
PLANT-ANIMAL INTERACTIONS - ORIGINAL PAPER

An evaluation of prior influence on the predictive ability
of Bayesian model averaging
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Abstract Model averaging is gaining popularity among

ecologists for making inference and predictions. Methods

for combining models include Bayesian model averaging

(BMA) and Akaike’s Information Criterion (AIC) model

averaging. BMA can be implemented with different prior

model weights, including the Kullback–Leibler prior asso-

ciated with AIC model averaging, but it is unclear how the

prior model weight affects model results in a predictive

context. Here, we implemented BMA using the Bayesian

Information Criterion (BIC) approximation to Bayes factors

for building predictive models of bird abundance and

occurrence in the Chihuahuan Desert of New Mexico. We

examined how model predictive ability differed across four

prior model weights, and how averaged coefficient esti-

mates, standard errors and coefficients’ posterior probabil-

ities varied for 16 bird species. We also compared the

predictive ability of BMA models to a best single-model

approach. Overall, Occam’s prior of parsimony provided

the best predictive models. In general, the Kullback–Leibler

prior, however, favored complex models of lower predictive

ability. BMA performed better than a best single-model

approach independently of the prior model weight for 6 out

of 16 species. For 6 other species, the choice of the prior

model weight affected whether BMA was better than the

best single-model approach. Our results demonstrate that

parsimonious priors may be favorable over priors that favor

complexity for making predictions. The approach we

present has direct applications in ecology for better pre-

dicting patterns of species’ abundance and occurrence.
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Introduction

The desire to account for model uncertainty and increase

predictive ability has motivated ecologists to depart from a

single- to a multi-model approach to statistical inference

(Burnham and Anderson 2002; Johnson and Omland 2004;

Link and Barker 2006). The multi-model approach typi-

cally consists in deriving the coefficient estimates of the

explanatory variables of interest by averaging the results

from multiple models as opposed to drawing conclusions

from a single model. The models used for the calculation

are either chosen a priori based on prior knowledge of the

phenomenon of interest or a posteriori using a user-defined

criterion that will select only the best fitting models out of a

pool of models. Burnham and Anderson (2001, 2002)

provided a framework for implementing multi-model

inference relatively easily based on the Akaike Information
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Criterion (AIC). On the other hand, approaches such as

Bayesian model averaging (BMA) have been used only

sparingly by ecologists for making inference and prediction

(Link and Barker 2006; Thomson et al. 2007) despite their

popularity in statistics; Hoeting et al. (1999) provides a

review of the origins of BMA. Ecologists’ reluctance to use

BMA may be due to the apparent complexity involved in

implementing a full Bayesian approach, as opposed to the

ease of implementation of AIC weights. However, the work

of Link and Barker (2006) has shown that Bayesian

Information Criterion (BIC) weights can provide a simple

and flexible alternative to AIC model averaging. AIC

weights are essentially equivalent to BIC weights with a

different prior on the models. The drawback of AIC

weights is that they may lead to a set of models that is more

complex than desired (Link and Barker 2006). This sug-

gests that the choice of the priors has strong effects on

model selection. However, the predictive performance of

BIC weights with different sets of priors is poorly

understood.

Here, our goal was to compare the predictive ability of

habitat models obtained using different priors, especially

when using a BIC weights approximation to a full Bayesian

model averaging. The priors can be viewed as model

weights (hereafter prior model weights) that capture,

independent of the data, the probability that a model is the

best representation of reality among the pool of fitted

models. These priors are subsequently used to calculate

posterior model weights that depend on the data and that

reflect, given the data, the probability that each model is

the best representation of the data. The model weights

ultimately determine how much a variable’s coefficient

estimate from a given model contributes to the final value

of this variable’s model averaged coefficient. The approach

that we present is broadly applicable, has the advantage of

being accessible to a wide range of scientists, and is

straightforward to implement. Our study complements

Link and Barker’s (2006) work by specifically addressing

the issue of the models’ predictive ability, and tests an

approach to Bayesian model averaging that is more

extensive yet can still be easily implemented.

In general, model averaging approaches provide aggre-

gate models with better predictive abilities than best single-

model approaches (Raftery et al. 1997). For example, in a

highly fragmented landscape in Australia, averaging over

several models produces higher predictive ability than

single ‘‘best’’ models for predicting the occurrence of 61

bird species (Thomson et al. 2007). Models addressing the

effects of land-use and climate on the richness of seven

groups of organisms in Europe were also more accurate

when using a multi-model approach rather than a single-

model one (Dormann et al. 2008). These examples

demonstrate the value of multi-model approaches for the

specific purpose of building predictive models in ecology.

