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Véronique St-Louis

e-mail: veronique.st-louis@state.mn.us
†Present address: MNDNR Wildlife Biometrics

Unit, 5463-C West Broadway, Forest Lake,

MN 55025, USA.
& 2014 The Author(s) Published by the Royal Society. All rights reserved.
Modelling avian biodiversity using raw,
unclassified satellite imagery
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Applications of remote sensing for biodiversity conservation typically rely on

image classifications that do not capture variability within coarse land cover

classes. Here, we compare two measures derived from unclassified remotely

sensed data, a measure of habitat heterogeneity and a measure of habitat com-

position, for explaining bird species richness and the spatial distribution of 10

species in a semi-arid landscape of New Mexico. We surveyed bird abundance

from 1996 to 1998 at 42 plots located in the McGregor Range of Fort Bliss Army

Reserve. Normalized Difference Vegetation Index values of two May 1997

Landsat scenes were the basis for among-pixel habitat heterogeneity (image

texture), and we used the raw imagery to decompose each pixel into different

habitat components (spectral mixture analysis). We used model averaging to

relate measures of avian biodiversity to measures of image texture and spectral

mixture analysis fractions. Measures of habitat heterogeneity, particularly

angular second moment and standard deviation, provide higher explanatory

power for bird species richness and the abundance of most species than

measures of habitat composition. Using image texture, alone or in combination

with other classified imagery-based approaches, for monitoring statuses and

trends in biological diversity can greatly improve conservation efforts

and habitat management.

1. Introduction
The current global biodiversity crisis requires the accurate and efficient mapping

and monitoring of broad-scale patterns of biodiversity. Developing methods

for effectively monitoring status and trends in biodiversity is necessary to

understand pressures encountered by biodiversity, and consequent responses.

Remotely sensed data are increasingly used to model and understand species dis-

tributions in space and time [1–4]. The challenge is how to quantify habitat

features that are ecologically relevant to the species, or guilds, of interest given

the potential mismatch between the spatial resolution of satellite images and indi-

viduals’ perception and utilization of habitat. This mismatch is exacerbated by the

fact that (i) images are commonly classified into discrete land cover classes, thus

ignoring subtle variations within a given class and gradients between classes,

(ii) the spatial resolution (i.e. pixel size) may be inadequate to capture habitat of

interest, and (iii) changes in phenology may affect whether or not certain habitat

attributes are detected by the sensors. To address the first and second of these

shortcomings, we evaluated the usefulness of two remotely sensed approaches

that capture wildlife habitat features, i.e. image texture and spectral mixture

analysis (SMA), in avian habitat models. Image texture captures among-pixel

habitat heterogeneity, while SMA captures the proportion of different habitat

components within a given pixel. Both approaches address the need for remote

sensing-based methods that detect within-habitat subtleties when mapping and

monitoring on-the-ground biological diversity [5–7].

Approaches for mapping and monitoring broad-scale patterns of bio-

diversity need to be focused towards the ecological requirements of the
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species or groups of species of interest. Models aimed at pre-

dicting avian species richness, for example, need to include

measures of (i) habitat heterogeneity (i.e. horizontal and

vertical variability in habitat features) and (ii) productivity

(i.e. amount of green biomass), two of the main correlates

of biodiversity [8]. However, if the goal is to model the abun-

dance of birds, then using features that capture the amount

of suitable habitat (i.e. habitat composition) may be more

relevant than measures of habitat heterogeneity. Birds, in par-

ticular, respond to a variety of habitat features, and capturing

the full breath of those features using remotely sensed data

is challenging.

Building habitat models to map and monitor biodiversity

is particularly challenging, especially in semi-arid ecosystems

where fine-scale variability within a given land cover class is

often high. The segregation of continuous landscapes into

discrete land cover classes, an approach typically used to

model biodiversity using remotely sensed data, may overlook

subtle variations in habitat components within a given land

cover class that are relevant to wildlife species, such as vege-

tation composition and structure. Within-pixel variation is

also ignored [9]. Pixels are often composed of a mixture of

habitat classes [10] that may not all be relevant to a species.

