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Abstract

For decades, ecologists have measured habitat attributes in the field to understand and predict patterns of animal
distribution and abundance. However, the scale of inference possible from field measured data is typically limited because
large-scale data collection is rarely feasible. This is problematic given that conservation and management typical require
data that are fine grained yet broad in extent. Recent advances in remote sensing methodology offer alternative tools for
efficiently characterizing wildlife habitat across broad areas. We explored the use of remotely sensed image texture, which is
a surrogate for vegetation structure, calculated from both an air photo and from a Landsat TM satellite image, compared
with field-measured vegetation structure, characterized by foliage-height diversity and horizontal vegetation structure, to
predict avian density and species richness within grassland, savanna, and woodland habitats at Fort McCoy Military
Installation, Wisconsin, USA. Image texture calculated from the air photo best predicted density of a grassland associated
species, grasshopper sparrow (Ammodramus savannarum), within grassland habitat (R2= 0.52, p-value ,0.001), and avian
species richness among habitats (R2= 0.54, p-value ,0.001). Density of field sparrow (Spizella pusilla), a savanna associated
species, was not particularly well captured by either field-measured or remotely sensed vegetation structure variables, but
was best predicted by air photo image texture (R2= 0.13, p-value= 0.002). Density of ovenbird (Seiurus aurocapillus), a
woodland associated species, was best predicted by pixel-level satellite data (mean NDVI, R2= 0.54, p-value ,0.001).
Surprisingly and interestingly, remotely sensed vegetation structure measures (i.e., image texture) were often better
predictors of avian density and species richness than field-measured vegetation structure, and thus show promise as a
valuable tool for mapping habitat quality and characterizing biodiversity across broad areas.
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Introduction

It is difficult to monitor and map patterns of wildlife diversity

and abundance efficiently across broad areas. However, the need

for doing so has never been more important given that

approximately 12% of the world’s birds, 25% of its mammals,

40% of its amphibians, and 20% of its invertebrates are threatened

by extinction [1], and trends in biodiversity loss are likely to

continue [2]. In addition to directly monitoring biodiversity,

ecologists routinely collect fine-grained information about habitat

variables that may influence species diversity [3–5]. A common

field-measured habitat metric used by ornithologists [6–9], and to

a lesser extent, mammalogists [10] and entomologists [11,12], is

foliage-height diversity [3]. Foliage-height diversity is an index of

vegetation structure that characterizes heterogeneity in vertical [3]

and horizontal vegetation [7]. Variation in foliage-height diversity

was originally used to predict avian diversity patterns and niche

partitioning among species [3]. Since this seminal work by

MacArthur and MacArthur, ecologists have linked foliage-height

diversity to biodiversity in habitats around the world [7,12–16].

However, although field-measured foliage-height diversity pro-

vides valuable fine grained information about habitat heterogene-

ity, it is logistically difficult to collect at large extents. This limits its

use for management and conservation applications, which

typically occur at broad-scales [17–19].

Remotely sensed data and especially land-cover classifications

have been commonly used to monitor biodiversity across broad

areas [20–23]. However, land-cover classes mask within-class

variation in vegetation structure [24,25]. This is problematic

because variation in vegetation structure influences the distribu-

tion of biodiversity [3]. Remote sensing approaches that can

characterize within-class vegetation structure include Light

Detection and Ranging (LiDAR) [26,27], Synthetic Aperture

Radar (SAR) [28], and image texture [25]. Image texture, a

measure of the spatial variation in image tone values, has been

used to characterize vegetation patterns in heterogeneous habitats,

including sparsely vegetated shrubland and desert [24,29–31],

grassland-savanna [25], and forest habitats [32,33]. Image texture

has also been used to predict species diversity (e.g., avian species

richness) [24,31,34], habitat occupancy [32] habitat selection [35–

37], and habitat suitability [38].

Image texture is a remotely sensed surrogate of vegetation

structure and is valuable for ecological studies [25]. Yet, it is not

clear how well image texture measures compare with indices of

vegetation structure, derived from field-measured foliage-height

diversity, in characterizing avian distribution patterns. Further-
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more, the potential of image texture for predicting avian density

(i.e., modeled abundance) is unexplored. This is important because

density can offer insights into habitat quality [39] which is useful

information for conservation applications. Additionally, the range

of habitat types in which image texture effectively predicts avian

species richness, a useful surrogate for biodiversity [40], is unclear.

Our goal was to explore the ability of image texture to predict

and map high quality habitat and biodiversity among structurally

disparate habitats. Our first objective was to assess the amount of

variation in density of three avian species associated with a) field-

measured foliage-height diversity and horizontal vegetation

structure b) sample-point summaries of pixel values, and c) image

texture measures from two remotely sensed data sources, a 1-m

resolution infrared air photo and the Normalized Difference

Vegetation Index (NDVI) derived from 30-m resolution Landsat

TM imagery. Our second objective was to assess the amount of

variation in avian species richness associated with the same three

types of data. Our study was designed to examine the usefulness of

image texture data for understanding and mapping fine scale

patterns of avian density and species richness across broad spatial

extents.

