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Abstract. Humans influence the frequency and spatial pattern of fire and contribute to altered fire regimes, but fuel
loading is often the only factor considered when planning management activities to reduce fire hazard. Understanding
both the human and biophysical landscape characteristics that explain how fire patterns vary should help to identify where
fire is most likely to threaten values at risk. We used human and biophysical explanatory variables to model and map the
spatial patterns of both fire ignitions and fire frequency in the Santa Monica Mountains, a human-dominated southern
California landscape. Most fires in the study area are caused by humans, and our results showed that fire ignition patterns
were strongly influenced by human variables. In particular, ignitions were most likely to occur close to roads, trails, and
housing development but were also related to vegetation type. In contrast, biophysical variables related to climate and
terrain (January temperature, transformed aspect, elevation, and slope) explained most of the variation in fire frequency.
Although most ignitions occur close to human infrastructure, fires were more likely to spread when located farther from
urban development. How far fires spread was ultimately related to biophysical variables, and the largest fires in southern
California occurred as a function of wind speed, topography, and vegetation type. Overlaying predictive maps of fire
ignitions and fire frequency may be useful for identifying high-risk areas that can be targeted for fire management actions.

Additional keywords: fire frequency, fire ignitions, generalised linear model, predictive mapping, wildland–urban
interface.

Introduction

Altered fire regimes threaten ecosystem structure and function,
create hazards for people, and increase fire suppression costs
(Calkin et al. 2005; Stephens 2005; Steele et al. 2006). In the
United States, fire regimes have been altered both through fuel
accumulation due to fire suppression and from the dramatic
increase in the number of human-caused ignitions in fire-prone
areas, particularly the wildland–urban interface (WUI) (Keeley
and Fotheringham 2003), which is the contact zone where human
development abuts and intermingles with undeveloped vegeta-
tion (Radeloff et al. 2005). The convergence of these trends has
resulted in substantial federal funding, and social and political
pressure, to decrease fire hazard by reducing fuel loads (USDA
and USDI 2001; NPS 2005).

Although fuel buildup creates conditions favourable for
intense, large-scale fires (Pyne et al. 1996; Allen et al. 2002),
human population growth contributes to increased ignitions and
fire frequency (Keeley et al. 1999; Rundel and King 2001;
Radeloff et al. 2005; Syphard et al. 2007a). Information on fuel
loading is often the only factor considered when planning man-
agement activities to reduce fire hazard (Dickson et al. 2006).

In some forests, widespread fuel reduction methods, such as
landscape-scale prescribed fire, can be beneficial for restor-
ing natural disturbance regimes (Miller and Urban 2000;
Scheller et al. 2005). However, in regions where human igni-
tions have increased fire frequency beyond its natural range of
variability, widespread prescribed fire can be ecologically dam-
aging to native plant communities (Keeley and Fotheringham
2003).

Also, management strategies based solely on fuel as a risk
factor can become needlessly expensive if fuel treatments are
placed in locations where fire hazard to humans is of little con-
cern (G. Aplet and B. Wilmer, http://www.tws.org/OurIssues/
Wildfire/CFPZ/index.cfm, accessed 11 August 2008). Consid-
ering that fire regimes vary among vegetation types and that
humans impact fire regimes in different ways, there is grow-
ing awareness that fire management should be adapted to both
the human and ecological landscape characteristics that vary
from region to region (Odion et al. 2004; Halsey 2005; Badia-
Perpinya and Pallares-Barbera 2006). With better understanding
of regional context, fuels treatments can be prioritised and strate-
gically placed in areas where fire is most likely to threaten values

© IAWF 2008 10.1071/WF07087 1049-8001/08/050602



Predicting spatial patterns of fire Int. J. Wildland Fire 603

Municipality

Santa Monica

Los Angeles

Santa Monica Mountains
National Recreation Area

UnincorporatedKilometresN 0 5 10 20

Thousand Oaks

Camarillo

Simi Valley

Fig. 1. The Santa Monica Mountains National Recreation Area, California, USA.

at risk or where placement will minimise ecological impacts
(Halsey 2005; Dickson et al. 2006).

To identify the best locations for strategically placed fuels
treatments, it is first necessary to understand how and why fire
patterns vary across landscapes (DellaSala et al. 2004). Fire
behaviour is largely a physical phenomenon, as illustrated by the
fire environment triangle that places fire as a function of weather,
fuels, and topography (Countryman 1972). Therefore, many fire
risk and probability assessments have focussed on biophysical
and climate variables (e.g. Bradstock et al. 1998; Fried et al.
1999; Diaz-Avalos et al. 2001; Rollins et al. 2002; Preisler et al.
2004), and several models and methods have been used to pre-
dict fire behaviour within different fuels types and from weather
condition inputs (Burgan and Rothermel 1984; Forestry Canada
Fire Danger Group 1992). Models that predict the probability of
lightning ignitions have also been useful for identifying places
where fires are likely to occur (Larjavaara et al. 2005; Wotton
and Martell 2005). Although these biophysical approaches are
critical for understanding fire patterns and behaviour, it is also
important to understand the human influence on the frequency
and spatial pattern of fire to help identify where fire risk is high-
est on a landscape, especially in places where fire regimes have
been altered (Pyne 2001; DellaSala et al. 2004; Haight et al.
2004).