There are several ways of conducting model averaging,

including AIC-based approaches and Bayesian approaches.

Ecologists often use AIC weights to obtain coefficient

estimates and variables’ ‘‘relative importance weights’’

(Burnham and Anderson 2002). However, Link and Barker

(2006) argue that most users of AIC weights are often

unaware of the statistical assumptions underlying the use of

AIC for model averaging (e.g., AIC weights favor models

that have a higher number of parameters), and that other,

more flexible approaches, such as BMA, may be preferable

in some situations.

BMA uses so-called Bayes factors to construct model

posterior probabilities (Eq. 1).

PrðMijdataÞ ¼ BFi;1pi
PR

j BFj;1pj

; ð1Þ

where PrðMijdataÞ is the posterior probability that Mi is

true given that one of the M1, M2, M3, …, MR is true (Link

and Barker 2006), BFi,1 are Bayes factors comparing

models, pi are the corresponding prior model weights and

R is the total number of models. The models’ posterior

probabilities are used for calculating model averaged

coefficients and standard errors as well as posterior prob-

abilities for coefficients. The latter probabilities indicate

the probability that a given coefficient is different from

zero.

Estimating Bayes factors is complicated when a large

number of predictors are involved, and it requires priors for

the model parameters. The Bayesian Information Criterion

(BIC), on the other hand, provides an approximation to the

logarithm of the Bayes factors (Kass and Raftery 1995)

such that:

BFi;j � expð�ðBICi � BICjÞ=2Þ ð2Þ

(Link and Barker 2006)

Using the latter approach and substituting the BIC

approximation for the Bayes factors in Eq. 1, we obtain:

PrðMijdataÞ � expð � BICi=2Þpi
PR

j¼1 exp(� BICj=2Þpi

ð3Þ

The models’ posterior probabilities obtained using Eq. 3

can thus be used as an alternative to AIC weights for

conducting model averaging. Although a full Bayesian

approach may be preferable (Link and Barker 2006; Link

and Albers 2007), a BIC weights approximation can per-

form almost as well as the full BMA (Thomson et al.

2007), and is much easier to implement and thus a realistic

approach for wider adoption in the ecological community.

There is a clear link between AIC weights and BIC

posterior probabilities (Burnham and Anderson 2002).
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Equation 3 is equivalent to the formulation of AIC weights

(Burnham and Anderson 2002) when using a Kullback–

Leibler model prior (Eq. 4).

pi ¼
exp½ki logðNÞ=2� ki�

PR
j¼1 exp½kj logðNÞ=2� kj�

ð4Þ

where ki is the number of parameters in the model

(including the intercept), N is the total number of obser-

vations, and R is the total number of models in the set.

The question is how the choice of prior model weights

affects the predictive ability of models when implementing

the approximation to BMA given in Eq. 3. It is not clear

how the model averaged coefficients, standard errors, and

posterior probabilities of the coefficients differ when using

different prior model weights. Our main goal was to

compare the ability of models built using four different

prior model weights for predicting the abundance and

occurrence of 16 bird species using the BIC approximation

to obtain model averaged coefficients. We wanted to pro-

vide an understanding of the implications of selecting

different types of prior model weights on the predictive

ability of models obtained using BMA. Additionally, we

wanted to compare BMA, using four different prior model

weights, to a best single-model approach for making

predictions.

Modeling approach

The approach we used was inspired by the ‘‘bicreg’’ and

‘‘bic.glm’’ functions available in the BMA package (Raf-

tery et al. 2006) for R (R Development Core Team 2011).

These functions use the BIC weights approximation (Eq. 3)

and provide a simple alternative to the full implementation

of BMA, which is beyond the scope of this paper. How-

ever, the existing functions assume a uniform prior on

models. Here, we wrote a function similar to the ‘‘bicreg’’

and ‘‘bic.glm’’ functions of the BMA package but that

allows comparing different prior model weights (Appendix

C, D).