Materials and Methods

Study Area
We measured vegetation structure and avian abundance in the

field across the 24,281 ha Fort McCoy Military Installation, in

southwestern Wisconsin, USA (Fig. 1). Our supervisor while

conducting field work was Timothy T. Wilder, who is the

endangered species biologist for the Directorate of Public Works at

Fort McCoy. Three habitat types occur within the boundaries of

the available land for study. These include grasslands, which occur

on 25% of the available land, and have less than 5% tree cover

and low shrub cover; oak savanna (hereafter referred to as

savanna) which occurs on 35% of the available land and is

characterized by 5–50% tree canopy cover and variable shrub

cover; and oak woodland (hereafter referred to as woodland),

which occurs on 40% of the available land and is characterized by

greater than 50% tree canopy cover and variable shrub cover

(Fig. 1) [41]. Common tree species include, black oak (Quercus

velutina), northern pin oak (Quercus ellipsoidalis), jack pine (Pinus

banksiana), red oak (Quercus rubra), and white oak (Quercus alba).

Shrubs include blueberry (Vaccinium angustifolium) and American

hazelnut (Corylus americana), and the dominant grass is little

bluestem (Schizachyrium scoparium).

To select field sampling points, we generated 400 random

points, separated by at least 300 m, within grassland, savanna, and

woodland habitat, using Hawth’s Tools [42] extension in ArcGIS

9.1 [43]. We identified the habitats from a leaf-on infrared air

photo and a digital topographic raster map, created by Fort

McCoy biologists. Texture calculations can be influenced by

paved roads and other manmade structures. Therefore, we

removed sample points within 150 m of such features from

consideration. From this set, we retained sample points at least

100 m away from the edge of a focal habitat. Additionally, we only

incorporated sample points if there was no significant disturbance

(e.g., fire) between the dates when the remotely sensed data was

acquired (see below) and when the field data was collected. This

resulted in 172 sample points, 43 in grasslands, 78 in savannas,

and 51 in woodlands (Fig. 1).

Field-measured Vegetation Structure Measurements
At each sample point, we collected foliage-height profile

measurements during the peak growing season from mid-June to

late July in 2008 or 2009. Based on these measurements, we

calculated foliage-height-diversity [3] and horizontal vegetation

structure [7], using established methods [44]. We collected

measurements at four 5-m radius sub-plots, located at the center

of the sample point and with one each at azimuth angles of 0̊, 120̊,

and 240̊, at a random distance between 20 and 80 m so all foliage-

height diversity measurements were entirely within the 100-m

radius sample plot. We used the random distances to account for

variation in vegetation structure heterogeneity among our focal

habitats. At each sub-plot, beginning at the center-point, one

observer walked 5 m in each of the four cardinal directions and

placed a 12-m tall telescoping pole marked at 30-cm intervals

vertically on the ground. A second observer recorded the number

of instances where vegetation touched the pole (‘hits’) in each 30-

cm section. If the canopy was taller than 12 m, then the second

observer stood in an area where the view of the telescoping pole

was not obscured by vegetation and used binoculars to estimate

vegetation hits at the 30-cm intervals. This yielded 16 foliage-

height profiles at each sample point (i.e., four measurements at

each of the four sub-plots). From these 16 foliage-height tallies, we

calculated two indices of vegetation structure. First, we computed

foliage-height diversity using the Shannon diversity index [3,25].

Second, we derived horizontal vegetation structure by taking the

standard deviation of canopy heights at the 16 foliage-height

diversity measurements per sample point [7]. Mean foliage-height

diversity was 0.5360.05, 1.5160.05 and 2.7060.09 in grassland,

savanna and woodland, respectively (Fig. 2). Mean horizontal

vegetation structure was 2.4460.39, 10.8960.36 and 14.6560.67

in the three habitats (Fig. 2).

Avian Point Counts and Indicator Species
At the 172 sample points, we conducted four 100-m variable

radius, five-minute point counts from late May to early July in

both 2007 and 2008 to characterize the avian community during

the breeding season [45,46]. In 2009 we visited sample points

three times during the same time frame [47]. To distribute

observer variability as equally as possible [46], four trained

observers during 2007 and 2008 and three trained observers in

2009 performed one count at each sample point. Observers were

extensively trained by the lead author on both bird identification

and sampling protocol prior to field sampling, and the lead author

was an observer each year.