Human effects on the spatial distribution of fire have been
accounted for in recent efforts to map or model fire risk. Most of
these studies focussed on fire ignition points (i.e. the spatial
location of fire’s origin) (e.g. Pew and Larsen 2001; Badia-
Perpinya and Pallares-Barbera 2006; Dickson et al. 2006; Yang
et al. 2007), but fire risk probability has also been mapped using
fire occurrence data (i.e. any location that burned regardless of
point of origin) (e.g. Chou 1992; Chou et al. 1993). One prob-
lem is that fire patterns depend on both ignition locations and

fire spread, but these are not necessarily determined by the same
factors (Dickson et al. 2006; Syphard et al. 2007a, 2007b). For
example, ignitions may or may not occur in fuel types that are
highly flammable.

Our objective for the present research was to use a combina-
tion of biophysical and human explanatory variables to produce
spatially explicit statistical models and maps predicting pat-
terns of fire ignitions and fire frequency in a human-dominated
southern California landscape. Most fires in the region result
from human ignition sources (Keeley 1982; NPS 2005), so we
expected proximity to human infrastructure to most strongly
influence fire ignition patterns because the human activities that
are likely to lead to ignitions are concentrated in or near these
locations. The rate of spread for the largest fires in southern
California is largely determined by wind speed, topography, and
vegetation type (Keeley 2000). Therefore, we also expected the
distribution of biophysical variables to be important predictors
of fire frequency.

Methods
Study area
The Santa Monica Mountains National Recreation Area (here-
after referred to as the Santa Monica Mountains) encompasses
∼60 000 ha of Mediterranean-type habitat, characterised by
steep, coastal mountains that form the southernmost range in
the Transverse Ranges of southern California (Fig. 1). Slightly
more than half of the land in the mountains is in public own-
ership (including the National Park Service), and much of the
privately owned land remains undeveloped. However, the Santa
Monica Mountains include a substantial amount of WUI and
have been experiencing increased development pressure due to
their proximity to the Los Angeles metropolitan region, which is
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Table 1. Variables analysed in the regression models explaining fire ignitions and fire frequency in the Santa Monica Mountains, CA
WUI, wildland–urban interface

Variable Resolution Source Description or range

Dependent variables
Ignition points Point National Park Service n = 126, V = 67, from 1981 to 2003
Fire frequency 10 m National Park Service fire perimeters 0 to 9, from 1925 to 2003

Explanatory variables
Human
Distance to development 10 m Syphard et al. 2005 Mean Euclidean distance
Level of development 500-m buffer Syphard et al. 2005 None (0); low (0.01–0.33); intermediate (0.34–0.66);

high (0.67–1.0)
Distance to WUI 10 m Radeloff et al. 2005 Mean Euclidean distance
Level of WUI 500-m buffer Radeloff et al. 2005 None (0); low (0.01–0.33); intermediate (0.34–0.66);

high (0.67–1.0)
Distance to roads 10 m US Census Bureau TIGER/Line files Mean Euclidean distance
Distance to trails 10 m National Park Service Mean Euclidean distance

Biophysical
January temperature 1 km J. Michaelson (Franklin 1998) Interpolated by kriging
Elevation 30 m USGS Digital Elevation Model (DEM)
Slope gradient 30 m Derived from DEM
South-westness 30 m Derived from DEM SW = (con(aspect(<dem>) == −12, 201,(cos(((aspect(<dem>)

− 255) div deg) + 1) * 100)))
Vegetation type 30 m J. Franklin, J. J. Swenson and D. Shaari, Coastal sage scrub; northern mixed chaparral; chamise

pers. comm., 1997 chaparral; non-native grass; oak woodland; riparian;
other (less flammable vegetation such as salt
marshes, agriculture, or urban)

home to more than 17 million people (Rundel and King 2001).
The region that includes the study area is biologically rich, with
∼1000 plant species, 50 mammal species, 400 bird species, and
35 species of reptiles and amphibians (NPS 2005). The region
is also home to more than 20 federal or state-listed threatened
or endangered animals and plants and another 46 animal and
11 plant species listed as species of concern (NPS 2002). The
primary vegetation types are chaparral (e.g. Ceanothus spp. or
Adenostoma fasciculatum, ∼60%); coastal sage scrub vegetation
(e.g. Salvia spp. or Artemisia californica, ∼25%); exotic grass
(∼5%); oak woodland (∼5%); and riparian vegetation (∼5%).

