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Predicting broad-scale patterns of biodiversity is challenging, particularly in ecosystems where traditional methods of
quantifying habitat structure fail to capture subtle but potentially important variation within habitat types. With the
unprecedented rate at which global biodiversity is declining, there is a strong need for improvement in methods for
discerning broad-scale differences in habitat quality. Here, we test the importance of habitat structure (i.e. fine-scale
spatial variability in plant growth forms) and plant productivity (i.e. amount of green biomass) for predicting avian
biodiversity. We used image texture (i.e. a surrogate for habitat structure) and vegetation indices (i.e. surrogates for plant
productivity) derived from Landsat Thematic Mapper (TM) data for predicting bird species richness patterns in the
northern Chihuahuan Desert of New Mexico. Bird species richness was summarized for forty-two 108 ha plots in the
McGregor Range of Fort Bliss Military Reserve between 1996 and 1998. Six Landsat TM bands and the normalized
difference vegetation index (NDVI) were used to calculate first-order and second-order image texture measures. The
relationship between bird species richness versus image texture and productivity (mean NDVI) was assessed using
Bayesian model averaging. The predictive ability of the models was evaluated using leave-one-out cross-validation.
Texture of NDVI predicted bird species richness better than texture of individual Landsat TM bands and accounted for
up to 82.3% of the variability in species richness. Combining habitat structure and productivity measures accounted for
up to 87.4% of the variability in bird species richness. Our results highlight that texture measures from Landsat TM
imagery were useful for predicting patterns of bird species richness in semi-arid ecosystems and that image texture is a
promising tool when assessing broad-scale patterns of biodiversity using remotely sensed data.

Biodiversity is declining rapidly due to human land-use
(Vitousek 1994). Half of the world’s bird and mammal
species are expected to become extinct in the next 200�
300 yr (Smith et al. 1993). Predictive modeling of patterns
of biodiversity is thus becoming increasingly important to
develop better conservation strategies and to focus manage-
ment efforts in critical areas, yet, adequately quantifying
predictors of biodiversity at broad spatial scales remains
challenging. According to MacArthur’s (1972) theory of
biodiversity, the main drivers of biodiversity include habitat
structure, productivity, and climatic stability (MacArthur
1972). The long- and short-term consequences of changes
in habitat structure (i.e. here defined as fine-scale spatial
variability in plant growth forms) and plant productivity
(i.e. amount of green biomass), on patterns of biodiversity
are not well understood. There is currently a need for tools
that are concurrently flexible (i.e. suitable for a variety of
ecosystems) and powerful (i.e. strong predictors) for
quantifying habitat structure and plant productivity. To

address this need, we present an approach for predicting the
spatial patterns of species biodiversity based on the analysis
of image texture and vegetation indices derived from
remotely sensed data.

To develop appropriate methods for predicting biodi-
versity, scientists first need to understand the effects of the
main drivers of biodiversity, namely climate stability, habitat
structure, and plant productivity (MacArthur 1972).
Here, we focused on two of those drivers: habitat structure
and plant productivity. Climatic stability, as implied by
MacArthur (1972), occurs at a much broader spatial and
temporal scale than the scope of our analysis so we will not
discuss it further. The positive relationship between habitat
structure and species diversity has been shown for birds
(MacArthur and MacArthur 1961, Wilson 1974, Roth
1976, Luoto et al. 2004), butterflies (Kerr et al. 2001), and
mammals (Kerr and Packer 1997), among other taxa. The
relationship between biodiversity and productivity can take
multiple functional forms (unimodal, increasingly or
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decreasingly linear), and is scale dependent (Waide et al.
1999, Chase and Leibold 2002). In some cases where species
require scarce resources, species richness is high where plant
productivity is high (MacArthur 1972). However, the
opposite pattern may also occur where high productivity
results in low species richness (Huston 1979). The unimodal
relationship between species diversity and productivity has
been mainly attributed to competitive exclusion, i.e. a
decline in species diversity as one resource becomes domi-
nant over others, accompanied by a reduction in habitat
structure (MacArthur 1972). There are other reasons why
species diversity in natural systems might be perceived as
decreasing at high productivity. If the sampling is biased
towards high-productivity habitats of restricted extent, for
example, the species/area curve (Gleason 1922) would
predict lower diversity in these small areas despite their
higher productivity (Abrams 1995). Also, high-productivity
areas are often located at the extreme of geographical
gradients, where species diversity may be lower because these
areas receive immigrants from only one direction, as opposed
to areas at intermediate productivity that receive species from
either sides of the gradients (Abrams 1995).

Predictive models of biodiversity patterns are important
for conservation, and are based on known relationships
between predictors quantified at a variety of spatial scales,
and empirical data on biodiversity. Quantifying broad-scale
predictors is challenging, but remote sensing technologies
offer a wide array of tools for doing so (see Nagendra 2001,
Turner et al. 2003, Gottschalk et al. 2005, and Leyequien
et al. 2007 for extensive reviews). The use of remotely-sensed
data in habitat modeling studies has increased substantially
in recent years for a wide range of taxa from plants
(Zimmermann et al. 2007), to wildlife species (Osborne et
al. 2001), and we suspect that it will continue to rise as these
data become more widely available. Strong knowledge of the
pros and cons of different approaches used for extracting
habitat attributes from satellite imagery, especially when the
ultimate goal is habitat mapping for one or for a combination
of species, is thus becoming increasingly important.

Methods for monitoring biodiversity using remote
sensing have in the past been based primarily on deriving
habitat suitability maps from classified imagery. In this
technique habitat attributes derived from landcover maps
(e.g. proportion cover of a given class) are linked with on-
the-ground biodiversity data (e.g. number of species in a
given area). In a boreal agricultural-forest mosaic, for
example, landscape indices derived from classified imagery
are good predictors of avian species richness (Luoto et al.
2004). In the Mediterranean region, landscape structure
(measured by the authors as the density of land-cover types,
the relative proportion of land uses, and the density of
patches derived from a landcover map) accounts for a high
proportion of the variability in the richness of birds,
amphibians, reptiles, and lepidopterans in the landscape
(Atauri and Lucio 2001). Landcover classification coupled
with information on home ranges shows promise for
building habitat suitability maps, and assessing biodiversity
distribution (e.g. Florida GAP project, Pearlstine et al.
2002). These examples represent only a few among many
cases in which classified imagery was used for mapping
habitat suitability, and for understanding broad-scale
patterns of biodiversity.