We recorded abundance and distance estimates of three avian

species, grasshopper sparrow (Ammodramus savannarum), field

sparrow (Spizella pusilla), and ovenbird (Seiurus aurocapillus). We

selected these birds as habitat indicator species based on their

strong association with grasslands [48], savannas [49] and

woodlands [50], respectively. Additionally, we calculated total

species richness among all three field seasons for each sampling

point. We used total species richness as our response variable

Figure 1. Distribution of 172 sample points at Fort McCoy Military Installation, Wisconsin, USA. White polygons indicate available
grassland habitat with white circles denoting grassland sample points, black polygons indicate available oak savanna habitat with black circles
denoting oak savanna sample points, and green polygons indicate available oak woodland habitat with white crosses denoting oak woodland
sample points. A hillshade model calculated from a digital elevation model was set underneath a 40% transparent air photo to show topographical
features of Fort McCoy.
doi:10.1371/journal.pone.0063211.g001
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Figure 2. Box plot summaries of field-based vegetation structure, foliage-height diversity and horizontal vegetation structure, and
four, remotely sensed, image texture measures of vegetation structure. First-order variance was calculated from a 1-m resolution infrared
air photo and a 30-m resolution NDVI in a 363 window. Pixel values were summarized as the mean (mn) and standard deviation (sd) within a 100-m
radius circle surrounding each of the 172 sample points. This figure was adapted and modified from [25].
doi:10.1371/journal.pone.0063211.g002
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because there was little species accumulation in each habitat

throughout the three year sampling period (Fig. 3).

Density Calculations
To reduce bias due to variations in species detectability, we

estimated the density of the three avian species by adjusting

abundance using Program Distance [51]. We fit six distance-

adjusted models (half-normal cosine, half-normal hermite polyno-

mial, uniform cosine, uniform simple-polynomial, hazard-rate

cosine, and hazard-rate simple polynomial, [52]. We fit the six

models for data from each species within their respective focal

habitat for each year. We selected the global detection function

from the top model using Akaike’s Information Criterion, which

provided an estimate of sample-point specific species density for

each year. We calculated the across-year average of the sample-

point densities to obtain a robust measure of sample-point species

density within each focal habitat. Vegetation structure, composi-

tion, and topography were similar within focal habitats. Because of

this, we assumed that avian species detection probabilities were

similar within habitats. Grasshopper sparrow detection probabil-

ities in the three years were 0.5160.06, 0.4760.19, and

0.3260.09 respectively, field sparrow were 0.3960.07,

0.5560.15, and 0.4860.05, and ovenbird were 0.5260.16,

0.5560.20, and 0.5160.13, and we calculated density based on

these detection probabilities. We used the resulting sample point

density estimates as dependent variables in statistical analyses.

Remote Sensing and Image Texture Processing
Avian biodiversity has strong associations with vegetation

productivity and greenness [53]. Green vegetation absorbs most

of the solar radiation in the red wavelength, while reflecting about

half of the near-infrared light [54], and variations in the ratio of

infrared to near-infrared reflectance are associated with variation

in vegetation productivity. Thus, we calculated sample-point pixel

value (i.e., raw digital numbers) summaries from two sources of

remotely sensed data that indicate productivity and greenness. The

first was a 1-m resolution infrared air photo (hereafter air photo)

taken on 25 August, 2006. Second, we used a 30-m resolution

Landsat TM image acquired on 13 July, 2009 (path 25, row 29)

from which we calculated the NDVI, which is a measure of

photosynthetic capacity (greenness) [55]. Both images were

captured during (Landsat TM) or just after (air photo) the peak

of the growing season and thus corresponded with avian breeding

conditions in our study area. Temperature and precipitation were

similar among years [25] and the dominant trees (e.g., black oak)

and shrubs (e.g., American hazelnut) in the focal habitats are slow

growing [41]. Thus, the dominant structural features and

vegetation greenness of the habitats, which influence reflectance

values of the imagery, likely varied little throughout the study

period.

Figure 3. Species accumulation rarefaction curves, with standard deviation, for grassland, savanna, and woodland habitats across
the three year, breeding season, sampling period.
doi:10.1371/journal.pone.0063211.g003

Table 1. Description of imagery, including grain size, and the
extent of the window size from which three image texture
measures were calculated.

Imagery Grain Extent of window size

Infrared air photo 1 m 363, 767, 15615, 21621, 31631, 51651

Landsat NDVI 30 m 363, 565, 767, 11611

doi:10.1371/journal.pone.0063211.t001
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Image texture calculations generate many measures that are

collinear (Fig. S1) [24,25,34]. Thus, we used Wood et al.’s

recommendations [25] to inform our selection of independent

variables for predicting avian density and species richness. We

included two first-order occurrence measures, variance and

entropy, and one second-order measure, contrast [56]:

First-order variance:

XN{1

i,j~0

pi,j(i{mi)
2

First-order entropy:

{
X
i

X
j

p(i,j) log (p(i,j))

Second-order contrast:

XN{1

n~0

n2
XN
i~1

XN
j~1

p(i,j)

( )
Di{jD~n

These three measures were previously shown to be strongly

related with foliage-height diversity and thus we expected they

would be useful for predicting bird density and species richness

[25]. First-order texture measures do not consider the spatial

arrangement of neighboring pixel values, while second-order

measures do [56–58].