Fire is a natural process in southern California Mediterranean-
type ecosystems, and many of the region’s native species are
resilient to a range of fire frequencies (Zedler 1995). However,
explosive population growth in the region has increased ignitions
to the point that fire frequency exceeds its natural range of vari-
ability in many areas (Keeley et al. 1999). Repeated fires in short
succession can also exceed the resilience of native species, and
some shrublands have type-converted to exotic annual grasses
under high fire frequencies (Zedler et al. 1983; Haidinger and
Keeley 1993; Jacobsen et al. 2007). In the last 75 years, humans
have been responsible for 98% of the fires in the Santa Monica
Mountains, and some areas have burned up to 10 times (NPS
2005). Chaparral-dominated shrublands are typified by high-
intensity, stand-replacing fires that are difficult or impossible to
suppress under severe, high-wind weather conditions (Keeley
2000). Therefore, considering that fire frequency has increased
despite aggressive fire suppression efforts, the most recent fire
management plan in the Santa Monica Mountains recommends
against using prescribed fire to reduce fuel across the entire

landscape (NPS 2005). Instead, the National Park Service (NPS)
recommends strategically positioned fuels treatment in areas
with high fire hazard near the WUI.

Data description
Dependent variables – fire ignitions and frequency
The ignition data included 126 coordinate points acquired

from the NPS fire records from 1981 to 2003 (Table 1, Fig. 2).
Ignition locations were entered into the Shared Applications
Computer System (SACS) at the National Interagency Fire Cen-
ter (NIFC) in Boise, ID, and then converted into a Geographic
Information System (GIS) database. The median accuracy of the
ignition locations was 100 m.

Fire perimeter polygons originally reported by NPS and
County Fire Departments were compiled by the California
Department of Forestry–Fire and ResourceAssessment Program
(CDF-FRAP) into a GIS database (http://frap.cdf.ca.gov/data/
frapgisdata/select.asp, accessed 8 August 2008). Although this
database generally provides the most complete digital record of
fire perimeters in California, the fire record was incomplete, with
a minimum mapping unit of 4.04 ha (10 acres). Therefore, the
NPS staff at the Santa Monica Mountains updated this database
to include additional smaller fires (less than 1 ha), which resulted
in a fire frequency map that delineated overlapping fire peri-
meter boundaries from 1925 to 2003. Within this database, more
than 75% of the fires occurred within the last 20 years. Although
the average area burned also increased over time, the fire size
distribution has remained generally stable, with a slight decline
(Table 1, Fig. 2).
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Fig. 2. Map showing proximity of ignition points (1981–2003) to roads and development in the Santa Monica Mountains, CA.

Using these boundaries, we created a continuous grid sur-
face reflecting the number of fires that occurred during those
78 years for each cell. From this fire frequency grid, we randomly
selected 1000 points to relate number of fires to the explana-
tory variables. We selected 1000 data points as our sample size
because we wanted to use as many points as possible given the
practical limitations of our statistical models. To ensure that the
sample size was large enough to adequately represent the study
area, we performed χ2 goodness of fit tests to compare the true
distribution of fire frequency (14 million points) with the dis-
tribution of fire frequency in our sample size of 1000, and we
found no significant difference between them.

Explanatory variables – human
Human-caused ignitions frequently occur along transporta-

tion corridors and other areas where human activity is concen-
trated (Keeley and Fotheringham 2003; Stephens 2005). The
ignition data points from the Santa Monica Mountains also
appeared to be close to roads and development on a map (Fig. 2).
Therefore, our explanatory human variables included distance
to development, roads, trails, and WUI (Table 1, Fig. 2). We
included trails because they provide a means of human access
to otherwise undeveloped areas in the parks and protected areas.
We created the map of development through airphoto inter-
pretation and onscreen digitising of development evident on
1 : 12 000 at 1-m resolution digital orthorectified quarter quad-
rangles (DOQQs) from the US Geological Survey (USGS) for
2000. ‘Development’ included any part of the landscape with
houses or other buildings, in addition to golf courses. We used
2000 US Topologically Integrated Geographic Encoding and
Referencing system TIGER/Line files (US Census 2000) for our
road data, and the NPS provided the GIS map of trails.

The interactions between human activities and natural
dynamics tend to be spatially concentrated at the WUI, which

has received national attention because housing developments
and human lives are vulnerable to fire in these locations
and because human ignitions are believed to be most com-
mon there (Rundel and King 2001; USDA and USDI 2001).
Our WUI map was created as part of a nationwide mapping
project that produced fine-scale maps of the conterminous
United States (Radeloff et al. 2005; http://www.silvis.forest.
wisc.edu/silvis.asp, accessed 8 August 2008). These data were
created based on the definition of WUI published in the Fed-
eral Register (USDA and USDI 2001) using housing den-
sity data obtained from the US Census and land cover data
obtained from the USGS National Land Cover Dataset (at 30-m
resolution).