In addition to exhibiting high within-habitat heterogeneity,

semi-arid ecosystems sometimes have gradual transitions

between some habitat types, which may lead to low classifi-

cation accuracy. In semi-arid and arid ecosystems especially,

using continuous rather than discrete data is advantageous

(e.g. in Mediterranean ecosystems [11], the Indian sub-

continent [12], urban centres of the desert United States

and sub-Saharan Africa [13,14]). Indeed, our previous ana-

lyses conducted in a semi-arid ecosystem of New Mexico

showed that habitat features derived from unclassified

imagery, i.e. image texture and the Normalized Difference

Vegetation Index (NDVI), were superior to landscape indices

obtained from a classified image for explaining bird species

richness [15]. Whereas measures of habitat heterogeneity

calculated from raw imagery explained up to 87% of the varia-

bility in bird species richness, landscape indices explained

55% only.

In general, image texture has high potential for predict-

ing habitat in models, and thus improving upon methods

for mapping and monitoring biodiversity. Image texture

of remotely sensed images has traditionally been used to

improve image classification [16–20]. The habitat classes

created by such a classification can, in turn, be used for

mapping habitat, for example, for grasshopper sparrows

(Ammodramus savannarum) in Canada [21]. Image texture

can also improve wildlife habitat models directly. For

example, image texture of the NDVI is positively associated

with the abundance of bird species requiring heterogeneous

habitats (e.g. song sparrow (Melospiza melodia), yellow warb-

ler (Dendroica petechia) and black-throated green warbler

(Dendroica virens) in Maine [22], and grasshopper sparrows

in Wisconsin [7]). In Argentina, image texture substantially

improved habitat models for the endangered greater rheas

(Rhea americana) [23]. Texture also performs well for

modelling species richness [15,24] because of the theoretical

positive relationship between the number of species and

habitat heterogeneity [25]. These examples show the potential

of image texture to improve upon approaches that are based

on image classification when mapping and monitoring

biological diversity in diverse habitat types.
Another challenge of remote sensing analysis for the

purpose of mapping and monitoring biodiversity is to

measure features that capture fine-scale habitat composition.

Image pixels contain potentially useful habitat information

that cannot be extracted with traditional image classification

methods, or by image texture analysis. SMA (also called

‘spectral unmixing’), on the other hand, decomposes pixel

reflectance values into different habitat components (e.g.

green vegetation, soil and dry vegetation), thereby alleviating

the assumption of image classification methods that each

pixel is composed of only one habitat component. Spectral

unmixing assumes that the reflectance information contained

within each image pixel is the linear combination of the pure

reflectance of many components [26]. Using pure reflectance

spectra, spectral unmixing can quantify the percentage cover

of varying habitat components across a range of dryland eco-

system types from sand dunes [10] to Mediterranean

shrublands [27,28]. Habitat components with very high spec-

tral contrast (e.g. green vegetation and soil) can be

particularly well assessed [10]. Quantifying the proportion

of green vegetation in a given area using spectral unmixing

is thus promising for characterizing bird habitat, especially

in ecosystems where vegetation indices may be less reliable

owing to strong soil background, such as semi-arid ecosys-

tems [29,30]. However, SMA has rarely been used to model

wildlife habitat, although a few examples exist. Habitat selec-

tion models for the mountain bongo (Tragelaphus euryceros)

based on spectral unmixing performed better than those

based on field or remotely sensed data alone [31]. Spectral

unmixing fractions explain 84% of the variability in urban

bird species richness in Israel (in combination with other geo-

graphical variables such as distance to roads) [32]. Similarly,

soil and shadow fractions successfully characterize hooded

warbler (Wilsonia citrine) nest sites in Ontario, where the

first two principal components of all the unmixing fractions

and texture measures capture 95.9% and 88.3% of the var-

iance in nest site locations, respectively [33]. Because of the

high performance of SMA in semi-arid ecosystems, we won-

dered whether it would be a good alternative or complement

to image texture for predicting bird abundance in the

Chihuahuan Desert of New Mexico, and potentially a valu-

able tool to monitor the status of and predict trends in

biological diversity over time in different habitat types.

The overall goal of our study was to compare the relative

ability of image texture, a measure of among-pixel heterogen-

eity, and SMA, a measure of within-pixel habitat composition,

for explaining bird species richness and the abundance of

10 bird species that breed in a semi-arid ecosystem of New

Mexico. The comparison of these two approaches is novel,

and in addition to informing which methodology may be best

for explaining patterns of species distribution in semi-arid land-

scapes, it may also provide insights into which environmental

cues, related to either heterogeneity of habitats or composition,

species most respond to in these types of landscapes. Because of

the strong theoretical relationship between species biodiversity

and habitat heterogeneity [8], we hypothesized that species rich-

ness would be best explained by among-pixel measures of

habitat heterogeneity. On the other hand, we hypothesized

that the abundance of species would be best explained by

measures derived from spectral unmixing that capture within-

pixel habitat composition, because they may quantify subtle

changes in habitat components relevant for different species’

unique life-history requirements.