Our model averaging approach included three main

steps. The first step was to fit all possible combinations of

variables. Although this approach is often criticized as data

dredging (Anderson and Burnham 2002), it is used prop-

erly here as a means for calculating posterior probabilities

(Hoeting et al. 1999). The BMA package uses the leaps

algorithm (Allen 1974) in a best subset analysis to reduce

computing time, but our number of variables (see below)

was low enough that we were able to explore the full set of

all possible models. After fitting all combinations of

models, we calculated the posterior probabilities of the

models using Eq. 3, assuming uniform priors for the model

parameters. We then used Occam’s window (Madigan and

Raftery 1994) to select a subset of models best supported

by the data. Models not belonging to the set
max PrðMijdataÞ½ �

PrðMijdataÞ �C
n o

were excluded. C is user-defined and

set to a default of 20 in the BMA package (Raftery et al.

2006). The Occam’s window approach (Madigan and

Raftery 1994) ensures that models with inconsequential

support are discarded.

The second step was to recalculate the posterior prob-

abilities for the models included in the subset so that when

summed up, posterior probabilities added up to one. In the

third and final step, posterior probabilities for the coeffi-

cients were obtained by combining posterior probabilities

of only the models in which that particular variable occurs

as in Eq. 5.

Prðbl 6¼ 0Þ ¼
XR

j¼1

PrðMjjdataÞ; ð5Þ

where N is the total number of models in which coefficient

bl occurs. The coefficient posterior probabilities obtained

indicate the probability that each coefficient is different

from zero. The posterior mean and variance of the

coefficients are calculated as follows (Hoeting et al. 1999):

E½bljdata� ¼
XR

i¼0

bil

^
PrðMijdataÞ ð6Þ

Var½bljdata� ¼
XR

i¼0

Var½biljdata;Mi� þ b2
ilÞ
^

PrðMijdataÞ

� E½bljdata�2 ð7Þ

where bil is the coefficient estimate for variable l in model

i obtained by maximum-likelihood estimates, and R is the

total number of models in the subset obtained from the

Occam’s window criterion.

Case study

We examined the BIC weights approach to build predic-

tive models of bird abundance and occurrence. Bird data

were collected during the 1996 breeding season (May–

June) at 42 12-point study grids randomly distributed

across the seven habitat types covering the McGregor

Range of Fort Bliss Army Reserve (New Mexico). Birds

detected in a 10-min period within 150 m of each grid

point were recorded four to five times during the breeding

season. More details on the bird data are available in

Pidgeon (2000) and Pidgeon et al. (2001). We summed

the counts across the 12 points to get a plot-level measure

of species abundance, and took the average of the two
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highest visits to get a final measure of abundance at the

plot level. Count data were square root transformed prior

to the analysis.

We modeled a subset of 16 species occurring at more

than 40% of the study sites. Eight common species were

detected at more than 75% of the sites, and 8 occurred at

40–65% of the sites. Common species were modeled using

linear models assuming a Gaussian error distribution while

less common species were modeled using a generalized-

linear logistic regression. The common species were Ash-

throated Flycatcher (Myiarchus cinerascens) (ATFL,

number of study plots present = 40), Black-throated

Sparrow (Amphispiza bilineata) (BTSP, 37), Cactus Wren

(Campylorhynchus brunneicapillus) (CACW, 34), Com-

mon Nighthawk (Chordeiles minor) (CONI, 37), Mourning

Dove (Zenaida macroura) (MODO, 42), Northern Mock-

ingbird (Mimus polyglottos) (NOMO, 41), Scott’s Oriole

(Icterus parisorum) (SCOR, 41), and Western Kingbird

(Tyrannus verticalis) (WEKI, 39). Less common species

were Brewers Sparrow (Spizella breweri) (BRSP, 24),

Black-tailed Gnatcatcher (Polioptila melanura) (BTGN,

20), Crissal Thrasher (Toxostoma crissale) (CRTH, 24),

Eastern Meadowlark (Sturnella magna) (EAME, 26),

Green-tailed Towhee (Pipilo chlorurus) (GTTO, 23), Pyr-

rhuloxia (Cardinalis sinuatus) (PYRR, 21), Scailed Quail

(Callipepla squamata) (SCQU, 22), and Verdin (Auriparus

flaviceps) (VERD, 18).

We quantified broad-scale habitat attributes in 1-km

buffers around each point count using a classification from

the Southwest ReGAP, created from Landsat Enhanced

Thematic Mapper Plus (ETM?) imagery from 1999 to

2001 (Lowry et al. 2005). We first calculated the number of

cover types in each buffer (patch richness; pr) and edge

density of all classes (ed-allcl). Then, we reclassified the

image into two classes, i.e., grasslands, and shrubland/

woodland, to calculate the density of edges between these

two cover types (ed-recl) and the proportion of shrubland/

woodland cover (pshwo).

