FIA data is
appropriate for their purposes.

Our results can provide researchers with an analytic
framework to evaluate the sensitivity of their own geospatial
data to errors introduced by altering FIA plot location data.
For those who wish to use land cover, census, or ecoregion
data or other geospatial data sets with similar mean map unit
sizes, our results may be directly applicable. In other cases,
users can perform simple analyses to determine how much
their results would change because of perturbation of plot

locations. For example, users could reperturb Web-available
FIA plot locations randomly within a 0.8 km radius circle,
perform analyses such as we have done, and use these re-
sults as a proxy for the difference between true and per-
turbed plot locations. Alternatively, users could evaluate the
likelihood that altered plot locations would affect their anal-
yses by placing a 1.6 km buffer around the plot and calcu-
lating the percentage of the buffer area that falls in a
different polygon. Plots with a high probability of changing
to a dissimilar polygon could then be removed from the data
set provided this did not bias the sample.

Finally, we suggest that further research along the lines of
the present study and those conducted by Lister et al.
(2005), McRoberts et al. (2005), and Coulston et al. (2006)
are needed to help maintain confidentiality while continuing
to making this valuable database more broadly available to
those who require spatially explicit information to answer
questions about forest ecology, management, and policy.
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