Explanatory variables – biophysical
From a biophysical perspective, the expression of fire on a

landscape is a function of its fire environment, including the
climate, terrain, and fuels in a region (Pyne et al. 1996). There-
fore, spatially explicit models that simulate fire behaviour use
input measurements of elevation, slope, aspect, weather, and veg-
etation (Anderson 1982; Andrews et al. 2005). Likewise, we
selected climate and terrain-derived variables, as well as vegeta-
tion type, as potential biophysical explanatory variables (Table 1,
Fig. 2). The biophysical factors that influence fire ignitions and
fire spread may produce multiple direct and indirect effects on
the fire regime (Whelan 1995). For example, slope angle affects
soil moisture and development, which in turn affects vegetation
distribution and composition, and thus fuel characteristics and
flammability (Franklin 1995).At the same time, slope produces a
direct physical effect on active fire fronts because the flames are
closer to the ground, and fires typically burn faster in an upslope
direction (Whelan 1995). We expected that the spatial variability
and distribution of these influential biophysical variables across
the landscape would provide substantial explanatory power to
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predict and map where fire ignitions and fire frequency were
likely to occur.

Our terrain variables included elevation, percentage slope,
and transformed slope aspect (‘south-westness’). These topo-
graphic factors explain variation in local climate, provide natural
firebreaks, and indirectly influence factors such as fuel mois-
ture, vegetation distribution, and relative humidity (Whelan
1995). We scaled aspect to an index of ‘south-westness’ using
a cosine transformation because the index better distinguished
xeric exposures (high index values) from mesic exposures (low
index values) (Franklin et al. 2000).

Because we were not simulating annual fire behaviour or
weather, we used spatially interpolated climate variables (mean
annual precipitation, average January minimum temperature and
average July maximum temperature), which were more appro-
priate for the broad spatial and temporal scale of our study.
Moisture and temperature affect vegetation productivity and rate
of fuel accumulation as well as soil moisture, rate of combustion,
and rate of spread (Whelan 1995). We evaluated both January
minimum and July maximum temperatures because these rep-
resented upper and lower limits, both of which would therefore
maximise the distribution of variability in temperature gradients
and plant species distributions across the landscape (Franklin
1998). Annual precipitation had high correlation with other vari-
ables and was removed from the analysis. The temperature data
layers were developed as a 1-km2 gridded surface that was
interpolated from climate station data, elevation, and a digital
elevation model. The surfaces were interpolated using universal
and ordinary kriging (Franklin 1998).

Several sophisticated systems have been developed to create
fuels models to use in fire behaviour prediction (e.g. Forestry
Canada Fire Danger Group 1992). However, only three of the
thirteen standard fuel models used in the United States (by the
National Forest Fire Laboratory) are considered applicable to
chaparral shrublands (Anderson 1982). In southern California
shrublands, the fire regime is strongly differentiated according
to broadly defined, structurally similar vegetation types, and fire
tends to behave uniformly within those types (Wells et al. 2004).
Therefore, instead of using fuel types as predictor variables,
we used a generalised map of vegetation types, created through
a classification of 30-m Landsat Thematic Mapper (TM) data
(J. Franklin et al., pers. comm., 1997).

The fact that post-fire age (and thus fuel buildup) is a less
critical factor in California chaparral than in some other vegeta-
tion types is an important additional consideration. Fire spread
in North American coniferous forest areas is strongly affected
by post-fire age, with younger stands having lower fuel loads
and lower rates of fire spread. In contrast, post-fire age has rela-
tively little effect on the spread of fires in California chaparral,
particularly during high wind conditions (Moritz 2003). Owing
to rapid post-fire fuel accumulation, chaparral and coastal sage
shrublands can burn at high intensities at young ages (Radtke
et al. 1982). Therefore, we assumed that post-fire age would
not strongly influence temporal patterns of fire frequency in the
Santa Monica Mountains as strongly as it would in other regions,
and therefore we did not include it as a variable in our analysis.
Some studies in forested regions have considered post-fire age
and temporal autocorrelation when explaining fire frequency
(e.g. Reed et al. 1998; Preisler et al. 2004).

Data manipulation
Because we expected fire to occur close to human infrastruc-
ture, we created continuous surfaces reflecting mean Euclidean
distances to all of the human explanatory variables, and we used
these distances in our models. To obtain better precision in our
Euclidean distance calculations, we resampled all of our grids
to a 10-m resolution and used those for overlay and extraction
of data to relate the explanatory variables to fire ignitions and
frequency. Because fire frequency and area burned also tend to
be highest at intermediate levels of human activity and are a
function of the spatial pattern of development and fuels (Keeley
2005; Syphard et al. 2007a), we created 500-m buffers around
all point locations and calculated the proportion of development
and WUI within those areas (total extent = 78 ha). We chose this
buffer size because the dense nature of chaparral makes it diffi-
cult for humans to traverse far into the vegetation (Halsey 2005);
therefore, we assumed that human influence would not exceed
500 m. The proportions were then classified into four arbitrary
categories: none (0), low (0.01–0.33), intermediate (0.34–0.66),
and high (0.67–1.0) (Table 1).We used the SpatialAnalyst Exten-
sion of ArcGIS, in addition to ArcInfo Workstation, for our GIS
analysis and data processing.