In addition to the broad-scale habitat attributes, we used

an unclassified Landsat TM mosaic of June 1996 (path 33,

rows 37 and 38) for quantifying within-habitat heteroge-

neity around each plot at an intermediate spatial scale. We

used image texture analysis of the Normalized Difference

Vegetation Index (NDVI, a measure of green biomass) to

quantify the degree of variability in pixel values in a 9 9 9

window, an area roughly equal to the extent of a 150-m

radius point count. Image texture of NDVI is useful for

discriminating habitat types in this ecosystem (St-Louis

et al. 2009). We quantified first-order mean (mean) and

coefficient of variation (cv), as well as second-order angular

second moment (asm), contrast (con), and correlation (corr)

(Haralick et al. 1973). We extracted elevation (elev) at each

point count from a 10-m digital elevation model. Broad- and

intermediate-scale habitat data, as well as elevation, were

averaged across the 12 points for obtaining plot-level

measures of habitat that matched the bird data.

To construct the habitat models, we implemented model

averaging using BIC weights with four different prior

model weights (Link and Barker 2006): (1) Uniform prior;

pi ¼ 1
R, where R is the total number of models considered,

(2) Occam’s prior of parsimony; pi ¼ exp(� kÞ, where k

is the number of parameters, (3) Complexity weights

favoring complex models; pi ¼ exp(kÞ, and (4) the Kull-

back–Leibler prior (Eq. 4), which is equivalent to AIC

weights (Link and Barker 2006).

The total number of models before applying the

Occam’s window criterion was 1,023 (all possible combi-

nations of 10 variables). We chose a constant C = 20 for

implementing Occam’s window, which has been shown to

provide good predictive performance (Raftery et al. 1996).

For each combination of the 16 species and the four priors,

we used the BMA approach outlined above to obtain

model-averaged coefficients and standard error estimates,

as well as coefficient posterior probabilities. To compare

with more traditional model performance metrics, we used

an F test for calculating the overall significance of the

models that were included in the parsimonious subset and

calculated the adjusted coefficient of determination (Radj
2 ).

We evaluated the predictive ability of the Bayesian

averaged models using leave-one-out cross-validation. We

iteratively re-fitted the BMA for each observation i to

obtain new coefficient estimates based on the reduced data

set (i.e., N - 1 observations). These coefficients were then

used to predict the value of observation i. We calculated

the Predicted Residual Sum of Squares (PRESS) statistics

(Allen 1974) for evaluating model predictive ability as

follows:

PRESS ¼
XN

i¼1

ðyi � ŷiÞ2: ð8Þ

where yi is the value of the ith observation, ŷi it the

predicted value of the ith observation using the reduced

model, and N = the number of observations (here

N = 42). For the logistic regression models that were

applied to the eight least common species, ŷi corresponds

to the predicted probability of occurrence of observation i,

calculated as:

ŷi ¼
expðm̂iÞ

1þ expðm̂iÞ
ð9Þ

where m̂i is the predicted value calculated from the model

averaged coefficients for observation i. Lower values of

PRESS indicate better predictive models.

To compare the predictive ability of a BMA to a best

single-model approach, we calculated the PRESS statistics
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from predictions obtained using best models only. For each

set of N - 1 observations, we fitted all possible combina-

tions of models and found the best fitting model using BIC.

This model was then used to predict the abundance, or

probability of occurrence value at observation i. This

approach therefore matched the approach that was used to

calculate the PRESS statistics of the BMA models where

BMA was re-fitted for each set of N - 1 observations. The

predicted values were then used to calculate PRESS using

the same formula as for BMA.

Results

From the list of 1,023 possible combinations of variables,

the number of best supported models as defined by

Occam’s window was generally small, with an average

across all species of 56 (30–120 models depending on the

species), 16 (11–30), 323 (54–73) and 276 (55–549)

models for Uniform, Occam’s, Complexity, and Kullback–

Leibler priors, respectively. The number of parameters of

these best supported models varied across prior model

weights, with models generally containing no more than

five to six parameters for Occam’s and Uniform priors, and

larger models of up to ten parameters (i.e., full model) for

Complexity and Kullback–Leibler priors (Table 1;

Appendix A).