We computed the first-order measures, variance and entropy

(i.e., Shannon diversity index) [56], with a moving window (e.g., a

363 window, see below), and the texture measure was assigned to

the central cell of each window. To calculate second-order

contrast, we summarized the pixel values within the moving

window in a gray-level co-occurrence matrix (GLCM) and we

calculated the texture statistic based on this matrix [56]. We

calculated image texture using ENVI (Research Systems Inc.,

Boulder, CO). We used the tool ‘zonal statistics’ in ArcGIS 9.1 to

summarize mean and standard deviation of sample-point pixel

values and texture measure within 100 m of each sample point.

Observed variation in image texture measures was not equal

among habitats. For example, first-order variance, calculated in a

363 window from the air photo was highest in savanna and lowest

in grassland and woodland (Fig. 2). On the other hand, first-order

variance calculated in a 363 window from the NDVI was highest

in grassland and savanna and lowest in woodland (Fig. 2).

Since the scale (as represented by a combination of the grain

size of the image and the extent of the moving window) of an

image texture measure may affect the strength of its relationship

with avian density and species richness, we compared several

window sizes for both image sources. We calculated image texture

from the air photo in 363, 767, 15615, 21621, 31631, and

51651 1-m pixel moving windows (Table 1). We calculated image

texture from the NDVI in 363, 565, 767, and 11611 30-m pixel

windows (Table 1). We chose these window sizes because they

spanned the approximate territory sizes of the avian species, and

captured information on the landscape surrounding each plot,

which influence avian distribution patterns in grassland-savanna

habitats [47].

The extent at which texture was calculated from the air photo

ranged from 0.001 to 0.26 ha. The extent at which texture was

calculated on the NDVI ranged from 0.81 to 10.89 ha. The extent

of the 100-m radius circle where foliage-height profile measure-

ments were collected, and sample-point pixel values and image

texture were summarized (i.e., mean or standard deviation) was

3.14 ha. In Wisconsin grasslands, grasshopper sparrow territory

sizes range from 0.32–1.34 ha [48]. In Illinois, field sparrow

territories range from 0.31–1.62 ha [49]. Ovenbird territories

range from 0.45–1.62 ha in Ontario, Canada [50]. Our window

sizes and field-based data thus captured vegetation structure,

sample-point pixel value summaries, and textural information

across the reported range of territory sizes, in similar habitats, and

geographically as close to our study area as possible, for the three

avian species.

Statistical Analysis
To investigate whether the amount of variation in avian density

or species richness was best characterized by a) field-measured

foliage-height diversity and horizontal vegetation structure b)

sample-point summaries of pixel values, or c) image texture

measures, we parameterized linear regression models with

indicator species’ densities and avian species richness as dependent

variables. For the density regressions, we only used data from

within the indicator species’ habitat, while for models involving

species richness we used data from all 172 sample points. We

assessed the linear model assumptions of heteroscedasticity by

fitting residual versus fitted values plots, and we visually examined

if the spread of points were constant. We assessed normality by

fitting QQ-norm plots and the linearity of residuals for each model

by visually inspecting scatterplots. If necessary, we applied square-

root transformations for the response variables, which were count

derived density estimates, and we log transformed the independent

variables. If model assumptions were met, but there was a lack of a

linear relationship, we fit second-order polynomial regression

models by adding a quadratic term.

To evaluate the predictive ability of the best fitting models (i.e.,

the models with the highest coefficient of determination), we used

leave-one-out cross-validation calculated using the ‘boot’ package

in program R [59]. We used the leave-one-out approach as

opposed to k-fold cross-validation because it performs better when

the number of observations is low and we had ,80 sample points

within each focal habitat. To check for spatial-autocorrelation

among sampling points, we fit semivariograms of the residuals for

the models for each indicator species’ adjusted density patterns

and the models of overall avian species richness [60]. Semivar-

iograms revealed no spatial autocorrelation affecting the models of

either indicator species density or avian species richness. All

statistical analysis was completed using the R software package

[61].

Figure 4. Scatter plots of the relationship between density of grasshopper sparrow at 43 grassland sample points, field sparrow at
78 savanna sample points, ovenbird at 51 woodland sample points, and avian species richness at all 172 sample points with
texture measures derived from an infrared air-photo (left column), and NDVI (right column). All relationships significant at the p= 0.05
level except for field sparrow regressed against NDVI texture measures. The black lines represent results from linear regression with least-squares
fitted and 2nd order polynomial lines.
doi:10.1371/journal.pone.0063211.g004
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Results

Predictions of Avian Species Density
Mean grasshopper sparrow density among the grassland sample

points was 6.3860.42. Grasshopper sparrow density was not

significantly related to either foliage-height diversity or horizontal

vegetation structure (Table 2). The sample-point pixel value mean

summary of the air photo explained 26% of the variation in

grasshopper sparrow density (Table 3). However, sample-point

pixel value summaries of Landsat NDVI were not significantly

related to grasshopper sparrow density (Table 3). Grasshopper

sparrow density was most strongly related to the standard

deviation of second-order contrast calculated from the air photo

in a 51651 moving window (R2 = 0.52, p-value ,0.001, Table 4,

Fig. 4). The texture measure calculated from the NDVI that best

predicted grasshopper sparrow density was the mean of first-order

entropy calculated in a 565 moving window (R2 = 0.34, p-value

,0.001, Table 5, Fig. 4). The top model had a prediction error of

3.77 and the average prediction error for the air photo models was

5.32 (Table 4, Fig. 5).