The use of discrete habitat classes for predicting patterns
of biodiversity has limitations in some ecosystems, however,
for three reasons. First, image classification ignores within-
habitat variability. The use of discrete habitat classes thus
may not capture characteristics that are important for the
species under study, especially if the species distribution is
spatially heterogeneous within a given habitat class (Pal-
meirim 1988). Habitat features (e.g. landscape composition
and configuration) obtained from discrete cover classes are
sensitive to classification errors (Wagner and Fortin 2005)
which may occur more frequently in highly heterogeneous
habitats. Second, the arbitrary delineation of boundaries
between habitats in ecosystems with broad ecotones may lead
to an erroneous image classification at these transition zones.
Lastly, habitat classes available from the classification might
not reflect the ecological requirements of the organism under
study. Semi-arid ecosystems are often characterized by high
within-habitat variability and gradual boundaries between
habitats (e.g. two adjoining grassland types). The use of
traditional image classification methods for assessing patterns
of biodiversity is, therefore, particularly limited in semi-arid
areas. An alternative that addresses these drawbacks is the use
of raw, unclassified imagery (Nagendra 2001).

Two of the three main drivers of biodiversity, habitat
structure and productivity, can be potentially assessed using
raw remotely sensed data. Habitat structure can be
quantified with image texture measures, which are defined
as the variability of pixel values in a given area (Haralick
et al. 1973). Variability in reflectance values among
neighboring pixels can be caused by horizontal variability
in plant growth forms. Texture measure can thus function
as a surrogate for habitat structure. The textural character-
istics of an image depend on the spatial resolution of the
imagery and on the features of interest (e.g. trees) (Wood-
cock and Strahler 1987). At very high spatial resolution,
image texture may capture variability in individual shrub
species, whereas at lower resolution it may capture
variability in the broad distribution of resources (e.g. areas
of dense shrubs interspersed with grasses). First-order
texture measures such as coefficient of variation in satellite
reflectance data are good proxy for landscape diversity
(quantified using measures of number of land-cover types,
evenness, and topographic index) (r�0.67, pB0.0001)
(Rey-Benayas and Pope 1995). Only a few studies have
incorporated image texture in predictive models of biodi-
versity, but their results show promise. In a semi-arid
ecosystem of New Mexico, measures from high-resolution
digital orthophotos account for up to 56% of the variability
in bird species richness; there is a clear positive association
between image texture and bird species richness (St-Louis et
al. 2006). Image texture obtained from widely available
moderate-resolution Landsat Thematic Mapper data can
also be used for habitat modeling. Image texture calculated
from the variance in the normalized difference vegetation
index (NDVI) values in 7�7 pixels is useful, for example,
for explaining the occurrence of seven bird species (e.g. song
sparrow Melospiza melodia, yellow warbler Dendroica
petechia, black-throated green warbler Dendroica virens) in
Maine (Hepinstall and Sader 1997). These authors interpret
high texture in NDVI as an indication of high variability in
habitat types. Species that showed a positive association
with image texture are associated with mixed habitats.
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Image texture has also the potential of greatly improving
habitat suitability models. In a study of the endangered
greater rhea Rhea americana in Argentina, Bellis et al. (in
press) showed that image texture was crucial for distinguish-
ing subtleties within grassland types that influence habitat
suitability for that species. Measures that capture habitat
heterogeneity (e.g. second-order variance) were better for
modeling the occurrence of this species than measures that
quantify the uniformity of pixel elements (e.g. angular
second moment) (Bellis et al. in press). The aforementioned
studies, and others that have used various measures of
texture for quantifying wildlife habitat (Knick and Roten-
berry 2000, Tuttle et al. 2006, Stickler and Southworth
2008), all show the potential of image texture for predicting
biodiversity patterns. However, our understanding of the
predictive ability of texture measures in different environ-
ments is still limited, and several of the texture measures
originally proposed by Haralick et al. (1973) have yet to be
tested for ecological analysis. To address these shortcom-
ings, we evaluate and compare the usefulness of several
measures of image texture derived from 30-m resolution
Landsat TM imagery for predicting patterns of bird species
diversity in semi-arid shrub- and grasslands.

In addition to tools for monitoring habitat structure,
remote sensing images also allow quantifying plant pro-
ductivity using vegetation indices. The NDVI, for example,
calculated from the red and near infrared bands of the
electromagnetic spectrum, measures the amount of photo-
synthetically active biomass of plant canopies (Tucker
1979). There is a positive correlation (r�0.43�0.81)
between net primary productivity (e.g. plant biomass) and
vegetation indices such as NDVI calculated from advanced
very high resolution radiometer (AVHRR, Schloss et al.
1999). In ecosystems with low vegetation cover, there is a
strong relationship between the soil-adjusted vegetation
index (SAVI; Huete 1988) and grassland vegetation (Pure-
vdorj et al. 1998). Productivity, as measured by mean
NDVI or SAVI, has strong potential for habitat modeling.
It has been used in many ecosystem types for modeling
species occurrence (Osborne et al. 2001, Laurent et al.
2005) or biodiversity (Hawkins et al. 2003, Seto et al. 2004,
Evans et al. 2006). Texture of NDVI, as opposed to mean
NDVI only, also accounts for up to 65% of the variability
in plant species richness in the Canadian Arctic (Gould
2000). To our knowledge, no studies have yet combined
image texture and vegetation indices for modeling biodi-
versity, even though these two measures are powerful
surrogates for habitat structure and plant productivity,
and thus important predictors of biodiversity.

The main objective of this research was to evaluate the
usefulness of measures of habitat structure and productivity
derived from satellite imagery for predicting patterns of bird
species richness in semi-arid ecosystems. Specifically, we
1) derived first- and second- order texture measures from
unclassified Landsat TM data and one vegetation index
(NDVI), 2) compared the predictive ability of measures of
habitat structure, and 3) evaluated the increase in ability to
predict bird species richness gained from combining
measures of habitat structure and measures of plant
productivity. We expected to find positive relationships
between species richness and both habitat structure and
productivity. We also expected that the near infrared TM

band (NIR) would be particularly good at predicting bird
species richness because of its high sensitivity to photo-
synthetically active vegetation.