Modelling approaches
Fire ignitions
To predict the estimated probability, P, of a cell, i, in the

study area experiencing an ignition, we developed a multiple
logistic regression model. For logistic regression, if we let Pi
be the probability of an ignition in cell i, and xji be the value of
the jth covariate in cell i, the logistic regression model is:

Pi = exp(β0 + β1x1i + β2x2i + . . . + βnxni)/

(1 + exp(β0 + β1x1i + β2x2i + . . . + βnxni))

where β0 is a constant and βn are regression coefficients for the
human and biophysical explanatory variables, xni. To determine
whether the explanatory variables affected the ignition locations
differently than what would be expected by chance, we also
generated a random sample of 700 control points in the study
area. Therefore, our model predicted the probability that igni-
tions would occur disproportionately as a function of multiple
landscape characteristics compared with 700 randomly selected
available locations within the study area. We chose 700 control
points because we wanted to sample enough points to adequately
capture the variability in the predictors across the entire land-
scape without substantially decreasing the ratio of ones to zeros.
Our ratio (1 : 5.5) was similar to that of Brillinger et al. (2003)
(1 : 4).

We first developed univariate logistic regression models for
all of the explanatory variables because we wanted to evalu-
ate their independent influence on the response variables and
to determine the values and direction (i.e. positive or nega-
tive) of the coefficients independently of their interactions with
other variables. The P values for these models were Bonferroni-
corrected to account for the large number of tests performed.
Next, we developed a multiple logistic regression model using
the R statistical package (R Development Core Team 2005).
We selected the final model through a backwards elimina-
tion process using the Akaike Information Criterion (AIC)
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(Venables and Ripley 1999). Significance of effects was deter-
mined using the likelihood ratio test.

To ensure that there were no collinearity problems, we
implemented a collinearity diagnostic procedure, the variance
inflation factor (VIF), to ensure low correlation (VIF lower
than 10) between the variables in the multiple regression model
(Belsey et al. 1980). Because July maximum temperature was
correlated with other variables, we removed this variable and
refitted the multiple regression models. We also plotted semi-
variograms of the models’ deviance residuals to ensure there
was no evidence of spatial autocorrelation. For all of our mod-
els, we evaluated the variables for non-linear relationships with
the response through graphical checks and by fitting the models
with quadratic terms included and determining whether those
terms were significant.

To evaluate the performance of the multiple logistic regres-
sion model, we used a leave-one-out cross-validation approach
(Lachenbruch 1967; Bautista et al. 1999). The procedure was to
drop a single data point (i.e. an ignition), fit the model without it,
and then calculate the predicted probability of an ignition at that
point. This was repeated for every point. We then performed a
receiver operating characteristic (ROC) analysis to determine
the optimal probability cutoff for predicting that an ignition
would occur. Based on this prediction rule, we were able to
compare the yes–no ignition prediction with whether an igni-
tion actually occurred, and estimate the sensitivity (fraction of
true positive), specificity (fraction of false positive), and overall
predictive ability of the fitted model (Fielding and Bell 1997).

The overall area under the curve (AUC) reflected the overall
probability that, when we drew one ignition and one non-ignition
point at random, our prediction rule correctly identified them.
AUC values vary from 0.5 (no apparent accuracy) to 1.0 (per-
fect accuracy), but the interpretation of what is considered high
or low predictive ability is subjective and can vary accord-
ing to sample size, with lower sample sizes resulting in lower
evaluations of model accuracy (Hernandez et al. 2006).

Fire frequency
Instead of using logistic regression, we used Poisson univariate
and multiple regressions to develop the fire frequency models
because they were appropriate for count data (Agresti 1996).
For Poisson regression, if Ni is the number of fires observed in
cell i, and xji, β0 and βn are as above, the model is:

Ni = exp(β0 + β1x1i + β2x2i + . . . + βnxni)

As with the ignition multiple regression models, we devel-
oped univariate regression models for all of the explanatory
variables because we wanted to evaluate their independent influ-
ence on the response variable, and adjusted the P values using the
Bonferroni correction. For our multiple Poisson regression anal-
ysis, we again used a backwards stepwise elimination procedure
based on the AIC to select the final model.

Although no spatial autocorrelation was present in the igni-
tion data, we refitted the Poisson multiple regression model
with allowance for a spatial exponential correlation between the
deviance residuals owing to significant spatial autocorrelation in
the fire frequency data (Littell et al. 1996). We fitted this model
using the GLIMMIX macro of SAS Software (PROC GLIMMIX
2005).

To evaluate the performance of our multiple Poisson regres-
sion model, we randomly selected 300 independent observations
in the study area.To determine how closely the observed and pre-
dicted values agreed in relative terms, we calculated Pearson’s
correlation coefficient. We also calculated the root mean square
error (RMSE) and average error, which illustrate the discrep-
ancy between the observed and predicted values (Potts and Elith
2006).