Predictions obtained from BMA were better than a best

single-model approach for 12 out of 16 species for some or

all of the prior model weights (Table 2; Fig. 1). Using the

Scott’s Oriole and the Crissal Thrasher as examples, Fig. 1

shows that for these species the absolute error of the pre-

dictions obtained using the BMA approach with the

Occam’s prior model weight versus the best single-model

approach is lower at most of the 42 study sites. Due to very

low significance of models for the Mourning Dove we feel

it is not useful to consider that species, and restrict further

consideration to the remaining fifteen species. For 6 species

out of the remaining 15, BMA was better than a best sin-

gle-model approach for all prior model weights. However,

for species such as Black-throated Sparrow, Common

Nighthawk, Crissal Thrasher, Verdin, and Western King-

bird, the predictive ability of models built using BMA was

better than the single-model approach when implemented

with only some of the prior model weights. For Western

Kingbird, for example, the BMA approach was better than

the best single-model approach with the Occam’s prior

only. For other species such as the Black-tailed Gnat-

catcher, the Common Nighthawk, and the Verdin, both the

Uniform and Occam’s prior led to better predictive ability

than the best-model approach, but the Kullback–Leibler

and Complexity priors were inferior or equivalent. The

PRESS statistic varied among prior model weights

(Table 2). Occam’s priors resulted in the lowest PRESS

statistics for 10 out of 15 species. Among the four prior

model weights, the PRESS values of the Uniform prior

were the second-lowest for most species. The modeling

strategy that puts a higher weight on more complex models

(i.e., Complexity or Kullback–Leibler priors) did not lead

to lower PRESS statistics, except in a few cases (e.g., Ash-

throated Flycatcher and Black-throated Sparrow). The

Kullback–Leibler model provided overall the second-, or

third-best predictions.

The Uniform and Occam’s priors led to smaller pos-

terior probabilities for the coefficients for most habitat

variables compared to the Complexity or Kullback–Leibler

priors (Table 3, Appendix B). The Occam’s prior led to the

smallest coefficient posterior probabilities, with only one or

two, if any, over 50% for each species. On the other hand,

several variables had coefficients’ posterior probabilities

larger than 50% when using the Complexity and Kullback–

Leibler priors. The model averaged coefficients and

Table 1 Examples of overall model fit statistics for the list of models (M) best supported by the data under the Occam’s window criterion of 20

for each prior

Species Prior Size BIC Radj.
2 F statistic p value M

CRTH Uniform 1, 4 51, 57 na 4.8, 13.4 0, 0.002 52

Occam 1, 3 51, 55 na 6.3, 13.4 0, 0.001 11

Comp. 1, 8 51, 69 na 2.8, 13.4 0, 0.005 551

KL 1, 7 51, 66 na 3.1, 13.4 0, 0.003 410

SCOR Uniform 2, 6 81, 86 47.3, 57.7 9.7, 19.7 0, 0 72

Occam 2, 5 81, 87 46.3, 57.6 11.7, 19.7 0, 0 30

Comp. 3, 9 81, 96 51.2, 57.7 6.3, 16.5 0, 0 204

KL 3, 9 81, 95 51.2, 57.7 6.5, 16.5 0, 0 193

Results are presented for a species modeled using logistic regression (CRTH), and a species modeled using linear models (SCOR). The values

represent range in model size (i.e., number of parameters), BIC, Radj.
2 , and F statistics and associated p value for the M models. Refer to ‘‘Case

study’’ for species’ acronym description. A table for all species is provided in Appendix A

CRTH Crissal Thrasher, SCOR Scott’s Oriole
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standard errors also varied among prior model weights, but

the values were similar for variables with high posterior

probabilities.

Discussion

The purpose of our study was to compare the predictive

ability of models built using different prior model weights,

especially when using a simple, BIC weights approxima-

tion of a full Bayesian model averaging. The take-home

messages derived from our results are twofold. First, a

simple implementation of BIC weights and the associated

prior has the ability to produce better predictive results than

using AIC weights (i.e., the Kullback–Leibler prior)

(Burnham and Anderson 2001, 2002) or using a best sin-

gle-model approach. Second, the BIC weights approach

can be implemented relatively easily in any statistical

package. Furthermore, one can achieve better predictive

ability with only minor modifications of the default prior

model weights. Our results complement and extend the

work of Link and Barker (2006) by showing that their

findings (i.e., more conservative priors may be best in some

situations) hold in a predictive modeling framework, and

by providing a simple methodology for implementing an

approximation of the full BMA.