Methods

Study area

Our study was conducted on 282 500 ha of the Chihua-
huan Desert of New Mexico, specifically on the McGregor
Range of Fort Bliss Military Reserve (Fig. 1). Climate is
arid, with average minimum and maximum temperatures
ranging from 11 to 198C and 30 to 358C respectively
for the May�July time period (Western Regional Climate
Center 2005). Monthly precipitation ranges between
13 and 44 mm for these months.

Variability in elevation (ranging from 1163 to 2332 m
a.s.l.), precipitation, and soil types across the Range
determine the plant communities (Dick-Peddie 1993).
The dominant soil types include sand, loam, gravel, lime-
stone, and sandstone. For a more complete description of the
plant associations occurring in these habitats see Pidgeon
et al. (2001, 2003). Seven main habitat types were identified
in the study area from a classification based on multiple
Landsat TM images (Melhop et al. 1996), including four
shrublands (creosote, mesquite, sandsage, and whitethorn),
two grasslands (black-grama and mesa grassland), and one
tree- dominated habitat (pinyon-juniper).

Bird data

Bird data were acquired at forty-two 108 ha plots between
1 May and 7 June 1996 through 1998 (Fig. 1). Plot
locations were stratified according to the seven main habitat
classes, for a total of six plots located randomly within each
class and surrounded by a buffer of at least 50 m of
contiguous habitat (Pidgeon et al. 2003). Each plot
consisted of a twelve-point, 3�4 grid with the points
located 300 m apart (Fig. 1). Points were surveyed for birds
four to five times a year by seven trained observers, between
06:00 and 10:00 am, and in conditions with no strong
winds or rain. All birds heard or seen during 10-min
periods, and within 150 m of each point were recorded.
Species richness was calculated for each 108 ha plot as the
tally of species recorded from the 4�5 visits across the twelve
points. The 3-yr average of species richness was used
because there was no significant year effect (repeated
measure ANOVA, F�0.0423, p-value�0.9586). We
used an average of three years rather than one year only
to account for within-year variability even though it was
very small.

Image analysis

A Landsat TM scene acquired on 23 June 1996 was used
for calculating habitat structure based on image texture,
with digital numbers representing gray scale brightness
values ranging from 0 to 255. The normalized difference
vegetation index (NDVI) was calculated from the red and
near infrared (NIR) Landsat TM bands to capture plant
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productivity. For the purpose of this study, we define plant
productivity as the amount of green biomass (i.e. photo-
synthetically active vegetation) on the ground. Although
SAVI is recommended for areas with low vegetation (Huete
1988), preliminary results suggested no substantial differ-
ences between the use of NDVI or SAVI for modeling bird
species richness in our study area. We therefore used NDVI
for completing the analyses presented in this manuscript.
All roads were masked prior to the analysis to ensure that we
detected texture induced by habitat structure only. Masks
were created by digitizing all roads within a plot from
USGS digital orthophotos quadrangles (DOQQs; St-Louis
et al. 2006).

Two first-order and thirteen second-order texture mea-
sures were calculated at each of the 108 ha plots for the
six 30-m resolution Landsat TM bands (blue (spectral
resolution of 0.45�0.52 mm), green (0.52�0.60 mm), red
(0.63�0.69 mm), NIR (0.76�0.90 mm), SWIR-TM5 (1.55�
1.75 mm), and SWIR-TM7 (2.08�2.35 mm)) for quantify-
ing habitat structure. Texture of NDVI was also calculated
to quantify spatial variability in productivity at each plot.
The first-order texture measures used to capture pixel value
properties were coefficient of variation and range of
reflectance values. Coefficient of variation is defined as

the standard deviation of pixel values divided by the mean.
Second-order texture measures are calculated from the gray-
level co-occurrence matrix (GLCM) and account for the
spatial arrangement of pixel values (Haralick et al. 1973).
The thirteen second-order statistics used in this analysis
include angular second moment, contrast, correlation,
difference entropy, difference variance, entropy, inverse
difference moment, information measures of correlation
1 and 2, maximal correlation coefficient, sum entropy, sum
variance, and sum of squares variance. We omitted Haralick
et al. (1973)’s sum average from the analysis because it does
not measure spatial variability per se. Two other measures
from Haralick’s et al. (1973) paper, sum of square variance
and sum variance, were also perfectly correlated to one
another (Pearson r�1). We therefore randomly chose one
of the two for fitting the models (sum variance), reducing
the dataset to two first-order and 12 second-order measures
of habitat structure (Table 1). Second-order texture
measures were calculated in four directions (i.e. from the
GLCM computed at 08, 458, 908, and 1358) and averaged.
For a complete description of the approach and formulas
for calculating second-order texture measures, see Haralick
et al. (1973).

Figure 1. Location of the study sites (black dots) in the McGregor Range of the Fort Bliss military reserve, New Mexico, and an example
of a twelve-point 108 ha study grid. The different habitat types are outlined with the bold line, and are defined as follow: BG�black
grama, CR�creosote, ME�mesquite, MG�mixed mesa grass, PJ�pinyon-juniper, SA�sandsage, and WH�whitethorn.
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Image texture for the six Landsat TM bands, and NDVI
was calculated using two approaches for each 108 ha plot:
1) a plot approach, and 2) a within-plot moving window
approach. We thereby assessed texture at two spatial scales.
The smallest, 0.81 ha (the size of a 3�3 window),
corresponds roughly to the home range size of several
bird species found in the study area (e.g. ash-throated
flycatcher Myiarchus cinerascens (territory can be as small
as 1 ha (Cardiff et al. 2002)), black-tailed gnatcatcher
Polioptila melanura (territory size ranges from 0.8 to 2.7 ha
per pair (Hensley 1954)), black-throated sparrow Amphis-
piza bilineata (territory can be as small 0.84 ha on average
in S Arizona, and 1.61 ha in S New Mexico (Johnson et al.
2002)), or verdin Auriparus flaviceps (average territory size is
0.53 ha in two out of three study sites considered by
Hensley (1954))). The larger spatial scale, 108 ha, corre-
sponds with the extent of each study plot. We calculated
image texture for the plot approach by using all pixel values
within the plot. In the within-plot moving window
approach, we first ran a 3�3 texture filter across each
plot, thus creating 42 images whose pixel values represent
the texture calculated in a 3�3 neighborhood (i.e. a total
of nine pixels including the middle one). Second, we
averaged the resulting image texture values to obtain a plot-
level summary statistic of texture. First- and second-order
texture measures were computed in Matlab† 7.0.4.365
(TheMathWorks 1984�2005) using the image processing
toolbox.