http://rstb.royalsocietypublishing.org/
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Figure 1. Location of the McGregor range of the Fort Bliss military base in
New Mexico overlayed on a 10 m DEM (elevation values range from 569 m
(dark grey) to 3629 m (white). The black dots indicate the location of the
42 study plots, and the small bottom-right insert shows the details of
one of the 42 108 ha study grids.
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2. Material and methods
(a) Study area
Our study was conducted in the northern Chihuahuan Desert,

specifically on almost 300 000 ha of Fort Bliss Army Reserve in

New Mexico (figure 1). The area is semi-arid, with monthly pre-

cipitation ranging between 13 and 44 mm from May to July,

minimum temperatures between 11 and 198C, and maximum

temperatures between 30 and 358C (Western Regional Climate

Center. Orogrande 1N New Mexico). The study area contains

multiple habitat types including two grassland types (black

grama (Boutela eriopoda) and mesa grassland), four shrubland

types (creosote (Larrea tridentata), mesquite (Prosopis glandulosa
or P. pubescens), sandsage (Artemisia filifolia), and whitethorn

(Acacia neovernicosa or A. constricta)), and one low tree-dominated

habitat, pinyon–juniper (Pinus edulis–Juniperus monosperma or

J. deppeana). For a more detailed description of the plant associ-

ations occurring in the area, refer to Pidgeon et al. [34,35]. The

field sites were represented by different soil types according to

a digital soil map [36], including deep sand, draw, gravel, gyp

upland, limestone hills, limy, loamy, sandstone hill and sandy.

(b) Bird data
Bird abundance was summarized over forty-two 12-point plots

(108 ha each) placed randomly across the seven habitat types pre-

sented above (figure 1). Four to five visits per year were conducted

at each point count during the 1996–1998 breeding seasons. All

individuals heard or observed within 150 m of the points and

during a 10 min period were recorded. Based on these data, we

summed the counts per plot of a given species to obtain plot-

level species abundance data. We summarized abundances for

10 species with different habitat associations and life-history

characteristics (table 1). Because distances were not recorded

when we collected our field data, back in 1996–1998, we do not

have the appropriate distance estimates to apply a distance-

sampling approach. We used only presence–absence data for
three out of the 10 species (eastern meadowlark, scaled quail

and verdin) because they were found in low numbers and on a

relatively few sites. For these three species, we recorded the pres-

ence at a given location if an individual of that species was

detected at any of the point counts in a given season. Species rich-

ness was calculated as the sum of all species detected at any of the

point counts at each plot.
(c) Image pre-processing
We selected the satellite images that matched the time period of

bird observations best. Two Landsat Thematic Mapper 5 (TM5)

images from the same path, and recorded on the same day

(path/row 33/37 and 33/38 of 25 May 1997) were used. We

used images from 1997 only because available images for the

two other years of bird data collection (i.e. 1996 and 1998) were

too cloudy to be analysed successfully. We used a two-stage pro-

cess to convert raw digital numbers into surface reflectances [37].

First, we applied TM calibration gains and biases [38,39] to calcu-

late at-satellite radiance values. Second, we used an atmospheric

transfer model that considered terrain illumination to convert

at-sensor radiance to surface reflectance [40]. As a topography

model, we used a 10 m resolution digital elevation model (DEM)

and re-sampled it to 30 m TM resolution. We assumed a continen-

tal, clear sky atmosphere and iteratively changed water vapour

content and aerosol distribution parameters until image

spectra matched reference spectra of (i) soils, (ii) clear water and

(iii) white gypsum sand. We collected a total of 36 soil samples

in the field during summer 2007, and measured these in the lab-

oratory using an ASD Fieldspec Pro II spectroradiometer. We

obtained a white sand reference spectrum from the ASTER library

[41] and a clear water spectrum from the Erdas [42] Imagine

spectral library. All reference spectra were re-sampled to Landsat

TM5 bands. We selected pure image spectra to compare with

the reference spectra from the Landsat TM images based on digital

orthophotos quarter quadrangles and a soil map in vector format.