Overall, the predictive ability of the models built using

BMA was superior to that of best single-models. Using

BMA for making predictions therefore never hurts and

frequently helps obtain better predictive ability. This is

supported by recent examples in the literature (e.g., Dor-

mann et al. 2008; Thomson et al. 2007). What our results

show, however, is that whether or not BMA is better than a

best single-model approach for making predictions can

depend on the prior model weight. For six species, the

PRESS statistic values we obtained for the best single-

Table 2 Cross-validated

PRESS statistic obtained using

the multi-model approach with

four different model priors and

the best single-model approach

ATFL Ash-throated Flycatcher,

BRSP Brewer’s Sparrow, BTGN
Black-tailed Gnatcatcher, BTSP
Black-throated Sparrow, CACW
Cactus Wren, CONI Common

Nighthawk, CRTH Crissal

Thrasher, EAME Eastern

Meadowlark, GTTO Green-

tailed Towhee, MODO
Mourning Dove, NOMO
Northern Mockingbird, PYRR
Pyrrhuloxia, SCOR Scott’s

Oriole, SCQU Scaled Quail,

VERD Verdin, WEKI Western

Kingbird

Prior model weights

Species Model type Uniform Occam Complex KL Best model

ATFL Gaussian 25.2 22.6 22.5 23.2 33.7

BRSP Logistic 11.0 10.6 11.9 11.7 10.3

BTGN Logistic 8.9 8.8 9.3 9.3 9.3

BTSP Gaussian 37.8 39.3 35.6 35.8 36.2

CACW Gaussian 22.1 21.0 21.8 21.8 27.7

CONI Gaussian 18.7 18.2 20.4 20.1 19.8

CRTH Logistic 8.2 8.1 9.3 9.1 8.8

EAME Logistic 6.8 6.6 7.2 7.1 5.8

GTTO Logistic 9.0 9.1 10.1 9.8 8.3

MODO Gaussian 43.0 42.3 47.5 46.3 40.7

NOMO Gaussian 33.4 32.3 34.5 34.5 38.1

PYRR Logistic 5.2 3.9 6.8 6.6 9.0

SCOR Gaussian 23.8 18.8 26.7 26.4 28.0

SCQU Logistic 7.1 6.7 7.8 7.8 11.5

VERD Logistic 9.2 8.5 10.6 10.6 10.1

WEKI Gaussian 35.2 33.0 37.7 37.2 33.4

Fig. 1 Absolute prediction error of a Scott’s Oriole’s abundance

(sqrt) and b Crissal Thrasher’s probability of occurrence across the 42

sites for models generated using the BMA approach with Occam’s

prior model weight (Occam) and the best model approach (Best)
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model approach were solidly situated among those

obtained for the BMA models built using different prior

model weights. In one case, more complex prior model

weights led to models with higher predictive ability then a

best single-model approach, while in three other cases, it

was the exact opposite (i.e., parsimonious priors were best).

This suggests that more research is needed to fully

understand how much of an improvement BMA provides

over a best single-model approach when different model

prior model weights are used.

Among the prior model weights we studied, the ones that

favored simplicity generally led to higher predictive ability.

Occam’s prior most often provided the best predictive

models of bird abundance and occurrence. This is supported

by the findings of Thomson et al. (2007), where prior model

weights that favor simpler models had better predictive

ability. As eluded to in Jefferys and Berger (1991), a smaller

set of hypotheses may provide better predictions because

there is less posterior weight put on extraneous models. This

fits our findings. Generally, we obtained better predictions

using the Occam’s prior model weight as opposed to less

parsimonious priors, and in the logic of Jefferys and Berger

(1991), this happens because a smaller set of models with

only a few parameters that capture the response variable

(here bird abundance or occurrence) well is sufficient, and

more likely to be accurate, than a larger set of models that

contains many parameters with a diluted posterior. Inter-

estingly, AIC weights are supposed to be a balance between

parsimony and complexity (Burnham and Anderson 2004).

In contrast, our results suggest that AIC weights favor

complexity over parsimony, which corresponds to Link and

Barker’s (2006) finding. At least it is valuable to researchers

to be aware of a broad spectrum of priors, and analytical

methods, so that these might be better matched to the goals

of a given study. Given similar predictive ability, we rec-

ommend using prior model weights that favor parsimony

over complexity, especially if the sample size is small.

Methods that identify fewer, but most ecologically relevant,

variables are valuable, since measuring many variables,

especially in field studies, is costly. With that in mind, we

believe that tools such as the BMA package could be greatly

enhanced by allowing the users to modify the default prior

model weight. Priors that favor parsimony such as the

Occam’s prior have the advantage for conservation science

and practice of (1) emphasizing parameters that may be

more biologically relevant, (2) favoring a conservative use

of covariates, (3) saving resources and computing time, and

(4) being a better modeling strategy when faced with small

sample sizes.