Mean field sparrow density among the savanna sample points

was 4.2960.21. Field sparrow density was not significantly related

to vegetation structure indices (Table 2), sample-point pixel value

summaries from either the air photo or NDVI (Table 3), or texture

measures calculated from NDVI (Table 5). Field sparrow density

was most strongly associated with the standard deviation of first-

order entropy calculated from the air photo in a 363 moving

window (R2 = 0.13, p-value= 0.002, Table 4, Fig. 4). The top model

of field sparrow density had a prediction error of 3.82. This was

slightly higher than the best prediction error of 3.66 for the model

fit using the standard deviation summary of first-order variance in

a 767 moving window. However, this model captured only 7% of

the variance in field sparrow density. The average prediction error

for the air photo models was 3.80 (Table 4, Fig. 5).

Mean ovenbird density among the woodland sample points was

1.3860.13. Ovenbird density was weakly related to foliage-height

diversity (R2 = 0.10, p-value ,0.009), and not to horizontal

vegetation structure (Table 2). The top model explaining ovenbird

density was the sample-point pixel value mean summary of NDVI

(R2 = 0.54, p-value ,0.001, Table 3, Fig. 4). The mean summary of

second-order contrast in a 51651 moving window calculated from

the air photo explained 19% of the variance (Table 4, Fig. 4).

Whereas the mean summary of variance calculated from the

NDVI in a 565 moving window explained 29% of the variance in

ovenbird density (Table 5). However, the mean summary of

contrast calculated in an 11611 moving window from the NDVI

had the best prediction error rate of 0.48 among the Landsat

models (Table 5). The overall top model had a prediction error of

0.43 and the average between the mean and standard deviation

pixel value summaries of NDVI was 0.48 (Table 3, Fig. 5).

Predictions of Avian Species Richness
Foliage-height diversity was moderately associated with avian

species richness (R2 = 0.32, p-value ,0.001, Table 2). Horizontal

vegetation structure was the best field-measured vegetation

structure index explaining avian species richness (R2 = 0.40, p-

value ,0.001, Table 2). The sample-point pixel value standard

deviation summary from the air photo explained 35% of the

variation in avian species richness (Table 3). Whereas, the pixel

value mean summary only explained 4% of the variation in avian

species richness (Table 3). The mean sample-point summary from

the NDVI explained 13% of the variation in avian species richness

(Table 3). The NDVI-derived standard deviation sample-point

summary was not related with avian species richness (Table 3).

Avian species richness was best predicted by the standard

Figure 5. Predictive maps for density of three birds and avian species richness. Map A) represents grasshopper sparrow density, B) field
sparrow density, C) ovenbird density, and D) avian species richness. Best model obtained from linear regression analysis relating density and avian
species richness versus sample-point summaries and image texture measures calculated from a black-and-white infrared air photo and a NDVI.
Equations used: grasshopper sparrow: y = 9.22+ second-order contrast 51651 sd*20.36; field sparrow: y =210.85+ first-order entropy 363 sd*0.57+
first-order entropy 363 sd*20.0052‘2; ovenbird: y =24.7+ NDVI sample-point mean*0.05+ NDVI sample-point mean*20.0008‘2; avian species
richness: y = 7.08+ first-order variance 15615 sd*0.40+ first-order variance 15615 sd*20.0021‘2.
doi:10.1371/journal.pone.0063211.g005

Table 2. Results of linear regression analysis relating grasshopper sparrow, field sparrow, and ovenbird density and avian species
richness to foliage-height diversity and horizontal vegetation structure.

Field-measured vegetation structure Adjusted R2 p-value Prediction error

Grasshopper sparrow

Foliage-height diversity 0.04 0.146

Horizontal vegetation structure 0.06 0.060

Field sparrow

Foliage-height diversity 20.01 0.774

Horizontal vegetation structure 0.00 0.293

Ovenbird

Foliage-height diversity 0.10 0.009 0.74

Horizontal vegetation structure 20.02 0.636

Avian species richness

Foliage-height diversity 0.32 ,0.001 47.32

Horizontal vegetation structure 0.40 ,0.001 39.62

The prediction error for significant models resulting from leave-one out cross validation is presented for significant models.
doi:10.1371/journal.pone.0063211.t002
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deviation of first-order variance calculated from the air photo in a

15615 moving window (R2 = 0.54, p-value ,0.001, Table 4, Fig. 4)

and NDVI-derived texture measures were only weakly associated

with avian species richness (Table 5). The top model based on the

highest coefficient of determination had a prediction error of 23.20

and the average prediction error for the air photo models was

37.85 (Table 4, Fig. 5).