We quantified differences of reference and image spectra using the

root mean square error (RMSE) and the coefficient of determin-

ation (R2; 0.99 for red soils, 0.95 for grey soils, 0.89 for white

sand and 0.78 for water).
(d) Among-pixel habitat heterogeneity
We calculated among-pixel habitat heterogeneity based on image

texture of the NDVI (a measure of photosynthetically active

green vegetation). Our previous work showed that NDVI texture

is superior to the texture of any individual Landsat TM band for

predicting avian biodiversity in this ecosystem [15]. Texture

measures were calculated in a fixed (rather than moving) 9 � 9

window around each point count location. We calculated plot-

level texture by averaging the 12 texture values corresponding to

the 12 point count locations for each plot. We opted for a 9 � 9

window to approximate the spatial extent of the 150 m radius

point counts (approx. 7 ha). We selected one first-order, and

three second-order texture [16] measures for quantifying texture

at each plot. The measure of first-order standard deviation was

selected because of its intuitive appeal for characterizing zones

of higher or lower heterogeneity. As many of the second-order

measures are correlated with each other [24], we selected only

two for this analysis (angular second moment and correlation),

based on ease of interpretation. Angular second moment and cor-

relation emphasized areas that were homogeneous in terms of

NDVI values.

Image texture can also be calculated based on the SMA

results, i.e. using the green vegetation fraction as a measure of

green biomass instead of NDVI or any other individual band.

However, a preliminary analysis suggested that texture of SMA

fraction was not better at explaining bird abundance and

http://rstb.royalsocietypublishing.org/


Table 1. List of species and guild affiliation. Italic indicates instances where a species was the most abundant for that particular guild, based on total counts
compiled across all 42 study sites.

species AOU code breeding guild foraging guild nesting guild

ash-throated flycatcher

Myiarchus cinerascens

ATFL shrub lower/air trees/shrubs

black-headed grosbeak

Pheucticus melanocephalus

BHGR wood upper trees/shrubs

black-throated sparrow Amphispiza bilineata BTSP shrub ground ground

cactus wren Campylorhynchus brunneicapillus CACW shrub ground ground

common bushtit Psaltriparus minimus COBU shrub upper trees/shrubs

eastern meadowlark Sturnella magna EAME grass ground ground

Scott’s oriole

Icterus parisorum

SCOR shrub lower trees/shrubs

scaled quail

Callipepla squamata

SCQU grass ground ground

spotted towhee

Pipilo maculatus

SPTO wood air trees/shrubs

verdin

Auriparus flaviceps

VERD shrub lower trees/shrubs
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occurrence than texture of NDVI (results not shown). For this

reason, we only present results obtained based on NDVI texture.

(e) Within-pixel habitat composition
We calculated within-pixel habitat composition using SMA. SMA

assumes that most of the variation in the reflectance of a pixel can

be attributed to a limited number of surface materials which can be

characterized by pure reflectance spectra (hereafter, endmembers)

[43]. Assuming that any image pixel spectrum is the linear combin-

ation of the endmember spectra (e.g. vegetation, soil, rock, plus an

unexplained residual error), SMA decomposes image pixel spectra

into endmember fractions. These fractions can then be interpreted

as the relative proportion of a pixel’s surface covered by the

respective surface class (e.g. vegetation, soil) [28].

The endmembers can be derived from the image itself, or from

samples measured in the field or in the laboratory. We used labora-

tory spectra as the highly heterogeneous landscape does not easily

allow identification of pixels containing only a single endmember.

We compiled a spectral library with four different categories of end-

member spectra: (i) photosynthetically active vegetation (hereafter,

green vegetation), (ii) photosynthetically inactive vegetation (here-

after, dry vegetation), (iii) soil and (iv) shade. Soil and dry

vegetation samples were acquired in the field in summer 2006,

and measured in the laboratory using the ASD Fieldspec Pro II spec-

troradiometer. We obtained green vegetation spectra from the

United States Geological Survey (USGS) spectral library [44], and

from a library of sample spectra collected in semi-arid and Mediter-

ranean environments in Greece [30]. The latter contained both

reference spectra measured in the laboratory (leaves only) and

integrated spectra gathered in the field (leaves, branches and stems).