We demonstrated a method for rapidly obtaining model-

averaged coefficients that can be used for making predic-

tions. The Occam’s window-based approach (Madigan and

Raftery 1994), available in the BMA package (Raftery

et al. 2006) for R (R Development Core Team 2011) and in

the function that we provide in Appendix D, has the

advantage of being fast and easy to implement. While not

as thorough as conducting a full BMA with priors on

parameters and models (Link and Barker 2006), we believe

that it is a useful alternative to the commonly used AIC

model averaging for building predictive models in ecology,

based on the leave-one-out PRESS statistics we obtained.

We have chosen to use the leave-one-out PRESS sta-

tistics over other model validation methods because of our

small sample size. Other methods, such as bootstrap, k-fold

cross-validation, or a validation of the models against an

independent dataset, would be valuable for studies con-

ducted over larger sample sizes and where independent

data are available.

Table 3 Example of coefficients’ posterior probabilities [P (=0)] and model averaged coefficients and standard errors obtained from averaging

between 11 and 410 models (Table 1) for CRTH for the four model priors

Variables Uniform Occam’s Complexity Kullback–Leibler

P (=0) Mean (SE) P (=0) Mean (SE) P (=0) Mean (SE) P (=0) Mean (SE)

Asm 11 0.05 (0.27) 2 0 (0.07) 39 0.28 (0.66) 34 0.24 (0.59)

con 11 -0.05 (0.65) 4 0.02 (0.16) 37 -0.39 (2.2) 32 -0.33 (1.89)

corr 18 0.63 (2.03) 5 0.1 (0.85) 49 1.88 (3.29) 45 1.69 (3.14)

cv 25 0.38 (0.98) 9 0.1 (0.45) 57 1.18 (1.73) 52 1.04 (1.63)

Mean 16 0.13 (0.54) 6 0.04 (0.22) 44 0.68 (1.44) 39 0.59 (1.3)

elev 90 -1.59 (0.83) 98 21.61 (0.63) 81 -1.56 (1.28) 82 -1.57 (1.19)

ed_rcl 35 0.36 (0.62) 20 0.19 (0.46) 52 0.53 (0.8) 49 0.51 (0.77)

ed_allcl 25 0.22 (0.49) 13 0.1 (0.31) 44 0.43 (0.84) 40 0.39 (0.78)

pshwo 17 0.13 (0.39) 6 0.04 (0.21) 43 0.21 (0.76) 38 0.2 (0.68)

Pr 9 0 (0.24) 5 0.03 (0.15) 35 -0.23 (0.7) 29 -0.17 (0.61)

Bold indicates the only case where the coefficient would be considered significant based on a 95% confidence interval. Results for all 16 species

are presented in Appendix B. Refer to ‘‘Case study’’ for species’ acronym description
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In summary, our results show that the BIC weights

approach is a good, more flexible alternative to AIC model

averaging with its default prior model weight and improves

the predictive ability of the models when using more par-

simonious prior model weights. Link and Barker (2006)

showed the tendency of the Kullback–Leibler prior to favor

more complex models. Our results extend this, and clearly

show that the AIC weights favoring more complex models

do not increase the predictive ability of the averaged

models.

Acknowledgments We would like to thank the subject editor, Dr.

Wolf M. Mooij, and two anonymous reviewers for valuable com-

ments on the manuscript. We would also like to thank Dr. James D.

Forester for his help with the analysis and R code. We thank all field

workers who contributed to the data collection in 1996. Support for

this research was provided by the U.S. Strategic Environmental

Research and Development Program, Legacy Resource Management

Program, the Fort Bliss Environmental Division-Directorate of Public

Works, USGS BRD Texas Cooperative Fish and Wildlife Research

Unit, USGS BRD Wisconsin Cooperative Wildlife Research Unit,

and the Department of Forest and Wildlife Ecology, University of

Wisconsin-Madison.