To compare the predictive ability of measures quantified
from raw satellite imagery to traditional, classified imagery-
based methods for modeling bird species richness, we
calculated landscape indices based on a classification
obtained from the Southwest regional landcover dataset
(USGS National Gap Analysis Program 2004). We first
quantified the total number of habitat types within each
108 ha study plot as a measure of habitat richness. We then
reclassified the image into two classes (grasslands (hereafter
sparse habitat) and shrubland�woodlands (hereafter dense
habitat)) (bird species richness is known to vary greatly as a
function of vertical diversity provided by shrubs and trees)
and quantified the proportion of sparse and dense habitat
within each plot, as well as edge density. We expected bird
species richness to be positively related with the number of
habitat types, edge density, and proportion of dense habitat.

Statistical analyses

Habitat structure and productivity as predictors of species
richness
We used Bayesian model averaging to evaluate the relative
contribution of measures of habitat structure and plant
productivity for determining bird species richness.
We fitted four models for each Landsat band as well as
for NDVI: 1) a combination of texture measures only
(i.e. 14 texture measures) both at the plot and window levels
(structp and structw), and 2) a combination of measures of
habitat structure and productivity (mean NDVI) at the plot
and window levels (structp�prodp and structw�prodw).
We proceeded this way because we were first interested in
comparing the predictive ability of measures of texture
alone, and then we wanted to compare the relative
contribution of habitat structure and plant productivity
for predicting patterns of species richness in our study area.
We included quadratic terms for the variables for
which including a quadratic term significantly improved
(i.e. p50.05) univariate linear models (see Table 2 for a
complete list of these variables).

We conducted the Bayesian model averaging analysis
using the R package BMA (Raftery et al. 2006). We
modified the BMA procedure to consider only models
containing up to five predictor variables to prevent over-
fitting the data. Bayesian information criterion (BIC) values
are used to calculate approximate posterior model prob-
abilities for each fitted model (Mi) using the following
formula:

Pr(Mi½Data):
exp (�BICi=2)piX
j

exp (�BICj=2)pj

; (1)

Table 1. Abbreviations of the fourteen measures of texture used as
proxy for habitat structure.

Type of measures Abbreviation Texture measure

First-order cv Coefficient of variation
measure rg Range

Second-order asm Angular second moment
measures* con Contrast

cor Correlation
den Difference entropy
dva Difference variance
ent Entropy
icm1 � icm2 Information measure of

correlation 1 and 2
idm Inverse difference moment
mcc Maximal correlation coefficient
sen Sum entropy
sva Sum variance

*from (Haralick et al. 1973).

Table 2. Plot- and window-level texture measures for which both a
linear and a quadratic term were included in the predictive models
of bird species richness. We selected these after first fitting both
linear and non-linear models between the image textures from Table
1 and bird species richness. Second, we tested for the statistical
significance of the quadratic term to evaluate if it should be
included (i.e. if the p-value associated with comparing the linear
and non-linear model was smaller or equal to 0.05) or not in the
predictive models.

Band Approach Variable with quadratic term

Blue Plot asm, con, rg
Window asm, cor, cv, sen

Green Plot asm, con, sva
Window cor, sva

Red Plot con
Window con, cor, sva

NIR Plot con, sva
Window None

SWIR-TM5 Plot asm, dva, icm2, idm, mcc, sva
Window asm, cor, den, dva, ent, icm1, icm2, idm,

sen

SWIR-TM7 Plot asm, den, dva, ent, icm2, idm, mcc, sen
Window asm, cor, den, dva, ent, icm1, icm2, idm,

sen

NDVI Plot asm, con, dva, ent, rg, sva
Window con, rg, sva
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where pi is the prior probability for each model (Link and
Barker 2006) (1). We chose uniform prior probabilities (1/
R; where R is the total number of models fitted) because we
had no a priori reason to favor one model over another.
Using a method proposed by Madigan and Raftery (1994),
a set of parsimonious, data-supported models, is defined
using the Occam’s window approach with C�20. This set
of models is then used for calculating averaged coefficient
estimates with their respective standard deviations (not
shown here), and posterior probabilities for each variable
(i.e. the probability that a coefficient is different from zero).
We used these posterior probabilities as an indication of the
relative contribution of each explanatory variable among the
set of input variables in the model for explaining bird
species richness. To compare the results with traditional
classification-based approaches, we also fitted BMA models
using the three landscape indices (number of habitat types,
edge density, and proportion of dense habitat) calculated
within each plot. We did not include proportion of sparse
habitat because it was directly related to the proportion of
dense habitat.

Residuals of the best predictive models for each band
(i.e. smallest sPRESS value) were checked for spatial
autocorrelation using semi-variograms at half the maximum
distance between study plots.

We used normally distributed errors in our models.
While the normality assumption was satisfied in our data
(i.e. the residuals showed no departure from normality), we
acknowledge that modeling count data using normally
distributed errors may lead to negative predictions. Because
our focus was not to use these models for on-the-ground
mapping of species richness per se, but was rather to
evaluate the usefulness of image texture and productivity as
a predictive tool, the approach that we took seems
appropriate. We must however acknowledge that ecologists
interested in direct applications of predictive models (e.g.
statistical mapping) should consider using approaches that
account for non-normal errors such as Poisson, or other
suitable distributions. Useful references to that effect
include Jones et al. (2002), Royle et al. (2002), and Sileshi
(2006).