Predictive mapping
To convert our models into predictive map surfaces, we applied
the formulae from the multiple Poisson and multiple logistic
regression models to the entire study area using the predicted
coefficients and the GIS map layers of the significant explana-
tory variables. Because logistic regression uses a prespecified
number of control points, the intercept for the logistic regression
is meaningless. However, we were able to adjust the intercept,
and thereby map meaningful predicted probabilities, by using
the ratio of control to experimental points (Preisler et al. 2004).
We used the formulae from the Poisson model to predict and
map fire frequency.

Owing to the difference in scales of fire ignition and fire
frequency maps (probability of ignition v. predicted number of
fires), we reclassified both maps into five equal-interval cat-
egories using the GIS and then summed these derived maps to
generate a new map.This combined map was beneficial for iden-
tifying areas where ignitions and fire frequency were either both
high or both low; however, intermediate values on the combined
map did not differentiate between areas of high ignitions and low
fire frequency and areas of high fire frequency and low ignitions.
Therefore, we created a second map that reflected the differences
in the predicted map surfaces.

Results
Fire ignitions
All of the human variables were significant (P ≤ 0.05) in explain-
ing fire ignitions in the univariate models except for distance to
WUI after the Bonferroni adjustment (Table 2, Fig. 3). Ignitions
were negatively related to all the distance variables and occurred
closer to human infrastructure than the randomly selected points
(Table 2). Although logistic regression coefficients can only be
interpreted with respect to the intercept for categorical variables,
the univariate models did indicate that fewer ignitions occurred
when there was no development within a surrounding 500-m
buffer, and more ignitions occurred with low or high propor-
tions of nearby development. Similarly, fewer ignitions occurred
when there was no WUI in the buffer, and more occurred with
higher proportions of WUI. In addition to the human variables,
the pattern of ignitions was also significantly related to slope
and vegetation type, with ignitions being negatively related to
slope.

When all of the variables were evaluated in the multiple logis-
tic regression analysis, the final model for fire ignitions retained
most of the human variables (distance to development, distance
to roads, distance to trails, and level of WUI) as well as January
minimum temperature and vegetation type (Table 3). The final
model was highly significant at P < 0.0001.
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Table 2. Univariate regression results for all variables explaining fire ignitions and fire frequency in the Santa Monica Mountains, CA
WUI, wildland–urban interface

Explanatory variable Fire ignitions Fire frequency

Coefficient s.e. P value Coefficient s.e. P value

Distance development −0.001201 0.000258 <0.0001 0.000131 0.000043 0.0026
Distance WUI −0.000298 0.000137 0.0183 0.000065 0.000045 0.1513
Distance roads −0.002635 0.000637 <0.0001 0.000097 0.000059 0.1028
Distance trail −0.001785 0.0007 0.0045 −0.00002 0.000073 0.7837
January −0.00012 0.000115 0.2964 0.000194 0.000057 0.0007
South-westness 0.002373 0.001392 0.0869 0.000334 0.00012 0.0055
Slope −0.039957 0.009359 <0.0001 0.001927 0.00092 0.0364
Elevation −0.000414 0.000169 0.0132 0.000079 0.000044 0.0726

Level of development
None (0) −2.3706A 0.2012 0.0002 1.2394 0.3444 <0.0001
Low (0–0.33) 0.9784 0.2349 1.1649 0.3426
Intermediate (0.34–0.66) 0.6127 0.3972 0.9595 0.3338
High (0.67–0.1) 0.9843 0.8158 −0.2587A 0.3604

Level of WUI
None (0) −2.3302A 0.2095 <0.0001 0.07604 0.05809 0.5728
Low (0–0.33) 1.174 0.2704 0.03285 0.04838
Intermediate (0.34–0.66) 0.8506 0.3119 0.01377 0.04237
High (0.67–0.1) 0.4861 0.285 0.8651A 0.08816

Vegetation type
Coastal sage scrub −1.39872A 0.17656 <0.0001 −0.02177 0.6849 0.3812
Northern mixed chaparral −0.99918 0.24968 −0.00314 0.06824
Chamise chaparral 0.01242 0.58624 −0.09035 0.1025
Non-native grass 0.3001 0.3657 −0.05593 0.0823
Other 0.19474 0.30509 −0.099 0.08529
Oak woodland 0.64495 0.46368 −0.1134 0.09551
Riparian 0.41789 0.69965 0.9235A 0.1039

AIntercept of the model; the coefficients of the categorical variables (level of development and WUI, and vegetation type) are relative to the value of the
intercept.

The map surface generated by applying the formula and coef-
ficients of the final model to the original GIS maps showed the
distribution of predicted ignition probabilities across the study
area (Fig. 4). The spatial pattern of those areas predicted as
having the highest likelihood of ignition reflected the influence
of development, WUI, and roads, as seen through their similar
distributions (Fig. 2).