References

Allen DM (1974) The relationship between variable selection and

data augmentation and a method for prediction. Technometrics

16:125–127

Anderson DR, Burnham KP (2002) Avoiding pitfalls when using

information-theoretic methods. J Wildl Manag 66:912–918

Burnham KP, Anderson DR (2001) Kullback–Leibler information as

a basis for strong inference in ecological studies. Wildl Res

28:111–119

Burnham KP, Anderson DR (2002) Model selection and multimodel

inference: a practical information-theoretic approach. Springer,

New York

Burnham KP, Anderson DR (2004) Multimodel inference: under-

standing AIC and BIC in model selection. Sociol Methods Res

33:261–304

Dormann CF, Schweiger O, Arens P, Augenstein I, Aviron S, Bailey

D, Baudry J, Billeter R, Bugter R, Bukacek R, Burel F, Cerny M,

De Cock R, De Blust G, DeFilippi R, Diekotter T, Dirksen J,

Durka W, Edwards PJ, Frenzel M, Hamersky R, Hendrickx F,

Herzog F, Klotz S, Koolstra B, Lausch A, Le Coeur D, Liira J,

Maelfait JP, Opdam P, Roubalova M, Schermann-Legionnet A,

Schermann N, Schmidt T, Smulders MJM, Speelmans M,

Simova P, Verboom J, van Wingerden W, Zobel M (2008)

Prediction uncertainty of environmental change effects on

temperate European biodiversity. Ecol Lett 11:235–244

Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features

for image classification. IEEE Trans Syst Man Cybern SMC

3:610–621

Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian

model averaging: a tutorial. Stat Sci 14:382–417

Jefferys WH, Berger JO (1991) Sharpening Ockham’s razor on a

Bayesian strop. Technical Report 91–44C, Department of

Statistics, Purdue University

Johnson JB, Omland KS (2004) Model selection in ecology and

evolution. Trends Ecol Evol 19:101–108

Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc

90:773–795

Link WA, Albers PH (2007) Bayesian multimodel inference for dose-

response studies. Environ Toxicol Chem 26:1867–1872

Link WA, Barker RJ (2006) Model weights and the foundations of

multimodel inference. Ecology 87:2626–2635

Lowry JHJ, Ramsey RD, Bradford D, Comer P, Falzarano S, Kepner

W, Kirby J, Langs L, Prior-Magee J, Manis G, O’Brien L, Sajwaj

T, Thomas CD, Rieth W, Schrader S, Thompson B, Wallace C,

Waller DM, Wolk B (2005) Southwest Regional Gap Analysis

Project: final report on land cover mapping methods. Logan,

Utah

Madigan D, Raftery AE (1994) Model selection and accounting for

model uncertainty in graphical models using Occam’s window.

J Am Stat Assoc 89:1535–1546

Pidgeon AM (2000) Avian abundance and productivity at the

landscape scale in the Northern Chihuahuan Desert. University

of Wisconsin-Madison, Madison

Pidgeon AM, Mathews NE, Benoit R, Nodheim EV (2001) Response

of avian communities to historic habitat change in the Northern

Chihuahuan Desert. Conserv Biol 15:1772–1788

Raftery AE, Hoeting JA, Volinsky CT, IS Painter, Yeung KY (2006).

BMA: Bayesian Model Averaging. R package version 3.03.

http://www.r-project.org, http://www.research.att.com/*volinsky/

bma.html

Raftery AE, Madigan D, Volinsky CT (1996) Accounting for model

uncertainty in survival analysis improves predictive performance

(with discussion). In: Bernardo J, Berger J, Dawid A, Smith A

(eds) Bayesian Statistics 5. Oxford University Press, USA,

pp 323–349

Raftery AE, Madigan D, Hoeting JA (1997) Bayesian model

averaging for linear regression models. J Am Stat Assoc

92:179–191

St-Louis V, Pidgeon AM, Clayton MK, Locke BA, Bash D, Radeloff

VC (2009) Satellite image texture and vegetation indices predict

avian biodiversity in the Chihuahuan Desert of New Mexico.

Ecography 32:468–480

R Development Core Team (2011) R: A language and environment

for statistical computing. R Foundation for Statistical Comput-

ing. http://www.R-project.org

Thomson JR, Mac Nally R, Fleishman E, Horrocks G (2007)

Predicting bird species distributions in reconstructed landscapes.

Conserv Biol 21:752–766

726 Oecologia (2012) 168:719–726

123

http://www.r-project.org
http://www.research.att.com/~volinsky/bma.html
http://www.research.att.com/~volinsky/bma.html
http://www.R-project.org

	An evaluation of prior influence on the predictive ability of Bayesian model averaging
	Abstract
	Introduction
	Modeling approach
	Case study
	Results
	Discussion
	Acknowledgments
	References