Evaluating predictive ability
We used a leave-one-out cross-validation (LOOCV) ap-
proach to evaluate the predictive ability of the set of best
fitting models (i.e. those selected based on the Occam’s
window criteria of C�20). The LOOCV approach was
chosen rather than a k-fold approach because of the low
number of observations (n�42). We predicted the value of
the ith observation using the regression coefficients
obtained by fitting the model leaving the ith observation
out. We compared the predictive ability of each fitted
model using the standard error of cross-validation predic-
tion calculated as follows:

sPRESS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i�1

(yi � ŷi)2

N � n � 1

vuuuut
(2)

(So and Karplus 1997) where yi is the value of the ith
observation, ŷi it the predicted value of the ith observation

using the reduced model, N�the number of observations
(here N�42), n�the number of predictors in the model
(n�1, 2, 3, 4, or 5 in our case). The numerator in (2)
corresponds to the PRESS (predicted residuals sums of
squares) statistic (Allen 1974). Here, we chose sPRESS for
comparing models rather than raw PRESS values because
doing so allows comparing models with different numbers
of variables. Small sPRESS values indicate strong pre-
dictive ability. For comparison purposes, we calculated the
adjusted coefficient of determination (R2

adj.) and the BIC for
the best predictive models used in the models averaging. All
statistical analyses were conducted in R 2.6.0 (R Develop-
ment Core Team 2007).

Results

Variability in species richness, texture and measures
of productivity across habitats

Bird species richness varied greatly across habitats, with
lower species richness in grasslands, and higher richness in
shrublands and pinyon-juniper. An average of 18 and
19 species occurred in black grama and mesa grasslands
respectively. For the four shrublands, an average of 20
species occurred in sandsage, 23 in both creosote and
mesquite, and 25 in whitethorn. Species richness was much
higher in pinyon-juniper, with 34 species on average.

The variability in reflectance as measured by the first-
order coefficient of variation also varied across habitats
(Fig. 2). For all bands and for NDVI, the variability was
lowest in grasslands. There was a high variability in
reflectance values for pinyon-juniper, creosote and white-
thorn habitats for most bands. Variability in NDVI values
was low in most habitats, except for pinyon-juniper, where
it was very high, and whitethorn, where it was intermediate.
Mean NDVI values were also very high in the pinyon-
juniper habitat compared to the other habitat types.

Habitat structure and productivity as predictors of
bird species richness

Because we wanted to evaluate 1) the contribution of
multiple measures of habitat structure, and 2) the relative
importance of measures of habitat structure versus plant
productivity for predicting species richness, we fitted
models with texture alone (i.e. models structp and structw),
and models that included texture and mean NDVI as a
proxy for plant productivity (i.e. models structp�prodp and
structw�prodw). Measures of habitat structure alone
accounted for up to 81.4% (e.g. blue band) of the
variability in bird species richness predicted from the six
Landsat bands, and up to 82.3% from NDVI (Table 3).
Among the six Landsat bands, the predictive ability was
higher for the blue, SWIR-TM5, and SWIR-TM7 bands
(sPRESS as low as 2.9, 3.5, and 3.6 respectively) than for
the three other bands (minimum sPRESS values of 4.2, 4,
and 4.8 respectively for the green, red, and NIR bands). The
sPRESS values were higher for the NIR band than the five
other Landsat bands when habitat structure alone was
considered (i.e. up to 5.3), and the models accounted for
only up to 46.4% of the variability in species richness.
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Models built with the 3�3 window-level data had lower
sPRESS values than those build using the plot-level data
for all bands except for the SWIR-TM5 band. For NDVI,
the results were very similar between the window and plot
approach. Preliminary analyses suggest that models built
using larger window sizes (e.g. 5�5, and 11�11) showed
no substantial improvement over the smallest window size
presented here.

Across all measures of habitat structure, first-order
coefficient of variation had high posterior probabilities for
the blue, green, red, NIR, and SWIR-TM7 (plot level only)
bands (Table 4). There was a positive linear relationship
between species richness and the green, red, NIR, and
SWIR-TM7 bands, and a slightly non-linear relationship
with the blue band (Fig. 3). With the exception of a few

instances (e.g. high posterior probabilities for difference
entropy and difference variance for the blue band at the
window level), the other measures of habitat structure had
much lower posterior probabilities for these four bands. For
the SWIR-TM5 band and NDVI, no measures clearly
stood out, with the exception of coefficient of variation in
NDVI and NDVI range, both of which had equally high
posterior probabilities at the 3�3 window level.

Models that incorporated both measures of habitat
structure and plant productivity were better predictive
models than models that were based on habitat structure
alone (Table 3). The models were very similar across all
bands and for NDVI, both in terms of sPRESS (as low as
2.4) and R2

adj values (up to 87.4%), although measures
derived from NDVI provided slightly better predictive
models. Mean productivity (including its quadratic term)
was chosen as a variable in all best fitting models, as
shown by its posterior probability of 100% in all cases
except for the blue band at the window level (Table 4).
Coefficient of variation was the variable with the second
highest posterior probability except in the case of the two
SWIR bands. For these two bands, no measures had very
high posterior probabilities after incorporating productiv-
ity in the models. Some individual measures of habitat
structure when tested alone accounted for a higher portion
of the variability in species richness than mean productiv-
ity (e.g. range in NDVI had an R2

adj of 72% as opposed to
61% for mean NDVI) (Fig. 3). However, incorporating
mean productivity in the models appears to be important,
as shown by its high posterior probabilities across all
bands.

For most of the variables that had very high posterior
probabilities, the quadratic term (when included) also had
high posterior probability (Table 4). Using a strict model
selection procedure as described above also resulted in some
cases with models that contained a quadratic term but not
the corresponding linear term (i.e. when the posterior
probability of the quadratic term is higher than that of the
linear term). In keeping with the conventional hierarchical
principle used for polynomial models (Sokal and Rohlf
1995), for prediction purposes it would be sensible to
incorporate a linear term, as well. The variables for which
this happened in our study all had very low posterior
probabilities, and were therefore most likely weak predictors
of bird species richness.

Model diagnostic for the best predictive models of each
band and model class (habitat structure only or habitat
structure and productivity combined) suggested that the
models’ assumptions were satisfied, and that there was no
spatial autocorrelation in the residuals.