To estimate the fraction of green vegetation, dry vegetation,

soil and shade, we fitted three- and four-endmember models in a

multiple endmember spectral mixture analysis (MESMA). In

MESMA, the number of endmembers (three or four in our case)

can vary on a per-pixel basis to achieve the optimal decomposition

[27]. This approach assumes that models of higher dimensions are

picked because they represent on-the-ground landscape features

better than models of lower dimension, and that the better fit is
not only the statistical result of a higher degree of freedom. The

spectra used for characterizing these endmembers can also vary

(e.g. several green vegetation spectra are available alternatively

as a green vegetation endmember). We set a maximum of four end-

members owing to the low dimensionality of Landsat TM data

[45]. For each pixel, the spectral reflectance values could thus be

represented by a linear combination of (i) green vegetation, soil

and shade, (ii) dry vegetation, soil and shade or (iii) green vege-

tation, dry vegetation, soil and shade. SMA uses a least-squares

regression approach to obtain the best fit between the reference

spectra and the estimated SMA fractions. Out of the three afore-

mentioned models, the linear combination that resulted in the

lowest RMSE was retained for providing the fractions of green

and/or dry vegetation, and the fractions of soil and shade. The

RMSE for each pixel was also recorded as a separate data layer

to visualize the spatial pattern of fit between the modelled fractions

and the reference spectra.

The spectral unmixing was conducted with different spectra for

characterizing green vegetation, dry vegetation and soil. Ultimately,

we selected a set of spectra that generated good results based on the

minimum overall RMSE (calculated as the average RMSE of all

pixels in the image). The model that achieved the best endmember

decomposition (i.e. lowest RMSE) was based on an integrated vege-

tation spectrum from Crete (i.e. from a spectrum collected in the

field that incorporates green leaves as well as branches), as well as

dry grasses and soils spectra from our New Mexico study area.

The spectral unmixing was performed using the tool VMESMA [46].

We normalized the fractions of green vegetation, dry vege-

tation and soil by redistributing the amount of shade

proportionally to the fractions of the other habitat components.

For example, if a pixel had 20% soil, 30% dry grass, 40% green

vegetation and 10% shade, the normalized fractions obtained

by redistributing the 10% shade would be 22.22% soil, 33.33%

dry grass and 44.44% green vegetation.

Green and dry vegetation fractions were summarized as the

average fraction within a 9 � 9 window around each point-count

point. We averaged the resulting values across the 12 points to

obtain plot-level values. In addition to NDVI texture and SMA

fractions, we extracted elevation at each point count from the

http://rstb.royalsocietypublishing.org/


Table 2. BIC of the model with the highest posterior probability amongst
all models fitted for each species/year or species richness/year combination,
using the NDVI texture variables or the SMA fractions. A negative difference
in BIC (DBIC) indicates that, for a given species or for species richness, the
best NDVI texture model performed better than the best SMA fraction
model. Differences larger than 4 indicate that a method was substantially
better than the other.a,b

species year

best NDVI
texture
model
BIC

best SMA
fraction
model BIC DBIC

ATFL 1996 481 493 (n.s.) 212

1997 395 405 (n.s.) 210

1998 361 369 (n.s.) 28

BHGR 1996 255 249 6

1997 147 152 25

1998 228 239 211

BTSP 1996 542 542 0

1997 428 431 23

1998 425 431 26

CACW 1996 470 474 24

1997 362 365 23

1998 341 346 25

COBU 1996 358 359 21

1997 168 177 29

1998 190 201 211

EAME 1996 38 37 1

1997 50 47 3

1998 35 36 21

SCOR 1996 490 500 210

1997 404 409 25

1998 400 410 210

SCQU 1996 38 36 2

1997 41 41 0

1998 21 21 0

SPTO 1996 313 313 0

1997 203 205 22

1998 108 110 22

VERD 1996 43 48 25

1997 35 38 23

1998 35 45 210

richness 1996 62 74 212

1997 35 72 237

1998 51 84 233
aAll models were conducted using the square-root transformed counts, with the
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10 m DEM and averaged it for each plot to account for the effect

of elevation on the spatial distribution of birds in the statistical

models of bird abundance or occurrence.

( f ) Statistical analyses
We conducted the statistical analyses using only 38 of the 42

study plots because four plots were partially covered by clouds

in the satellite image. We used regression models to (i) evaluate

whether NDVI texture and SMA fractions significantly explained

abundance, occurrences and species richness, (ii) identify

whether NDVI texture or SMA better explained species abun-

dance or occurrence and species richness, and (iii) evaluate

which texture and SMA variables have the highest explanatory

power. First, we fitted each possible combination of (i) texture

measures and (ii) SMA fractions to explain the abundance or

occurrence of birds and bird species richness. For seven of

the 10 species and for species richness (i.e. excluding eastern

meadowlark, scaled quail and verdin for which we only used

presence–absence data), we square-root transformed the counts,

and used a linear model with Gaussian error structures. While

Poisson models are also appropriate for modelling counts, the

statistical modelling approach that we used required valid likeli-

hoods to perform Bayesian model averaging (explained below).