Discussion

Surprisingly, we found that image texture measures, and to a

lesser extent, sample-point summaries of pixel values, were more

strongly related to variation in avian density and species richness

than field-measured foliage-height diversity and horizontal vege-

tation structure. This is an exciting advance and a significant step

forward in the ability to map avian density and species richness

over broad spatial extents. Effective methods for monitoring and

mapping species distributions require broad-scale data, and

remotely sensed data can provide an overview of habitat across

extensive areas. However, the challenge is how to accurately

characterize fine-grained wildlife habitat from remotely sensed

imagery. We found that image texture predicts density patterns of

avian species associated with grassland and woodland habitats

well. However, this relationship was far weaker within savanna

habitat.

In all cases, models fit using image textures measures, and for

the ovenbird, the sample-point pixel value mean summary of

NDVI, performed better than field-measured foliage-height

diversity and horizontal vegetation structure in predicting avian

density. Grasshopper sparrow density was highest in areas where

second-order contrast was low in air photo and NDVI data. These

low values correspond to the central areas of two large grassland

patches that are devoid of large shrubs or trees. Grasshopper

sparrows use large, open grasslands with little woody cover [62–

64]. The north-central grassland patch at Fort McCoy is located

within a non-accessible area (i.e., used for military training). This

area was predicted to support high grasshopper sparrow density

highlighting a useful conservation application of image texture in

delineating good quality habitat in hard to reach or remote

locations. Furthermore, the strongest relationship with air photo-

derived data occurred at the broadest scale, 51651 1-m pixels,

(0.26 ha.) and the strongest relationship with 30-m NDVI data

occurred at the 565 window scale (2.25 ha). Thus, texture

measures derived from data sources that differ markedly in

resolution, were both strongly associated with variation in

grasshopper sparrow density at scales that span the species’

breeding territory size [48].

We found both field-measured vegetation structure indices and

remotely sensed image texture were poor predictors of field

sparrow density patterns. Field sparrows use habitats with sparse

canopies and moderate to high shrub cover [49]. We expected

image texture would capture the variability of tree cover within

savanna habitats, where field sparrow were found in high densities,

because image texture has been successfully used to characterize

avian diversity in the sparsely vegetated Chihuahuan desert

[24,31]. While both field-measured and remotely sensed measures

of vegetation structure are different in savannas than grassland or

woodlands [25], this component of habitat by itself was not

strongly associated with field sparrow density. The observed

variations in both field based and, especially, image texture

calculated from the air photo and NDVI were largest in the

savanna habitats (Fig. 2). Because of this, it is likely that features of

the savanna habitat that the Field Sparrow was responding to,

such as vegetation composition or fine- scale habitat elements (e.g.,

herbaceous composition or downed woody debris) [5,65,66], were

not captured by either the field-measured vegetation indices or

image texture measures. Thus, we urge caution in applying image

texture to discriminate high quality habitat in sparsely vegetated

areas since the variation in predictor variables can be high,

resulting in poor fitting models.

We found the sample-point mean summary of NDVI values was

the best predictor of variation in ovenbird density. In Michigan

forests, NDVI was a good predictor of ovenbird occurrence [67].

As we expected, ovenbird density was highest in locations with

high NDVI which corresponded to dense, interior woodland.

Furthermore, image texture measures calculated from the air

photo explained up to a third of the variation in ovenbird density.

Thus, we suggest that image texture can map high quality

woodland and forested habitat well, especially when combined

with other remotely sensed data (e.g., NDVI).

An unexpected finding of our study was the importance of

matching the grain size of an image with the resolution of habitat

heterogeneity (i.e., vegetation structure) within a habitat patch.

Two habitats at Fort McCoy, grassland and woodland, occur in

large, contiguous patches. Therefore, information generated using

the 30-m resolution NDVI was moderately successful in predicting

grasshopper sparrow (although not as strong as image texture

calculated from air photo) and ovenbird density. Savanna habitats

at Fort McCoy typically occur in smaller patches at the edge of

grasslands or woodlands, and we were not able to find significant

relationships between image texture calculated from NDVI and

field sparrow density. Therefore, we speculate that the within-

Table 3. Results of linear regression analysis relating
grasshopper sparrow, field sparrow, and ovenbird density and
avian species richness to 1-m air photo and 30-m NDVI sample
point pixel value mean (MEAN) and standard deviation (SD)
summaries.

Pixel value summary Adjusted R2 p-value Prediction error

Grasshopper sparrow

Air-photo MEAN 0.26 ,0.001 6.13

Air-photo SD 0.01 0.280

NDVI MEAN 0.13 0.051

NDVI SD 20.02 0.524

Field sparrow

Air-photo MEAN 20.01 0.609

Air-photo SD 0.04 0.072

NDVI MEAN 0.02 0.195

NDVI SD 20.02 0.731

Ovenbird

Air-photo MEAN 0.00 0.339

Air-photo SD 20.02 0.580

NDVI MEAN 0.54 ,0.001 0.43

NDVI SD 0.16 0.006 0.53

Avian species richness

Air-photo MEAN 0.04 0.008 46.27

Air-photo SD 0.35 ,0.001 37.56

NDVI MEAN 0.13 ,0.001 41.74

NDVI SD 0.00 0.598

The prediction error for significant models resulting from leave-one out cross
validation is presented for significant models.
doi:10.1371/journal.pone.0063211.t003
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habitat variability of savanna habitats at Fort McCoy was difficult

to capture using image texture measures calculated from the

coarser grained NDVI. Thus, it is likely that the influence of the

surrounding grassland or woodland habitat captured by the scale

of the NDVI image texture measures (i.e., grain size and window

extent) may have impacted the ability to predict field sparrow

density. This is an important finding for conservation applications

suggesting sample-point summaries and image texture from NDVI

may be better at capturing variation in habitat that occurs in large

continuous blocks, and not as well suited to assess habitat that

occurs in relatively small patches.