Comparison with classified-imagery based
approaches

The models built using landscape indices calculated from a
classified image accounted for up to 55% of the variability
in bird species richness (Table 5). There was a positive
relationship between bird species richness and amount of
dense habitat, and also a positive (but not significant
according to a 0.95% confidence interval calculated from
the estimated coefficient) relationship with both edge

Figure 2. Boxplot of the first-order coefficient of variation values
for the six Landsat TM bands and for NDVI across habitat types,
and of the mean NDVI values. Coefficient of variation was
quantified within a 3�3 filter passed across each plot. The values
were then averaged for obtaining a plot-level measurement. The
lateral bar represents the median coefficient of variation value
across the six plots in each habitat, while the box represents the
first and third quantiles and the whiskers indicate the range of the
data. Refer to Fig. 1 for habitat type abbreviations.
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density and the number of habitat types. A coarse
classification of the seven main habitat types in the study
area accounts for 71.2% of the variability in bird species
richness (St-Louis et al. 2006).

Discussion

Adequate understanding and mapping of patterns of
biodiversity is crucial to making appropriate management
decisions (Debinski and Humphrey 1997). The challenge is
to find methodologies to do so at broad-spatial scales,
especially in ecosystems with a patchy distribution of
resources within habitat classes, where traditional image-
classification methods may fail to detect landscape attributes
important to biodiversity. Our results suggest that habitat
structure and productivity measures derived from unclassi-
fied Landsat TM imagery are better predictors of bird
species richness in semi-arid ecosystems than landscape
indices derived from classified imagery. Assuming that the
satellite-derived measures that we used are appropriate
surrogates for habitat structure and productivity, our
findings support MacArthur’s theory (MacArthur 1972)
of the important role that these two factors play in
determining biodiversity. We found a positive relationship
between measures of habitat structure and bird species
richness. We speculate that bird species richness is higher in
areas of high habitat structure because patches of different
plant species, or patches of tall shrubs or trees interspersed
with low shrubs or grasses, provide more niches. These areas

likely provide a wider variety of resources than low contrast,
single-plant species areas. We also found a positive, non-
linear relationship between mean productivity and bird
species richness. Areas of high plant productivity associated
with high biomass contain more foraging resources (Cody
1981) than areas of lower productivity. Variability in
productivity was a stronger predictor of bird species richness
than mean productivity in our study. This emphasizes again
the importance of habitat structure and productivity as two
of the main drivers of biodiversity. Our results furthermore
highlight the improved power gained by combining
measures of habitat structure as well as measures of
productivity in predictive models of biodiversity.

The models we obtained using measures of image texture
contribute to mounting evidence of the value of image
texture for characterizing habitat (e.g. bird territories
(Tuttle et al. 2006) and bird occurrence (Hepinstall and
Sader 1997)). Our study is one of the first to thoroughly
evaluate the usefulness of different measures of texture
derived from several spectral bands with the intent of
predicting patterns of avian biodiversity. The texture
measures that accounted for most of the variability in
species richness varied across bands, but some patterns are
apparent. There was a positive relationship between first-
order coefficient of variation on the blue, green, red, NIR
and SWIR-TM7 bands and bird species richness. The
coefficient of variation values of all Landsat TM bands was
found to vary greatly among habitats in our study area,
with high values in pinyon-juniper, to moderate in the
shrublands, to low values in the grasslands. From a remote

Table 3. Range of R2
adj, BIC, and sPRESS values for the models used to obtain posterior probabilities using the Bayesian average modeling

approach. The table presents the results of models containing only measures of habitat structure at the plot (structp) and window (structw)
levels, and measures of habitat structure and productivity at the plot (structp�prodp) and window (structw�prodw) levels. The number of
models (Nb. mod.) that were used in the model averaging based on the Occam’s window criteria of 20 is also indicated.

Band Model Nb. mod. R2
adj BIC sPRESS

Blue structp 31 45.4�58 249�254 4.7�5.8
structw 13 78.8�81.4 214�220 2.9�3.1
structp�prodp 22 74.3�79.1 222�227 3.1�3.5
structw�prodw 11 80.9�83 213�218 2.9�3.3

Green structp 33 45.9�54 250�255 4.6�5
structw 41 56.2�63.3 242�248 4.2�4.9
structp�prodp 23 77.1�82.4 215�220 2.9�3.1
structw�prodw 15 79.8�82.2 210�215 2.8�3

Red structp 22 53.4�56.7 244�250 4.2�4.5
structw 41 58.8�67.4 239�243 4�4.3
structp�prodp 22 80.6�84.7 209�214 2.7�2.8
structw�prodw 21 84.4�85.6 203�208 2.6�2.7

NIR structp 27 31.5�40.9 259�265 5�5.3
structw 40 38.1�46.4 256�262 4.8�5.1
structp�prodp 23 80.3�84.6 209�214 2.7�2.9
structw�prodw 11 84.5�84.9 203�207 2.6�2.7

SWIR-TM5 structp 42 60.3�72.3 233�238 3.5�4
structw 43 63�69.6 233�239 3.7�4
structp�prodp 26 81.7�84.7 206�211 2.6�2.9
structw�prodw 27 82�83.6 207�213 2.7�2.9

SWIR-TM7 structp 11 55.8�64.6 237�243 3.9�4.2
structw 33 60�72.4 233�239 3.6�4.1
structp�prodp 26 83.3�86.1 202�207 2.5�2.7
structw�prodw 26 81�84.1 207�212 2.7�2.8

NDVI structp 34 76.4�82.3 213�219 2.8�3.4
structw 22 75.8�80.9 217�223 3.1�3.4
structp�prodp 22 85.5�87.4 196�201 2.4�3.2
structw�prodw 26 82.4�86.3 204�209 2.6�2.8
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Table 4. Posterior probabilities of habitat structure and productivity (Prod.) measure resulting from the Bayesian model averaging approach for the models containing only texture measures at the plot
(structp) and window (structw) levels, and texture measures and mean NDVI also at the plot (structp�prodp) and window (structw�prodw) levels. The superscript numbers in parenthesis indicate the
posterior probabilities for the quadratic term, when it was included in the models (Table 2). The total number of models that were used in the calculation for each band is indicated in Table 3.

Habitat structure Prod.