The leave-one-out cross-validation of the final multiple logis-
tic model resulted in an AUC of 0.71. An AUC of 0.71 indicates
that, although our ability to predict is not perfect, our model
performs considerably better than chance, and thus provides use-
ful and novel information about the properties of the locations
where ignitions are likely to occur. Our maximum sensitivity
(true positive fraction) and specificity (false positive) occurred
at a cutoff of 0.16, which yielded sensitivity = 0.685, and
specificity = 0.667 (Fig. 4). In other words, if the model pre-
dicts a probability of ignition of 0.16 or more, we predict an
ignition, otherwise we predict no ignition.

Fire frequency
Unlike the univariate models for fire ignitions, there were more
biophysical variables than human variables that were significant
(P ≤ 0.05) in explaining fire frequency (Table 2, Fig. 3). Specifi-
cally, January minimum temperature, south-westness, slope, and

elevation all had a positive influence on fire frequency. How-
ever, elevation, slope, and south-westness were not considered
significant with the Bonferroni adjustment. Whereas distance to
development negatively influenced the likelihood of ignition, it
had a significant positive influence on fire frequency, so that fires
were more likely to burn farther away from development. Fire
frequency was also significantly related to level of development,
but the influence was opposite that for fire ignitions in that fires
were more likely to occur in none, low, and intermediate levels
than in high levels of development.

Except for distance to development, all of the variables that
were significant in the non-adjusted univariate models were also
retained in the final model for fire frequency (Table 3). This
model was also highly significant at P < 0.0001. The spatial
pattern of predicted fire frequency on the map generated from
the final regression model showed a strong influence of level of
development and reflected the influence of the 500-m buffers
(Fig. 4). The influence of January temperature was also visually
apparent in the predictions, with more fires occurring along the
coast where the temperature is generally warmer. The areas pre-
dicted to experience the most fires roughly corresponded to the
fire history map (Fig. 2).

The evaluation of our multiple Poisson regression fire fre-
quency model with the independent dataset showed that we
predicted the number of fires correctly 40% of the time,
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Fig. 3. Maps of variables used for regression models and predictive mapping of the Santa Monica Mountains, CA. Dependent variables included ignitions
and number of fires; independent variables included developed, wildland–urban interface (WUI), roads, trails, mean January minimum temperature, south-
westness, percentage slope, and elevation. Vegetation map not shown. The WUI is the area where houses meet or intermingle with undeveloped wildland
vegetation, based on the definition in the Federal Register.

80% were within one fire of being correct, and 95% were within
two. The Pearson’s correlation coefficient was 0.490, the RMSE
was 1.219. These statistics indicate that the model’s perfor-
mance was fair, but the positive error shows that we tended to
underestimate fire frequency.

The combined map showed that, although some areas had a
high potential for both fire ignition and frequency, not all areas
with high potential for ignition were likely to experience many
fires. In some of the most remote portions in the interior of the
landscape, both fire ignition probability and fire frequency were
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predicted to be low. Along the coast and through some of the
more developed canyons in the interior, however, both ignitions
and frequency were predicted to be higher (Fig. 4).

Discussion

As we expected, humans significantly influenced the spatial pat-
tern of ignitions, which were located in close proximity to all
measures of human infrastructure included in our univariate

Table 3. Variables retained in the multiple regression models explaining
fire ignitions and fire frequency in the Santa Monica Mountains, CA

WUI, wildland–urban interface

Model Explanatory variable P value

Ignitions Distance development <0.0001
Distance roads 0.002
Vegetation type 0.002
Level of WUI 0.011
January 0.016
Distance trails 0.08
Full model <0.0001

Fire frequency Level of development <0.0001
January <0.0001
South-westness 0.005
Elevation 0.036
Slope 0.045
Full model <0.0001

Combined ignitions and frequencyPredicted fire frequency

Ignition probability(a) (b)

(c) (d )0.51–1.76

0.0037–0.2633

0.2634–0.5747

0.5748–1.0073

1.0074–1.7168

1.7169–4.4162

1.77–2.52

2.53–3.09

3.10–3.80

3.81–5.36

Combined ignitions and frequency

Frequency

Frequency

Ignition

Ignition

High

Low

Fig. 4. Maps showing predicted probability of ignition (a), predicted fire frequency (b), overlay and sum of the classified ignition and fire frequency
maps (c), and the distribution of differences between predicted ignition probabilities and predicted fire frequency (d) developed from multiple regression
models in the Santa Monica Mountains, CA.

models and were most strongly related to distance to develop-
ment and roads in the multivariate models. Previous research
showed that fire frequency and area burned were highest at inter-
mediate levels of human activity; however, at lower and higher
levels of human activity, fire activity was lower (Keeley 2005;
Syphard et al. 2007a, 2007b). In the present study, ignitions
were more likely to occur with consistently larger proportions
of both development and WUI within 500-m buffers. However,
the spatial extent of these buffers may not have captured the
intermediate effects that were apparent through the landscape
and county scales used in the other studies. Slope, vegetation
type, and January temperature were also significantly related to
ignitions, which may in part reflect the fact that fire ignition
success is conditional on factors such as fuel moisture content
and stand structure (Tanskanen et al. 2005).