The likelihoods obtained using mixed-effect Poisson models

would not have been valid to conduct such an analysis, which is

why we used transformed data and Gaussian models as opposed

to Poisson. Because of the repeated visits of each plot during a

breeding season, we fitted mixed-effect models using plot as a

random effect and included Julian day within a given year in the

list of potential covariates in the models. In addition, we tested

for temporal autocorrelation by comparing models fitted with or

without an autoregressive correlation structure of order 1 (AR1)

using a likelihood-ratio test. We thus included an AR1 term when

it significantly improved a model. We proceeded as such for the

seven species modelled with a Gaussian error structure. For eastern

meadowlark, scaled quail and verdin, we analysed only presence–

absence logistic regressions, i.e. generalized linear mixed effects

model with a binomial error structure, because of the high

number of plots in which either one or zero birds were detected.

For each fitted model, we evaluated the overall significance

using a likelihood-ratio test comparing its fit to the null model

(i.e. intercept only) obtained using the same random effect (when

applicable) and error structure. We also extracted the Bayesian

information criterion (BIC) for all models fitted with image texture

and all models fitted with SMA fractions. The BIC values were used

to calculate the coefficient posterior probabilities of all the variables,

and to obtain model averaged coefficients using Bayesian model

averaging (BMA, e.g. [47]). The posterior probabilities represent,

for a given variable, the probability of the coefficient being different

from zero. The higher the probability, the higher our confidence is

that a variable contributes in explaining the pattern. For more gen-

eral details on the approach see Raftery [48] and Link & Barker [49].

For each species, and for species richness, we calculated the differ-

ence between the BIC of the NDVI texture models, and that of the

SMA fraction models (DBIC; table 2). Large absolute values of DBIC

indicate that one approach performed substantially better than the

other, whereas DBIC values close to zero (approx. 2 or smaller) indi-

cate that the two methods performed equally well. All statistical

analyses were conducted in R [50]. We fitted mixed-effect models

in the nlme packages [51].

exception of EAME, SCQU and VERD for which presence – absence data were used.
bModels that were not significantly better than the null model are indicated
by (n.s.).
3. Results
(a) Measures of avian habitat components
The texture measures calculated based on NDVI values varied

greatly across the study area (figure 2a) and among the main
habitat types. We found the highest standard deviation in the

pinyon–juniper, moderate in the shrublands and lowest

values in grasslands. Inversely, pinyon–juniper habitat had

http://rstb.royalsocietypublishing.org/
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Figure 2. Comparison of NDVI texture (a) versus the SMA green vegetation fraction image from May 1997 (b). Light areas represent higher values of either texture
(standard deviation of NDVI) or SMA vegetation fractions.
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the lowest angular second moment and correlation (data not

shown). On the other hand, plots located in the two grassland

habitats had the highest angular second moment and correl-

ation and the lowest contrast. Texture measures of the four

shrubland habitats were intermediate between pinyon–juniper

and the grasslands.

The SMA of the May image had a mean overall RMSE of

2.25% reflectance (figure 2b). Red and grey soils were very

well identified, with red soils dominating mesquite sand

dunes, and grey soils dominating the remainder of the study

area. Green vegetation fraction, averaged across a given

habitat type for the May image, was the highest in the

pinyon–juniper habitat, low in the shrub habitats and close

to zero in the grasslands. The fractions of dry vegetation

were similar in all habitat types, but slightly lower in

mesquite- and whitethorn-dominated shrublands.
(b) Modelling avian biodiversity using among-pixel
heterogeneity and within-pixel composition

All models fitted using NDVI texture measures alone had

significant relationships to both species richness and the

abundance or occurrence of birds ( p , 0.027) (table 2).

SMA fractions also significantly explained species richness,

and the abundance or occurrence of all species for all three

years, with the exception of ash-throated flycatcher. For all

models, we tested for and found no significant spatial auto-

correlation of the residuals. The success of the models is

thus not likely to be caused by spatial autocorrelation.