Band Model asm con cor cv den dva ent icm1 icm2 idm mcc rg sen sva NDVI

Blue structp 6(8) 11(8) 3 100 54 0 18 16 10 9 5 28(43) 20 52 NA*
structw 5(0) 5 6(5) 100(100) 95 100 6 12 8 9 7 0 0(5) 0 NA
structp�prodp 8(23) 1(0) 14 69 28 0 12 46 22 10 1 1(1) 13 15 100(100)

structw�prodw 3(0) 0 3(3) 100(100) 100 100 3 6 4 4 4 0 0(0) 0 33(18)

Green structp 1(4) 12(6) 5 100 20 1 3 13 2 11 5 28 0 19(31) NA
structw 5 2 40(47) 100 10 5 8 22 8 11 7 3 9 4(5) NA
structp�prodp 1(0) 5(5) 0 72 22 0 19 28 13 36 7 0 20 18(4) 100(100)

structw�prodw 7 6 6(7) 98 7 0 7 7 0 2 8 2 0 6(6) 100(100)

Red structp 3 2(5) 15 100 9 0 0 12 7 8 11 21 0 13 NA
structw 9 2(3) 27(75) 100 6 3 9 16 9 15 5 3 34 3(5) NA
structp�prodp 8 0(0) 2 99 14 8 16 17 8 30 7 14 6 24 100(100)

structw�prodw 16 0(0) 5(5) 100 2 6 10 13 13 4 27 0 9 0(4) 100(100)

NIR structp 3 7(6) 10 100 3 5 3 3 4 3 0 57 2 14(21) NA
structw 0 12 45 94 30 27 6 8 1 8 1 12 6 9 NA
structp�prodp 2 23(15) 3 97 18 3 11 12 5 3 3 36 3 3(10) 100(100)

structw�prodw 0 7 6 100 6 6 6 6 6 0 6 6 0 7 100(100)

SWIRTM5 structp 16(3) 83 5 48 19 10(2) 43 14 4(6) 7(13) 0(0) 5 34 4(3) NA
structw 2(2) 33 15(27) 15 45(12) 43(8) 1(1) 3(2) 0(0) 2(0) 4 12 1(1) 15 NA
structp�prodp 5(4) 0 4 0 27 6(5) 11 13 10 23(15) 0(0) 0 9 19(19) 100(100)

structw�prodw 3(0) 0 6(0) 0 7(7) 0(2) 9(5) 18(43) 4(8) 10(3) 10 3 4(5) 0 100(100)

SWIRTM7 structp 3(1) 8 4(4) 91 9(14) 5(1) 5(2) 0 2(2) 18(9) 22(21) 0 5(4) 0 NA
structw 7(8) 2 3(5) 23 5(5) 6(7) 14(14) 72(74) 58(60) 12(19) 1 3 0(0) 3 NA
structp�prodp 7(2) 5 0(7) 29 2(6) 6(12) 13(20) 0 0(0) 5(4) 0(0) 33 15(26) 0 100(100)

structw�prodw 2(0) 3 0(0) 69 10(11) 7(7) 2(0) 0(0) 0(0) 6(6) 28 20 6(5) 7 100(100)

NDVI structp 4(0) 52(50) 50 0 20 6(19) 19(30) 0 0 6 69 16(18) 23 4(4) NA
structw 0 9(16) 32 100 0 9 3 19 7 4 3 100(99) 3 9(8) NA
structp�prodp 7(10) 2(3) 6 99 12 0(0) 10(5) 5 2 6 15 0(0) 2 6(1) 100(100)

structw�prodw 21 7(16) 2 80 2 16 3 27 11 6 17 3(6) 15 3(3) 100(100)

*indicates that mean NDVI was not included in the model.
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sensing standpoint, this supports previous findings that
demonstrated that texture (as measured by local variance)
varies as a function of both the size of the objects and the
spatial resolution of the image (Woodcock and Strahler
1987). Local variance declines as the size of the object
relative to the spatial resolution declines. This may explain
why in our study area larger objects (e.g. large mesquite
shrubs and pinyon or juniper trees) induce higher texture
than objects that were much smaller than the 30 m pixel
size of Landsat TM imagery (e.g. scattered yucca in a matrix
of grasses). For the SWIR-TM5 band, several texture
measures explained bird species richness equally well, as
indicated by low posterior probabilities, and high amount
of variability explained. The two SWIR-TM bands,
sensitive to vegetation moisture content, provide good
predictive models for bird species richness. It is possible
that mesquite and pinyon-juniper habitats (i.e. two habitats
that are associated with high avian species richness) both
exhibited high variability in these two bands induced by the
interspersion of green, photosynthetically active vegetation
with bare ground or grasses (e.g. mesquite dune, juniper or
pinyon tree, interspersed with sparse vegetation).

A surprising result was the weak relationship between
NIR texture and bird species richness. NIR is primarily
sensitive to photosynthetically active vegetation, thus we
were expecting a strong relationship between variability in
vegetation greenness as captured by NIR and bird species
richness. A possible explanation might be that, in the
Chihuahuan Desert of New Mexico, there is a very low
contrast between soil and vegetation in the NIR wavelength
(Franklin et al. 1993). Dry, bright soils can even induce
NIR values that are greater than those of the vegetation
present (Franklin et al. 1993). However, in the period just
preceding Landsat data acquisition the monsoon rains were
particularly heavy, with frequent downpours from 15 to
25 June, 2006, and standing water in many low-lying areas
(Pidgeon unpubl.). Without more detailed data on rainfall
patterns across the study area, it is not possible to truly
evaluate what caused the lack of a relationship between NIR
texture and bird species richness.

Variability in productivity, measured by NDVI texture,
was a better predictor of bird species richness than any of
the measures of habitat structure from individual Landsat
TM bands. NDVI texture captures heterogeneity in the
amount of vegetation (Hepinstall and Sader 1997). High
texture can therefore be induced by high horizontal
variability among plant growth forms. Habitats that are
heterogeneous either in terms of plant species composition,
or in terms of the spatial distribution of plants, create
multiple niches that bird species can exploit. In our

Figure 3. Scatterplot of the relationship between bird species
richness and the texture measures at the window level with the
highest posterior probability for each band, and NDVI (n�42).
The texture measures represent averages of pixel values obtained in
a 3�3 filter across each plot. The black line represents result from
the linear or non-linear fit. A scatter plot of species richness in
relationship with mean NDVI is also shown for comparison. Refer
to Table 1 for acronyms’ description.