The density of organisms can provide important information

about habitat quality [39]. However, predictions of animal

densities typically use field-measured data for unique habitat types

[68], rather than remotely sensed data [69]. An advantage for

conservation applications is that remotely sensed data can predict

avian density patterns for large areas. However, previous maps of

avian habitat were generated based on broad land-cover classes

which omit important within-in habitat heterogeneity (e.g.,

vegetation structure). Based on our findings, and those of others

[24,31,34] image texture data can provide a significant increase in

the amount of information (i.e., broader coverage than field-

measured variables) and spatial detail (i.e., heterogeneity of

vegetation structure), which is necessary for broad-scale manage-

ment and conservation planning.

This empirical finding is well supported by ecological theory,

which postulated that higher vegetation structural diversity is

associated with avian diversity [3–5]. We chose our study area

because of its wide variation in vegetation structure diversity

among habitats [25]. Foliage-height diversity and horizontal

vegetation structure were indeed positively associated with avian

species richness and accounted for 32% and 40% of the variance,

respectively. Yet, the ground measured vegetation structure

explained less variation in avian species richness than the best

image texture measure, first-order variance calculated within a

15615 moving window from the air photo. This measure

predicted 54% of the variance in avian species richness. In a

similar analysis, the standard deviation summary of first-order

standard deviation calculated within a 51651 moving window

from a similar resolution air photo, explained approximately 56%

of the variance in avian species richness in a Chihuahuan desert

grassland-shrubland-pinyon-juniper study area in New Mexico

Table 4. Results of linear regression air photo analysis relating grasshopper sparrow, field sparrow, and ovenbird density and avian
species richness to image texture measures calculated within moving windows of six extents.

Texture measure 363 767 15615 21621 31631 51651 p-val. Prediction error

Grasshopper sparrow

Entropy MEAN

Entropy SD 0.17 0.010 7.10

Variance MEAN 0.17 0.23 0.002 5.97

Variance SD 0.46 0.40 0.37 0.36 0.35 ,0.001 4.44

Contrast MEAN

Contrast SD 0.48 0.43 0.42 0.43 0.45 0.52 ,0.001 3.77

Field sparrow

Entropy MEAN 0.10 0.10 0.09 0.08 0.007 3.70

Entropy SD 0.13 0.002 3.82

Variance MEAN 0.12 0.09 0.08 0.08 0.08 0.003 3.85

Variance SD 0.07 0.021 3.66

Contrast MEAN 0.09 0.09 0.09 0.09 0.09 0.010 3.95

Contrast SD

Ovenbird

Entropy MEAN

Entropy SD

Variance MEAN 0.17 0.08 0.004 0.81

Variance SD

Contrast MEAN 0.17 0.18 0.18 0.18 0.18 0.19 0.002 0.80

Contrast SD 0.09 0.028 0.76

Avian species richness

Entropy MEAN 0.35 0.42 0.39 0.36 0.33 0.31 ,0.001 44.69

Entropy SD 0.41 0.22 0.21 0.18 0.13 ,0.001 47.73

Variance MEAN 0.45 ,0.001 35.76

Variance SD 0.33 0.48 0.54 0.52 0.49 0.42 ,0.001 23.20

Contrast MEAN

Contrast SD

Values within cells are adjusted R2. Shown are the best model p-value (p-val.) and the prediction error for the best model (in bold), resulting from leave-one out cross
validation. Cells not populated with metrics indicate non-significant models or assumptions of linear models (i.e., heteroscedasticity) could not be met.
doi:10.1371/journal.pone.0063211.t004
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[24]. First-order standard deviation and first-order variance are

strongly correlated texture measures. Furthermore, we found that

the standard deviation summary of first-order variance in a 51651

moving window, the window size used by [24], was also

moderately related to avian species richness (accounting for 42%

of the variance). First-order texture measures derived from high

resolution imagery exhibited strong correlation among extents

(i.e., window sizes) [25]. Together, these findings suggest image

texture derived from relatively fine-grained 1-m resolution remote

sensing data can be useful for characterizing a surrogate of

biodiversity [40], avian species richness, across broad spatial

extents.