The large absolute value of DBIC indicates that NDVI tex-

ture clearly outperformed SMA fractions for modelling bird

species richness (table 2). However, the difference between

the two types of measures was not as marked in the models

of species abundance or occurrence. Still, NDVI texture

models consistently performed better than SMA fraction

models across all three years for ash-throated flycatcher,

cactus wren, Scott’s oriole and verdin. For black-throated spar-

row and common bushtit, NDVI texture models performed

better than SMA fraction models for two out of the three

years. Both approaches produced similar results for eastern

meadowlark, scaled quail and spotted towhee.

Among the three measures of NDVI texture, angular

second moment explained overall bird species richness best
(figure 3a). There were more species in areas of high hetero-

geneity, indicated by low angular second moment values.

The green SMA vegetation fraction had the highest posterior

probabilities in the bird species richness models, along with

elevation (figure 3b), with more species in areas with more

green vegetation.

Angular second moment and standard deviation of NDVI

were the two measures with the highest posterior probabilities

for most species (figure 4a). Coefficient estimates that were

significantly different than zero indicated that black-headed

grosbeak, common bushtit and spotted towhee were more

abundant in highly heterogeneous areas (high standard devi-

ation and low angular second moment of NDVI values),

whereas cactus wren was more abundant in areas of low

heterogeneity. For species for which both the angular second

moment and the standard deviation of NDVI were significant,

such as for the ash-throated flycatcher and Scott’s oriole,

the signs of the coefficient estimates were the same, contrary

to our expectation. Angular second moment and stan-

dard deviation are highly negatively correlated (Pearson

correlation ¼ 20.85; results not shown), indicating a potential

interaction which might have affected the sign of their relation-

ship in the multivariate model. Univariate models of

ash-throated flycatcher abundance (results not shown) indi-

cated that this species was more abundant in areas of high

heterogeneity in green vegetation, while these models were

not significant for the Scott’s oriole.

Among the SMA fractions that we considered, the

amount of green vegetation best explained the abundance

or occurrence of most species (figure 4b). The black-headed

grosbeak, common bushtit and spotted towhee were more

abundant in areas of elevated green vegetation, whereas

cactus wren, eastern meadowlark and Scott’s oriole were

associated with areas of low green vegetation.

The spatial patterns of abundance of the black-throated

sparrow were better explained by elevation than by any NDVI

texture measures or SMA fractions—this species was more

abundant at low elevation, where the shrublands are located.
4. Discussion
Habitat models based on remotely sensed data can provide

valuable information for guiding conservation strategies

http://rstb.royalsocietypublishing.org/
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and the management of biodiversity. However, models built

using satellite image classifications overlook within-habitat

heterogeneity, which may be an important component of

wildlife habitats. The challenge is to develop approaches to

monitor species distributions over broad spatial extents

based on unclassified imagery while capturing habitat features

that are ecologically meaningful. Our goal was to evaluate the

use of satellite-derived measures of habitat heterogeneity

and habitat composition for avian habitat models in the

Chihuahuan Desert of New Mexico. We hypothesized that

among-pixel measures of habitat heterogeneity would best

explain bird species richness, whereas within-pixel measures

of habitat composition would best explain the abundance

and occurrence of individual bird species. Our results

showed that in our semi-arid study area, habitat heterogeneity

was indeed a strong driver of species richness, and also of

individual species abundance and patterns of occurrence.

Both measures of among-pixel heterogeneity (NDVI

image texture) and within-pixel composition (SMA fractions)

explained a substantial proportion of the variability in bird

abundance and species richness, except for ash-throated

flycatcher which was not significantly associated with any

SMA fraction. In line with our hypothesis, we found that

bird species richness models based on among-pixel heterogen-

eity were markedly better than those based on measures of

habitat composition. However, in contrast to our hypothesis,

among-pixel heterogeneity measures were also best for model-

ling the abundance of shrub and tree nesters including

ash-throated flycatcher, black-headed grosbeak, common

bushtit and Scott’s oriole. We expected a strong relationship

between measures of heterogeneity derived from NDVI texture

and bird species richness because theory predicts higher bio-

diversity in areas with higher heterogeneity of resources

[25,52]. Indeed, we found that heterogeneous areas accommoda-

ted more species than homogeneous areas of similar size,

presumably because of a larger variety of niches in these areas.

We also expected that measures of habitat composition

derived from SMA fractions would outperform measures of

heterogeneity in explaining species abundance and occurrence

because they capture subtleties in habitat composition within a

given 30 m pixel. This expectation was not confirmed by our

results; to the contrary, measures of heterogeneity were equal
to—if not better than—measures of composition, in explaining

the spatial distribution of most species.