Table 5. Posterior probabilities and model averaged coefficients (SD) of the landscape indices used for explaining patterns in species richness
at the 42 study plots. The R2

adj values of the five models used for the averaging ranged from 52.4 to 55%, while the BIC and sPRESS values
ranged from 247�251, and 4.04�4.15 respectively.

Model averaged measure Amount of dense habitat Edge density Number of habitat types

Posterior probability 100(76)* 34 21
Linear term:

Averaged coefficient (SD) 0.452 (0.291) 0.0162 0.135
Quadratic term: (0.0514) (0.373)
�0.004 (0.003)

*This value represents the posterior probability obtained for the quadratic term in the models.
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study area, high texture was found in the pinyon-juniper
habitat, which is characterized by trees of different
heights and at different densities, interspersed in a matrix
of grasses. Individual bird species may be attracted to areas
of heterogeneous plant productivity rather than areas of
uniformly high plant productivity for several reasons:
1) movement might be facilitated by a non-uniform
distribution of plants (dense plant structure is hard to
move through and flying over it exposes birds to avian
predators), or 2) bird species that have generalist diets may
find more foraging opportunities (several species in this
ecosystem forage both on the ground and in shrubs).

The positive relationship that we found between texture
in productivity and bird species richness concurs with
results from previous studies. At broad spatial scale, there is
a positive, linear relationship between bird species richness
and areas of high NDVI values (Hurlbert and Haskell 2003,
Evans et al. 2006). There is also a strong correlation
between NDVI mean, maximum and standard deviation
and bird species richness at smaller spatial scales (Seto et al.
2004), although the shape of this relationship (either linear
or quadratic) is not clear. Our results suggest that the
functional shape of birds’ response to increasing mean
productivity is non-linear in our study area, with a slight
decline in species richness at higher productivity. We found
the same pattern with increase in variability in productivity
(e.g. range). However, at this point and with only 42 study
sites, we cannot claim that the relationship is clearly
unimodal because only few data points exhibited high
productivity, and the relationship may just plateau at high
habitat structure values rather than decline. Further research
is needed to determine the functional shape of the
relationship between avian biodiversity and productivity
in this ecosystem and at the spatial scale of the study.

Because of the low contrast of the NIR band in this
ecosystem (Franklin et al. 1993), the strong relationship
between NDVI texture and bird species richness might
depend more on the red band, which has lower reflectance
values where there is high vegetation cover (Franklin et al.
1993). The mean red reflectance value is, in fact, very low
for pinyon-juniper habitat in our study area, and higher for
the two grassland habitats. In our study, preliminary results
suggested that SAVI (with L�0.75) was not substantially
better at predicting bird species richness than NDVI. For
the purpose of monitoring biodiversity, we can conclude
from our results that NDVI is a suitable measure for
capturing differences in productivity across habitats in this
ecosystem.

Our models suggest that the plot and the within-plot
moving window approaches yielded models with very
similar predictive ability, but that the moving window
approach provided slightly better predictive models than the
plot approach for all bands except NDVI. This might be
explained by the fact that texture in a 3�3 window
represents a spatial scale similar to the territory size of many
bird species breeding in the study area (e.g. ash-throated
flycatcher, black-tailed gnatcatcher, black-throated sparrow,
or verdin).

Models built using combinations of up to five measures
of habitat structure and mean productivity from 30 m
resolution Landsat TM imagery performed best, and
explained up to 87.4% of the variability in bird species

richness. In the same study area, we previously demon-
strated that single texture measures derived from 1-m
resolution digital orthophotos explain up to 57% of the
variability in bird species richness (St-Louis et al. 2006).
Our results suggest that in this ecosystem, medium
resolution images, such as Landsat TM, may be more
useful than high-resolution imagery, such as digital ortho-
photos, for mapping patterns of bird species richness. Even
in the visible range (i.e. blue, green, red), it appears that
single measures of image texture from 30 m resolution
Landsat TM imagery were better predictors of bird species
richness than measures derived from 1 m digital orthopho-
tos. This suggests that a 30 m pixel size, although it does
not retain information about individual habitat elements
that birds might key in on (e.g. individual shrubs), is none-
the-less an appropriate grain for calculating measures of
avian habitat structure and productivity.

Despite limitations introduced by our low sample size
and lack of independent validation data, our study
demonstrates the potential of image texture and productiv-
ity indices for predicting patterns of biodiversity in
ecosystems characterized by high within-habitat variability.
Further studies are needed for evaluating the applicability of
these tools in other ecosystems, but many recent examples
confirm the potential of these measures for wildlife studies
(e.g. Stickler and Southworth 2008, Bellis et al. in press).
The use of image texture analysis from satellite imagery for
predicting patterns of biodiversity is therefore very promis-
ing, and could be applicable in a wide range of ecosystems if
supported by adequate ground truthing (Gottschalk et al.
2005).

Conclusion

Remote sensing technologies are increasingly used for
understanding and predicting broad-scale patterns of
biodiversity. Our results, along with results from previously
published studies, suggest that image texture and vegetation
indices are promising tools for predicting broad-scale
patterns of biodiversity. Use of image texture measures
derived from satellite data has potential to provide quick,
cost-effective, assessment of biodiversity hotspots in areas
not suitable for application of most traditional, classified
imagery-based approaches. The main conclusions of our
study are twofold: 1) habitat structure, as measured by
image texture of Landsat TM bands, explains up to 81.4%
of the variability in avian species richness, while habitat
structure derived from NDVI explains up to 82.3%, and
2) a combination of measures of habitat structure and
productivity explains up to 87.4% of the variability in
species richness. Image texture from satellite imagery has
been applied successfully in forested ecosystems. Here, we
show that image texture from 30 m resolution Landsat TM
images is also a strong predictor of bird species richness in
semi-arid ecosystems. We also demonstrate the value of
combining measures of habitat structure and plant produc-
tivity for broad-scale assessments of patterns of avian
biodiversity. This work expands our understanding of the
range of ecosystems in which image texture and vegetation
indices can be used for monitoring broad-scale patterns of
biodiversity.
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