While NDVI has successfully predicted avian biodiversity

patterns in other studies [31], it was not strongly associated with

patterns of species richness at our study area. Field-measured

vertical and horizontal vegetation structure performed better in

explaining variation in species richness. Image texture calculated

from 30-m resolution NDVI in areas with subtle changes in

vegetation may characterize within-habitat variability related to

avian species richness [31]. However, habitats that varied greatly

in vegetation structure (e.g., savanna) occurred in a heterogeneous

mosaic throughout our study area. Depending on the landscape

context of a habitat patch, a moving-window analysis may have

quantified pixel values from one habitat (e.g., woodland) into the

texture values assigned on the outer edge of a sample point located

in another (e.g., savanna). This may have masked the ability to

quantify important vegetation structure heterogeneity (i.e., tree

and shrub cover) relevant for species richness patterns. Thus, if

habitats are structurally heterogeneous and distributed in a patchy

mosaic, we suggest image texture from fine-grained imagery (e.g.,

1-m resolution) may best characterize avian species richness across

broad extents. If habitats are structurally heterogeneous, yet

broadly distributed, we suggest texture from Landsat or imagery

with similar resolution is appropriate for characterizing avian

species richness.

Our study identified both opportunities and pitfalls of using

image texture for predicting avian density and richness across

broad spatial extents. In general though, models that are based on

training data from one region may not have equal predictive

power when applied to another area. For example, in southern

Germany, predictive maps of the breeding distribution of Red

Kite (Milvus milvus) were developed for the state of Bavaria and

tested in the neighboring state of Baden-Württemberg [70].

Despite the proximity of the training and test sites, the predictive

power of the model decreased, likely because of spatially

autocorrelated data, and differences in environmental variables

(e.g., elevation) between the two regions [70]. In our case,

elevation was similar throughout our study area and there was no

spatial autocorrelation affecting models of indicator species density

or avian species richness. Yet, the habitat types vary greatly. The

predictive maps of grasshopper sparrow and ovenbird generally

captured the grassland and woodland areas outside of our training

data sites well, which these birds use as breeding habitat (Fig. 5).

These predictions were derived from good-fitting models (i.e., high

R2) with relatively low prediction error. On the other hand,

predictive maps for field sparrow and avian species richness were

far noisier, either because the models were poor-fitting (e.g., field

sparrow), or the prediction error was high (e.g., avian species

richness). In general, using our approach, it is necessary to

understand the strength of relationship between species density, or

richness, and an image texture measure in addition to under-

standing the model prediction error for data from training sites.

Furthermore, we suggest, when making predictions, that it is

necessary to have a clear understanding of the habitat (i.e.,

environmental variables), including the observed variation of

remotely sensed data, at both the training and test sites.

Field-based data collection methods are used by ecologists in

order to understand plant and animal distributions. Though field-

based data provide indispensable information, it is nearly

impossible to collect such data rapidly and economically at broad

scales. As land use pressures intensify and habitats continue to

dwindle, conservation practitioners must apply efficient tools for

prioritizing conservation. Our results suggest image texture can be

useful data for understanding habitat quality for single species, and

for characterizing a surrogate of biodiversity, avian species

richness, across broad extents and therefore is valuable for

management and conservation applications.

Supporting Information

Figure S1 Pairs plots of two field-based measures of vegetation

structure: vertical (foliage-height diversity) and horizontal (hori-

zontal vegetation structure), the pixel values from an infrared air-

photo (Air.photo) and a Normalized Difference Vegetation Index

(NDVI) calculated from Landsat TM imagery, and two first order

Table 5. Results of linear regression NDVI analysis relating
grasshopper sparrow and ovenbird density and avian species
richness to image texture measures calculated within moving
windows of four extents.

Texture measure 363 565 767 11611 p-value
Prediction
error

Grasshopper
sparrow

Entropy MEAN 0.34 0.29 ,0.001 6.01

Entropy SD

Variance MEAN

Variance SD

Contrast MEAN

Contrast SD

Ovenbird

Entropy MEAN 0.13 0.13 0.20 0.002 0.73

Entropy SD

Variance MEAN 0.09 0.29 0.26 0.27 ,0.001 0.65

Variance SD 0.19 0.16 0.002 0.69

Contrast MEAN 0.12 0.17 0.16 0.24 ,0.001 0.48

Contrast SD 0.09 0.11 0.09 0.026 0.60

Avian species
richness

Entropy MEAN 0.15 0.14 ,0.001 40.56

Entropy SD 0.09 0.07 ,0.001 43.24

Variance MEAN

Variance SD 0.09 ,0.001 48.36

Contrast MEAN

Contrast SD

Field sparrow model metrics are not displayed because no significant
relationships found. Values within cells are adjusted R2. Shown are the best
model p-value (p-value) and the prediction error for the best model (in bold,
highest R2), resulting from leave-one out cross validation. Cells not populated
with metrics indicate non-significant models or assumptions of linear models
(i.e., heteroscedasticity) could not be met.
doi:10.1371/journal.pone.0063211.t005
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texture measures, entropy and variance, and one second order

measure, contrast. The image texture measures were calculated in

a 363 moving window from the air photo and summarized by the

mean value (raw pixel values or image texture measures) in a 100-

m radius circle surrounding each bird point count circle.
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