Considering that humans start most fires in the Santa Monica
Mountains and that human activities are concentrated around
roads and developed areas, these results are not surprising.
Yet, statistically modelling these human relationships and their
interactions with biophysical variables is necessary for more
precisely explaining and mapping the parts of the landscape
that are most likely to ignite. Although other regions may not
experience the same proportion of human ignitions as southern
California, human-caused ignitions along transportation corri-
dors have been documented broadly (Stephens 2005), and the
significance of our results underscores the importance of con-
sidering more than just fuel loads in fire risk assessments. The
WUI is not just the area with the highest concentration of human
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values at risk; it is also the area where humans are most likely
to put these valuable assets at risk by starting fires, intentionally
or not.

Although ignition locations were primarily related to the
distribution of human activities, fire frequency was mainly deter-
mined by biophysical variables, which was expected because
fire spread is ultimately a function of vegetation characteristics,
climate, and terrain (Pyne et al. 1996). Fire frequency was signif-
icantly related to two human variables, but more fires occurred
with longer distances to development and with lower propor-
tions of development within buffers. Although this result seems
surprising given the location of ignitions, one likely reason that
fires burned more frequently when they were farther from human
infrastructure is that there is typically more continuous vegeta-
tion in remote areas. Therefore, fires would not be interrupted
by fragmented fuels that characterise urban areas. Also, there
are lower concentrations of fire suppression resources outside
urban areas (Calkin et al. 2005), so fires will be able to con-
sistently burn longer and grow larger when they spread beyond
their ignition source into more remote regions. This means that,
although fires start closer to roads or development, the areas that
actually burn most frequently are the non-urban regions where
fire spreads after ignition.

A possible shortcoming in our fire frequency models was
that the human explanatory variables only represented the con-
temporary time period, but the fire frequency data spanned a
period of 78 years (although more than 75% of the fires in the
record occurred within the last 20 years). Despite this temporal
mismatch, our results were consistent with previous research in
California that showed that, whereas human variables are the best
predictors for the number of fires that start, biophysical variables
are better at explaining the variation in area burned (Syphard
et al. 2007a).Therefore, the most important predictors for the fire
frequency models were the biophysical variables that remained
constant over the temporal extent of the fire frequency data.

Although it would have been ideal to incorporate temporally
extensive human variables in our multiple regression analysis,
adding these data would have likely only improved the fit of our
models, particularly because human development patterns have
high spatial autocorrelation, particularly in the Santa Monica
Mountains (Syphard et al. 2007b). Historic housing data were
most likely distributed in the exact same locations as the contem-
porary housing data that we used in our analysis because houses
persist over time. Nevertheless, the fair performance of our fire
frequency models may have been improved if we had had access
to temporally extensive data for the human variables.

The fact that the variables that best predicted fire ignitions
differed from those that best predicted fire frequency explains
why the spatial patterns in the predictive maps of ignitions and
frequency were somewhat different from one another. Neverthe-
less, there were regions in the interior of the landscape where
fire ignitions and fire frequency were predicted to be very low.
Therefore, although fires spread away from ignition sources and
burn more frequently outside urban areas, there are also even
more remote areas that burn with much less frequency. How-
ever, some of the coastal areas and interior canyons are more
likely to experience greater numbers of ignitions and more fre-
quent fire. The coastal areas tend to be warmer and dryer than
the more remote interior regions of the landscape, which makes

them more conducive to fire. These regions also have gentler
slopes and are more favourable for housing development and
human activity.

From a management perspective, overlaying the two predic-
tive maps is useful because the resulting combined map can
identify areas that are not only at a high risk for experiencing
an ignition, but also where those ignitions are likely to initiate
into a full, spreading fire. Areas where high predicted ignition
probability coincides with high predicted fire frequency can then
be targeted for fire management actions, such as fuel reduction.
The Santa Monica Mountains fire management plan has out-
lined additional criteria, including socioeconomic variables and
other resources at risk, to further the decision-making process
for identifying potential strategic fuel modification locations
(NPS 2005). These additional criteria are important for ensur-
ing that treatments are not placed in low-hazard areas where
protection is not needed.

The present and other studies have determined that fire igni-
tion locations, as well as areas where frequent fires occur, can
be statistically modelled using readily measurable sets of social,
biological, and physical features (e.g. Keeley et al. 1999; Cardille
et al. 2001; Pew and Larsen 2001; Prestemon et al. 2002; Mercer
and Prestemon 2005). Therefore, the approach used here can be
used in other landscapes to refine the strategic placement of fuels
treatments and to better anticipate where fires are most likely to
occur. To adapt these methods to other regions, scientists and
managers should be aware that the relative influence of human
or biophysical variables is likely to vary according to region,
temporal or spatial scale of analysis, and type of human activity.
Therefore, the choice of predictor variables should be relevant
to the primary characteristics driving each region’s fire regime.
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