Patterns of abundance of ground nesters and ground fora-

gers were equally well explained by measures of heterogeneity

or composition. However, measures of habitat heterogeneity

performed best for explaining spatial patterns of tree and

shrub nesters. NDVI texture appeared to have characterized

the unique vertical structure of shrublands and woodlands in

this ecosystem better than the SMA fractions.

Given that within-pixel measures derived from SMA

fractions seldom outperformed measures of heterogeneity

derived from NDVI texture in either richness or abundance or

occurrence models, and given that NDVI texture is technically

easier to calculate than SMA, we propose that NDVI texture

is a particularly well suited measure for modelling bird abun-

dances and bird species richness in semi-arid ecosystems.

However, we note limitations of the NDVI for semi-arid ecosys-

tems. NDVI is sensitive to soil background [53], and may

produce values different from zero even for areas covered by

pure rocks and soils. SMA green vegetation fractions better

reflect ‘true’ areas of green biomass (i.e. highly productive

habitats) than NDVI [29]. Interestingly though, SMA green

vegetation fractions in our grasslands were close to zero, but

NDVI still exhibited some variability which was quantified

by image texture. Moreover, texture of SMA green vegetation

fraction explained bird abundance, occurrence and species rich-

ness less well than texture of NDVI (results not shown). There is

thus great potential for the use of image texture in the field of

biodiversity conservation, where image texture can be used to

predict the current state of biodiversity over wide areas, and

assess changes in biodiversity through space and time.

Among the image texture variables, angular second

moment, which measures homogeneity in pixel values [16],

was the best predictor of species richness. For many species,

it was also the best predictor of abundance. The relation-

ship between angular second moment and avian patterns

confirmed our expectations. Shrub and tree nesting species

accordingly had a negative relationship with angular

second moment. The shrublands and woodlands on which

they depend during the nesting season are typically associ-

ated with more heterogeneous vegetation patterns in our

study area as opposed to grasslands.
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Among the different SMA fractions, green vegetation was

by far the best predictor of bird species richness, and of the

abundance of most species. As expected, species richness

was higher in areas with higher green vegetation. The

abundance of black-headed grosbeak, spotted towhee and

common bushtit was consistently higher across the three

years of data in areas with a higher amount of green veg-

etation. In our study site, these species nest either in patches

of dense vegetation relative to available vegetation (grosbeak,

towhee), or in mature pinyon or juniper trees, which would

exhibit a large proportion of greenness in a given pixel. Eastern

meadowlark, on the other hand, occurred in all three years in

areas of lower green vegetation, typically grasslands.
The association of bird species richness and species abun-

dance with measures of texture confirmed the value of

remotely sensed data derived from continuous, unclassified

imagery for species distribution modelling [9]. We acknow-

ledge, however, that more research is necessary to understand

the full potential, and limitations, of raw imagery for habitat

modelling. The dependence of these indices on the area cov-

ered by the satellite sensor, or scene, needs to be explored.

Phenology, for example, impacts some of the image texture

measures more than others [54,55]. Similarly, the degree to

which image pre-processing (e.g. topographic and radiometric

correction) affects image texture is largely unknown. SMA has

the benefit though that it is more consistent across an image,

http://rstb.royalsocietypublishing.org/
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and potentially several images, than other measures such as

NDVI [29]. And while it was outside the goals of our study,

further study to understand the differences in predictive

power between SMA-based texture and NDVI texture, and

SMA values versus NDVI values, are potentially fruitful next

steps that may yield further refinements in characterizing

habitat for biodiversity.

Ultimately, habitat models need to be built with sound eco-

logical variables in order to be useful for species conservation

and management. Our results demonstrated the value of a

simple vegetation index, from which we derived image texture,

for characterizing bird habitat in the Chihuahuan Desert. The

approach we used is applicable to other systems as well. In Argen-

tina, for example, we successfully applied a similar methodology

to model the spatial distribution of the greater rheas [23].

Using relationships derived at the plot level, NDVI texture

calculated across the whole study area could predict the value

of different areas for given species or guilds, or, using species

richness, for the entire avian community. The integration of

measures of habitat heterogeneity derived from unclassified

imagery into habitat models can be applied to other ecosystems

as well. Based on our result, we suggest that such an approach
will perform particularly well in ecosystems where habitat het-

erogeneity is an important component of wildlife habitat, and

where heterogeneity occurs at a scale that can be detected with

satellite imagery.
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